2017建邺区二模试题及答案
2017年江苏省南京市建邺区中考数学二模试卷及答案详解

2017年江苏省南京市建邺区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(2分)2017年5月14日首届“一带一路”国际高峰论坛在中国北京召开,来自130多个国家的约1 500名各界贵宾出席论坛.用科学记数法表示1 500是()A.15×102B.1.5×102C.1.5×103D.0.15×1042.(2分)下列各数中,是无理数的是()A.B.C.2D.sin30°3.(2分)计算(﹣ab3)2的结果是()A.﹣a2b5B.a2b5C.﹣a2b6D.a2b64.(2分)用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.(2分)如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC的度数是()A.45°B.60°C.67.5°D.82.5°6.(2分)已知二次函数y=ax2﹣ax(a为常数,且a≠0),图象的顶点为C.以下三个结论:①无论a为何值,该函数的图象与x轴一定有两个交点;②无论a为何值,该函数的图象在x轴上截得的线段长为2;③若该函数的图象与x轴有两个交点A、B,且S△ABC =1时,则a=8.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)9的平方根是.8.(2分)函数中,自变量x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)若反比例函数y=的图象经过点A(﹣1,m),则m的值是.11.(2分)一元二次方程x2﹣6x+5=0的两根分别是x1、x2,则x1•x2的值是.12.(2分)已知圆锥的底面半径是2cm,母线长为3cm,则圆锥的侧面积为cm2.13.(2分)某校九年级有15名同学参加校运会百米比赛,预赛成绩各不相同,前7名才有资格参加决赛,小明已经知道了自己的成绩,但他想知道自己能否进入决赛,还需要知道这15名同学成绩的.(填“极差”、“众数”或“中位数”)14.(2分)菱形ABCD的两条对角线长分别为6和8,则菱形ABCD的面积为,周长为.15.(2分)如图,矩形ABCD中,点E在边AB上,将一边AD折叠,使点A恰好落在边BC的点F处,折痕为DE,若AB=8,BF=4,则BC=cm.16.(2分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=2.点P是△ABC内部的一个动点,且满足∠P AC=∠PCB,则线段BP长的最小值是.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)解不等式组,并写出它的整数解.18.(6分)计算(1+)÷.19.(7分)用一条长20cm的绳子能否围成一个面积为30cm2的矩形?如能,说明围法;如果不能,说明理由.20.(8分)如图,在菱形ABCD中,点E、F在对角线AC上,且AE=CF.求证:(1)△ABE≌△ADE.(2)四边形BFDE是菱形.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.22.(8分)“约在江苏,共筑梦想”,为了解某校1000名学生在2017年5月20日“江苏发展大会”期间对会议的关注方式,某班兴趣小组随机抽取了部分学生进行问卷调查,某校抽取学生“江苏发展大会”期间对会议的关注方式的统计表并将问卷调查的结果绘制成如下不完整的统计表:方式频数百分比网络2346%电视报纸8%其他15合计100%(1)本次问卷调查抽取的学生共有人,其中通过电视关注会议的学生有人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过报纸关注会议的约有多少人?23.(8分)如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.(参考数据:sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)24.(9分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线段OBA表示小亮在整个训练中y与x的函数关系,其中点A在x轴上,点B坐标为(2,480).(1)点B所表示的实际意义是;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?25.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O与边AB、BC分别交于点D、E.过E作直线与AB垂直,垂足为F,且与AC的延长线交于点G.(1)求证:直线FG是⊙O切线.(2)若BF=1,CG=2,求⊙O半径.26.(10分)已知二次函数y=x2+bx+c的图象与x轴交于A、B两点,AB=2,其中点A的坐标为(1,0).(1)求二次函数的关系式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图象的顶点在x轴上,并直接写出平移后相应的二次函数的表达式.27.(10分)问题提出旋转是图形的一种变换方式,利用旋转来解决几何问题往往可以使解题过程更简单,起到事半功倍的效果.初步思考(1)如图①,点P是等边△ABC内部一点,且∠APC=150°,P A=3,PC=4.求PB 的长.小敏在解答此题时,利用了“旋转法”进行证明,她的方法如下:如图②,将△APC绕点A按顺时针方向旋转60°后得到△ADB,连接DP.(请你在下面的空白处完成小敏的证明过程.)推广运用(2)如图③,在△ABC中,∠BAC=60°,AB=2AC,点P是△ABC内部一点,且∠APC=120°,P A=,PB=5.求PC的长.2017年江苏省南京市建邺区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(2分)2017年5月14日首届“一带一路”国际高峰论坛在中国北京召开,来自130多个国家的约1 500名各界贵宾出席论坛.用科学记数法表示1 500是()A.15×102B.1.5×102C.1.5×103D.0.15×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示1 500是1.5×103,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)下列各数中,是无理数的是()A.B.C.2D.sin30°【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、分数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、sin30°=是分数,是有理数,选项不符合题意.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(2分)计算(﹣ab3)2的结果是()A.﹣a2b5B.a2b5C.﹣a2b6D.a2b6【分析】原式利用幂的乘方与积的乘方运算法则计算即可得到结果.【解答】解:原式=a2b6,故选:D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(2分)用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据作图得出符合全等三角形的判定定理SSS,即可得出答案.【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选:D.【点评】本题考查的是作图﹣基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.(2分)如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC的度数是()A.45°B.60°C.67.5°D.82.5°【分析】利用正方形的性质,可知∠CBE=45°,再根据等腰三角形的性质即可解决问题.【解答】解:∵四边形ABCD是正方形,∴∠CBD=45°,∵BC=BE,∴∠BEC=∠BCE=(180°﹣45°)=67.5°,故选:C.【点评】本题考查正方形的性质.等腰三角形的性质等知识,熟练掌握正方形的性质是解决问题的关键.6.(2分)已知二次函数y=ax2﹣ax(a为常数,且a≠0),图象的顶点为C.以下三个结论:①无论a为何值,该函数的图象与x轴一定有两个交点;②无论a为何值,该函数的图象在x轴上截得的线段长为2;③若该函数的图象与x轴有两个交点A、B,且S△ABC =1时,则a=8.其中正确的有()A.0个B.1个C.2个D.3个【分析】①化简二次函数即可解题;②根据①中结论即可判断;③易求得点C的坐标,即可求得a的值,即可解题.【解答】解:①y=ax2﹣ax=ax(x﹣1),当y=0时,x=0或者1,∴无论a为何值,该函数的图象与x轴一定有两个交点为(0,0)(1,0);①正确;②∵无论a为何值,该函数的图象与x轴一定有两个交点为(0,0)(1,0),∴该函数的图象在x轴上截得的线段长为1;②错误;③y=ax2﹣ax对称轴为x=,∵当x=时,y=﹣a,∴S△ABC=AB•|﹣a|=|a|,当S△ABC=1时,|a|=1,解得:a=±8,③错误;故选:B.【点评】本题考查了抛物线顶点的坐标,考查了三角形面积的计算,本题注意抛物线开口向上向下无法确定,所以a无法判定正负数.二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.8.(2分)函数中,自变量x的取值范围是x≠1.【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.10.(2分)若反比例函数y=的图象经过点A(﹣1,m),则m的值是﹣2.【分析】直接把点A(﹣1,m)代入反比例函数y=,求出m的值即可.【解答】解:∵反比例函数y=的图象经过点A(﹣1,m),∴m==﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.(2分)一元二次方程x2﹣6x+5=0的两根分别是x1、x2,则x1•x2的值是5.【分析】根据根与系数的关系,可得出x1•x2=5,此题得解.【解答】解:∵一元二次方程x2﹣6x+5=0的两根分别是x1、x2,∴x1•x2=5.故答案为:5.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.12.(2分)已知圆锥的底面半径是2cm,母线长为3cm,则圆锥的侧面积为6πcm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径是2cm,则底面周长=4πcm,圆锥的侧面积=×4π×3=6πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.13.(2分)某校九年级有15名同学参加校运会百米比赛,预赛成绩各不相同,前7名才有资格参加决赛,小明已经知道了自己的成绩,但他想知道自己能否进入决赛,还需要知道这15名同学成绩的中位数.(填“极差”、“众数”或“中位数”)【分析】由于比赛取前8名参加决赛,共有15名选手参加,根据中位数的意义分析即可.【解答】解:15个不同的成绩按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的成绩和中位数就可以知道是否获奖了.故答案为中位数.【点评】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.14.(2分)菱形ABCD的两条对角线长分别为6和8,则菱形ABCD的面积为24,周长为20.【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解;根据菱形的对角线互相垂直平分求出两条对角线的一半,再利用勾股定理列式求出边长,然后根据周长公式列式计算即可得解.【解答】解:菱形ABCD的面积=×6×8=24;∵两条对角线长分别为6和8,∴两对角线的一半分别为3,4,由勾股定理得,菱形的边长==5,所以,菱形的周长=4×5=20.故答案为:24;20.【点评】本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质和面积的计算方法,需熟记.15.(2分)如图,矩形ABCD中,点E在边AB上,将一边AD折叠,使点A恰好落在边BC的点F处,折痕为DE,若AB=8,BF=4,则BC=10cm.【分析】设AE=x,表示出BE,根据翻折变换的性质可得EF=AE,然后利用勾股定理列出方程求解即可得到EF的长,再根据相似三角形的性质,即可得到CF的长,进而得出BC的长.【解答】解:设EF=AE=x,则BE=8﹣x,∵∠B=90°,BF=4,∴Rt△BEF中,BE2+BF2=EF2,即(8﹣x)2+42=x2,解得x=5,∴EF=5,BE=3,∵∠DFE=∠A=90°,∠C=90°,∴∠CDF=∠BFE,又∵∠B=∠C=90°,∴△DCF∽△FBE,∴=,即=,∴CF=6,∴BC=BF+CF=4+6=10.故答案为:10.【点评】本题考查了翻折变换的性质,勾股定理以及相似三角形的性质的运用,熟记折叠的性质并利用勾股定理列出方程是解题的关键.解题时注意方程思想的运用.16.(2分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=2.点P是△ABC内部的一个动点,且满足∠P AC=∠PCB,则线段BP长的最小值是1.【分析】首先证明点P在以AC为直径的⊙O上,连接OB与⊙O交于点P,此时PB最小,利用勾股定理求出OB即可解决问题.【解答】解:∵∠ACB=90°,∴∠ACP+∠BCP=90°,∵∠P AC=∠PCB∴∠CAP+∠ACP=90°,∴∠APC=90°,∴点P在以AC为直径的⊙O上,连接OB交⊙O于点P,此时PB最小,在Rt△CBO中,∵∠OCB=90°,BC=2,OC=1.5,∴OB==2.5,∴PB=OB﹣OP=2.5﹣1.5=1.∴PB最小值为1.故答案为1.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)解不等式组,并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(6分)计算(1+)÷.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷=•=x﹣1.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.19.(7分)用一条长20cm的绳子能否围成一个面积为30cm2的矩形?如能,说明围法;如果不能,说明理由.【分析】首先设矩形的长为xcm,则宽为(10﹣x)cm,利用矩形面积为30cm2,进而得出等式求出答案.【解答】解:设矩形的长为xcm,则宽为(10﹣x)cm.根据题意,得x(10﹣x)=30,即x2﹣10x+30=0.因为△=b2﹣4ac=102﹣4×30=﹣20<0,所以此一元二次方程无实数根.答:用一条长20cm的绳子不能围成一个面积为30cm2的矩形.【点评】此题主要考查了一元二次方程的应用,正确得出等式是解题关键.20.(8分)如图,在菱形ABCD中,点E、F在对角线AC上,且AE=CF.求证:(1)△ABE≌△ADE.(2)四边形BFDE是菱形.【分析】(1)根据菱形的性质进而推出∠BAE=∠DAE,利用SAS证明△ABE≌△ADE;(2)连接BD,交AC于点O,首先证明四边形BFDE是平行四边形,再证明BE=DE,利用邻边相等的平行四边形是菱形即可得到结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD=BC,AD∥BC.∴∠BAC=∠BCA,∠DAC=∠BCA.∴∠BAC=∠DAC.即∠BAE=∠DAE.在△ABE和△ADE中,∴△ABE≌△ADE.(2)如图,连接BD,交AC于点O.∵四边形ABCD是菱形,∴OA=OC,OB=OD.又AE=CF,∴OA﹣AE=OC﹣CF.即OE=OF.∴四边形BFDE是平行四边形.又△ABE≌△ADE,∴BE=DE.∴四边形BFDE是菱形.【点评】本题主要考查了菱形的判定与性质以及全等三角形的判定与性质,解题的关键是掌握菱形的判定方法以及利用SAS证明两个三角形全等.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.【分析】(1)直接根据概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)另外1人恰好选中副班长的概率是;(2)画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙的结果数为2,所以恰好选中甲和乙的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.22.(8分)“约在江苏,共筑梦想”,为了解某校1000名学生在2017年5月20日“江苏发展大会”期间对会议的关注方式,某班兴趣小组随机抽取了部分学生进行问卷调查,某校抽取学生“江苏发展大会”期间对会议的关注方式的统计表并将问卷调查的结果绘制成如下不完整的统计表:方式频数百分比网络2346%电视报纸8%其他15合计100%(1)本次问卷调查抽取的学生共有50人,其中通过电视关注会议的学生有8人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过报纸关注会议的约有多少人?【分析】(1)由问卷调查的学生总人数=通过网络关注的学生人数÷该项人数所占的百分比;通过电视关注会议的学生人数=问卷调查的学生总人数×该项人数所占的百分比.(2)可选择条形图或者扇形图;(3)该校学生通过报纸关注会议的人数=该校学生数×该项所占的百分数.【解答】解:(1)23÷46%=50(人),15÷50=30%,50×(1﹣46%﹣8%﹣30%)=8(人).答:本次问卷调查抽取的学生共有50人,其中通过电视关注会议的学生有8人;(2)选择条形图,如图所示:(3)1 000×8%=80(人).答:估计该校学生通过报纸关注会议的约有80人.故答案为:50,8.【点评】本题考查了频数、频率及总数间的关系,统计图的选择和用样本估计总数.频率=,频数=频率×总数,总数=.23.(8分)如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.(参考数据:sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)【分析】作AE⊥CD,垂足为E.分别在Rt△AEC和Rt△AED中,求出CE和DE的长,然后相加即可.【解答】解:作AE⊥CD,垂足为E.在Rt△AEC中,CE=AE•tan26.6°≈40×0.50=20m;在Rt△AED中,DE=AE•tan37°≈40×0.75=30m;∴CD=20+30=50m.答:铁塔的高度为50米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,转化为解直角三角形问题是解题的关键.24.(9分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线段OBA表示小亮在整个训练中y与x的函数关系,其中点A在x轴上,点B坐标为(2,480).(1)点B所表示的实际意义是2min时,小亮到达距离出发点480m的坡顶开始下坡返回;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?【分析】(1)根据到出发点的距离由大变小可知小亮2min时开始下坡返回;(2)求出下坡时的速度,然后求出下坡的时间,从而得到点A的坐标,设直线AB的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;(3)设两人出发后xmin相遇,根据第一次相遇时,小刚下坡,小亮上坡,列出方程求解即可.【解答】解:(1)点B所表示的实际意义是:2min时,小亮到达距离出发点480m的坡顶开始下坡返回;(2)小亮上坡速度:480÷2=240m/min,下坡速度:240×1.5=360m/min,所以,下坡时间为480÷360=min,2+=min,所以,点A的坐标为(,0),设直线AB的解析式为y=kx+b,则,解得.所以,y=﹣360x+1200;(3)设两人出发后xmin相遇,∵小刚上坡平均速度是小亮上坡平均速度的一半,∴小刚的速度是240÷2=120m/min,第一次相遇时,小刚下坡,小亮上坡,由题意得,120x+360(x﹣2)=480,解得x=2.5.答:两人出发2.5min后第一次相遇.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,相遇问题等量关系,读懂题目信息,理解两人的运动过程是解题的关键.25.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O与边AB、BC分别交于点D、E.过E作直线与AB垂直,垂足为F,且与AC的延长线交于点G.(1)求证:直线FG是⊙O切线.(2)若BF=1,CG=2,求⊙O半径.【分析】(1)证明OE∥AB,由FG⊥AB,一条直线垂直于两平行线的一条直线,则这条直线也垂直于另一条直线,可得OE⊥GF,FG与⊙O相切.(2)设⊙O的半径为r,则OE=r,AB=AC=2r.根据平行证明△GOE∽△GAF.列比例式得:=,代入可得r的值.【解答】证明:(1)如图,连接OE.∵AB=AC,∴∠B=∠ACB.在⊙O中,OC=OE,∴∠OEC=∠ACB.∴∠B=∠OEC.∴OE∥AB.又AB⊥GF,∴OE⊥GF.又OE是⊙O的半径,∴FG与⊙O相切.解:(2)设⊙O的半径为r,则OE=r,AB=AC=2r.∵BF=1,CG=2,∴AF=2r﹣1,OG=r+2,AG=2r+2.∵OE∥AB,∴△GOE∽△GAF.∴=.∴=.∴r=2.即⊙O的半径为2.【点评】本题考查了切线的判定、等腰三角形的性质、三角形相似的性质和判定,在圆中证明一条直线是圆的切线是常考题型,常运用的辅助线为:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.26.(10分)已知二次函数y=x2+bx+c的图象与x轴交于A、B两点,AB=2,其中点A的坐标为(1,0).(1)求二次函数的关系式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图象的顶点在x轴上,并直接写出平移后相应的二次函数的表达式.【分析】(1)由AB=2,点A的坐标为(1,0)可求出B的坐标(不唯一)再把A,B 的坐标代入y=x2+bx+c,求出b和c的值即可;(2)由(1)可知抛物线的顶点坐标,由此平移即可使(1)中的二次函数图象的顶点在x轴上(此题平移方法不唯一).【解答】解:(1)因为点A的坐标为(1,0),AB=2,所以点B的坐标为(3,0)或(﹣1,0).将A(1,0),B(3,0)或A(1,0),(﹣1,0)代入y=x2+bx+c,得或所以二次函数的表达式为y=x2﹣4x+3或y=x2﹣1.顶点坐标分别为(2,﹣1)、(0,﹣1).(2)∵顶点坐标分别为(2,﹣1)、(0,﹣1),若二次函数图象的顶点在顶点在x轴上,∴抛物线的图象向上平移1个单位.∴二次函数的关系式为y=x2﹣4x+4或y=x2.【点评】本题主要考查的是用待定系数法求二次函数的解析式和函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式,求得平移后的函数解析式.27.(10分)问题提出旋转是图形的一种变换方式,利用旋转来解决几何问题往往可以使解题过程更简单,起到事半功倍的效果.初步思考(1)如图①,点P是等边△ABC内部一点,且∠APC=150°,P A=3,PC=4.求PB 的长.小敏在解答此题时,利用了“旋转法”进行证明,她的方法如下:如图②,将△APC绕点A按顺时针方向旋转60°后得到△ADB,连接DP.(请你在下面的空白处完成小敏的证明过程.)推广运用(2)如图③,在△ABC中,∠BAC=60°,AB=2AC,点P是△ABC内部一点,且∠APC=120°,P A=,PB=5.求PC的长.【分析】(1)只要证明△ADP是等边三角形,△PDB是直角三角形,两个勾股定理即可解决问题;(2)如图,作∠CAD=∠BAP,使AD=AP.连接CD、PD.只要证明△DPC是直角三角形,即可解决问题;【解答】解:(1)如图2中,∵将△APC绕点A按顺时针方向旋转60°后得到△ADB.∴AD=AP=3,DB=PC=4,∠P AD=60°,∠ADB=∠APC=150°.∵AD=AP,∠P AD=60°,∴△ADP为等边三角形.∴PD=P A=3,∠ADP=60°.又∠ADB=150°,∴∠PDB=90°.在Rt△PDB中,PD=3,DB=4,∴BP===5,(2)如图,作∠CAD=∠BAP,使AD=AP.连接CD、PD.∵AB=2AC,AD=AP,∴==.又∠CAD=∠BAP,∴△ABP∽△ACD.∴CD=BP=2.5.在△P AD中,P A=,∠P AD=60°,AD=,易证∠APD=30°,∠PDA=90°(取P A中点K,连接DK,利用等边三角形的性质即可证明)∴PD=,∴∠DPC=120°﹣30°=90°在Rt△DPC中,PC===2.【点评】本题考查几何变换综合题、等边三角形的性质、直角三角形30度角的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.。
江苏省南京市建邺区2017年中考二模语文试卷

南京市建邺区2017年中考二模语文试卷注意事项:1.本试卷6页,共120分,考试时间为120分钟。
考生答题全部答在答题卡上。
2.请认真核对答题纸上所粘贴条形码的信息是否与本人相符。
3.选择题答案用2B 铅笔将答题纸对应答案标号涂黑,非选择题答案用黑色墨水签字笔写在答题纸指定位置,写在其他位置一律无效。
一(28分)1.用诗文原句填空。
(10分)(1)蒹葭苍苍, ▲ 。
(《诗经·蒹葭》)(2)采菊东篱下, ▲ 。
(陶渊明《饮酒》)(3)安得广厦千万间, ▲ ,风雨不动安如山。
(杜甫《茅屋为秋风所破歌》)(4) ▲ ,桃花流水鳜鱼肥。
(张志和《渔歌子》)(5)何当共剪西窗烛, ▲ 。
(李商隐《夜雨寄北》)(6)塞下秋来风景异, ▲ 。
(范仲淹《渔家傲》)(7)夕阳西下, ▲ 。
(马致远《天净沙·秋思》)(8)江山如此多娇, ▲ 。
(毛泽东《沁园春·雪》)(9)古诗文中有许多自然风物的描写,如苏轼《记承天寺夜游》中“ ▲ ,水中藻荇交横,盖竹柏影也”的月下美景,又如张岱《湖心亭看雪》中“雾凇沆砀, ▲ ,上下一白”的雪中奇景。
2.在田字格内用正楷字...或行楷字...抄写下面的诗句。
(4分) 落霞与孤鹜齐飞,秋水共长天一色。
3.给加点字注音,根据拼音写汉字。
(4分)(1)“看,像牛毛,像花针,像细丝,密密地斜织着,人家屋顶上全l ǒng( ▲ )着一层薄烟”,这是朱自清先生留给我们的春天的雨。
(2)在鲁迅先生笔下,夏夜宛转、y ōu( ▲ )扬的横笛声弥散在含着豆麦蕴藻之香的夜气里,让人回味无穷。
(3)在现代诗人何其芳看来,饱食过稻香的镰刀、肥硕的瓜果都告诉我们秋天是栖.( ▲ )息在农家里的。
(4)“忽如一夜春风来,千树万树梨花开”,唐代诗人岑参这首写雪的诗句展现了边塞冬季的精髓.( ▲ )。
(1)l ǒng( ▲ )着 (2)y ōu( ▲ )扬 (3)栖.(▲ )息 (4)精髓.( ▲ ) 4.下列加点成语使用有误..的一项是( ▲ )(2分) A.到社区敬老院参加志愿服务的医生们表示,他们所做的事情是微不足道....的。
2017建邺区二模试题及答案

2017建邺区二模试题及答案2017年九年级学情调研卷(Ⅱ)数学注意事项:本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....)1.2017年5月14日首届“一带一路”国际高峰论坛在中国北京召开,来自130多个国家的约1 500名各界贵宾出席论坛.用科学记数法表示1 500是()A.15×102 B.1.5×102C.1.5×103D.0.15×1042.下列各数中,是无理数的是A.227B.π2C.2D.sin30°3.计算(-ab3)2的结果是A.-a2b5 B.a2b5 C.-a2b6 D.a2b6 4.用尺规作图法已知角∠AOB的平分线的步骤在x 轴上截得的线段长为2;③若该函数的图像与x 轴有两个交点A 、B ,且S △ABC =1时,则a =8.其中正确的有A .0个B .1个C .2个D .3个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ .8.函数y =1x -1中,自变量x 的取值范围是 ▲ .9.分解因式2a (b +c )-3(b +c )的结果是 ▲ .10.若反比例函数y =2x 的图像经过点A (-1,m ),则m 的值是 ▲ .11.一元二次方程x 2-6x +5=0的两根分别是x 1、x 2,则x 1·x 2的值是 ▲ . 12.已知圆锥的底面半径为2cm ,母线长为3cm ,则其侧面积为 ▲ cm 2.(结果保留π)13.某校九年级有15名同学参加校运会百米比赛,预赛成绩各不相同,前7名才有资格参加决赛,小明已经知道了自己的成绩,但他想知道自己能否进入决赛,还需要知道这15名同学成绩的 ▲ .(填“极差”、“众数”或“中位数”)14.菱形ABCD 的两条对角线长分别为6和8,则菱形ABCD 的面积为 ▲ .15.如图,矩形ABCD 中,点E 在边AB 上,将一边AD 折叠,使点A 恰好落在边BC 的点 F 处,折痕为DE ,若AB =8,BF =4,则BC = ▲ cm .16.如图,在Rt △ABC 中,∠ACB =90°,AC=3,BC =2.点P 是△ABC 内部的一个动A P BC (第16题) A B CDEF (第15题)点,且满足∠PAC =∠PCB ,则线段BP 长的最小值是 ▲ .三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎨⎧3x +1≤2(x +1),-x <5x +12,并写出它的整数解.18.(6分)计算(1+2x -1)÷x +1x 2-2x +1.19.(7分)用一条长20cm 的绳子能否围成一个面积为30cm 2的矩形?如能,说明围法;如果不能,说明理由.20.(8分)如图,在菱形ABCD 中,点E 、F在对角线AC 上,且AE =CF .求证:(1)△ABE ≌△ADE .(2)四边形BFDE 是菱形.21.(8分)初三(1)班要从甲、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会.求下列事件的概率:(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.22.(8分)“约在江苏,共筑梦想”,为了解某校1000名学生在2017年5月20日“江苏发展大会”期间对会议的关注方式,某班兴趣小组随机抽取了部分学生进行问卷调查,(第20题)F E C B D A并将问卷调查的结果绘制成如下不完整的某校抽取学生“江苏发展大会”期间对会议的关注方式的统计表统计表:方式频数百分比网络23 46%电视报纸8%其他15合计100%(1)本次问卷调查抽取的学生共有▲ 人,其中通过电视关注会议的学生有▲ 人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过报纸关注会议的约有多少人?23.(8分)如图,平地上一幢建筑物AB与铁塔CD相距40m.在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°.求铁塔的高度.(参考数据:sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)C24.(9分)小明和小敏进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线段OBA表示小明在整个训练中y与x的函数关系.(1)点B所表示的实际意义是▲ ;(2)求线段AB所在直线的函数表达式;(3)如果小敏上坡平均速度是小明上坡平均速度的一半,那么两人出发后多长时间第一次相遇?25.(8分)如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 与边AB 、BC 分别交于点D 、E .过E 作直线与AB 垂直,垂足为F ,且与AC 的延长线交于点G .(1)求证:直线FG 是⊙O 切线.(2)若BF =1,CG =2,求⊙O 半径.(第24题) 2 y /m x /min O 480 A B26.(10分)已知二次函数y=x2+bx+c的图像与x轴交于A、B两点,AB=2,其中点A的坐标为(1,0).(1)求二次函数的关系式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图像的顶点在x轴上,并直接写出平移后相应的二次函数的表达式.27.(10分) 问题提出旋转是图形的一种变换方式,利用旋转来解决几何问题往往可以使解题过程更简单,起到事半功倍的效果. 初步思考(1)如图①,点P 是等边△ABC 内部一点,且∠APC =150°,PA =3,PC =4.求PB 的长. 小敏在解答此题时,利用了“旋转法”进行证明,她的方法如下:如图②,将△APC 绕点A 按顺时针方向旋转60°后得到△ADB ,连接DP .(请你在下面的空白处完成小敏的证明过程.)C BAP图①PABCD图②(第27题)推广运用(2)如图③,在△ABC 中,∠BAC =60°,AB =2AC ,点P 是△ABC 内部一点,且∠APC =120°,PA =3,PB =5.求PC 的长.2017届初三学情调研试卷(Ⅱ)数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评CBA P图③ (第27题)分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.±3.8.x≠1.9.(b+c)(2a-3).10.-2.11.5.12.6π.13.中位数.14.24.15.10.16.1.三、解答题(本大题共11小题,共88分)17.(本题6分)解:解不等式①,得x≤1.解不等式②,得x>-2.所以,不等式组的解集是-2<x≤1.该不等式组的整数解是-1,0,1.6分18.(本题6分)解:(1+2x-1)÷x+1x2-2x+1题号 1 2 3 4 5 6 答案 C B D D C B=x+1x-1·(x-1)2x+1=x-1. ································· 6分19.(本题7分)解:设矩形的长为x cm,则宽为(10-x)cm.根据题意,得x(10-x)=30,即x2-10x+30=0.因为△=b2-4ac=102-4×30=-20<0,所以此一元二次方程无实数根.答:用一条长20cm的绳子不能围成一个面积为30cm2的矩形. ························ 7分20.(本题8分)证明:(1)∵四边形ABCD是菱形,∴AB=AD=BC,AD∥BC.∴∠BAC=∠BCA,∠DAC =∠BCA.∴∠BAC=∠DAC.即∠BAE=∠DAE.在△ABE和△ADE中,⎩⎪⎨⎪⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴ △ABE ≌△ADE . ······· 4分 (2)如图,连接BD ,交AC 于点O . ∵ 四边形ABCD 是菱形, ∴ OA =OC ,OB =OD . 又 AE =CF ,∴ OA -AE =OC -CF .即 OE =OF .∴ 四边形BFDE 是平行四边形.又 △ABE ≌△ADE ,∴ BE =DE .∴ 四边形BFDE 是菱形. 8分 21.(本题8分)解:(1)13. ·································· 3分(2)随机选取两名同学,可能出现的结果有6种,即(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁),并且它们出现的可能性O(第20题) F ECBDA相等.恰好选中甲和乙(记为事件A )的结果有1种,即(甲,乙),所以P (A )=16. ··············· 8分22.(本题8分)解:(1)50,4. ····························· 2分 (2)选择条形图或扇形统计图,画图正确. ··································· 5分(3)1 000×16%=160人.答:估计该校1 000名学生中通过报纸关注会议的约有160人. ·· 8分 23.(本题8分) 解:如图,过点A 作AE ⊥CD ,垂足为E ,则∠AEC =∠AED =90°. 由题意得:∠CAE =26.6°,∠DAE =37°,AE =BD =40 m . 在Rt △AEC 中, ∵ tan ∠CAE =CE AE,∴ CE =AE ·tan26.6°. 同理可得 DE =AE ·tan37°.所以 CD =CE +DE ≈40×(0.50+0.75)CDAB(第23题)26.6°37°E=50 (m) .答:铁塔的高度约为50 m. ········ 8分24.(本题9分)解:(1)小明出发2分钟跑到坡顶,此时离坡脚480米.··································· 2分(2)小明上坡的平均速度为480÷2=240(m/min),则其下坡的平均速度为240×1.5=360(m/min) .故回到出发点时间为2+480÷360=103(min).所以A点坐标为(103,0),设AB所在直线的函数表达式为y=kx+b,因为y=kx+b的图像过点B(2,480)、A(103,0),所以⎩⎨⎧480=2k+b,0=103k+b.解方程组,得⎩⎨⎧k =-360,b =1200.所以AB 所在直线的函数表达式为y =-360x +1200. ··························· 5分 (3)根据题意,可知小敏上坡的平均速度为240×0.5=120(m/min).设小敏出发x min 后距出发点的距离为y 敏 m ,所以y 敏=120x .解方程组⎩⎨⎧y =120x ,y =-360x +1200,得⎩⎨⎧x =2.5,y =300.因此,两人第一次相遇时间为2.5(min ). ··········································· 9分 25.(本题8分)证明:(1)如图,连接OE . ∵ AB =AC , ∴ ∠B =∠ACB . 在⊙O 中,OC =OE , ∴ ∠OEC =∠ACB . ∴ ∠B =∠OEC .CGO E∴OE∥AB.又AB⊥GF,∴OE⊥GF.又OE是⊙O的半径,∴FG与⊙O相切. ······ 4分解:(2)设⊙O的半径为r,则OE=r,AB=AC=2r.∵BF=1,CG=2,∴AF=2r-1,OG=r+2,AG =2r+2.∵OE∥AB,∴△GOE∽△GAF.∴OEAF=OGAG.∴r2r-1=r+22r+2.∴r=2.即⊙O的半径为2. ······· 8分26.(本题10分)解:(1)因为点A的坐标为(1,0),AB=2,所以点B的坐标为(3,0)或(-1,0).将A (1,0),B (3,0)或A (1,0),(-1,0)代入y =x 2+bx +c ,得⎩⎨⎧b =-4,c =3,或⎩⎨⎧b =0,c =-1.所以二次函数的表达式为y =x 2-4x +3或y =x 2-1.顶点坐标分别为(2,-1)、(0,-1). ··············································· 6分(2)分别对(1)中的两个函数的图像进行平移. ······································· 10分27.(本题10分)解:(1)∵ 将△APC 绕点A 按顺时针方向旋转60°后得到△ADB .∴ AD =AP =3,DB =PC =4,∠PAD =60°,∠ADB =∠APC=150°.∵ AD =AP ,∠PAD =60°,∴ △ADP 为等边三角形. ∴ PD =PA =3,∠ADP =60°.又 ∠ADB =150°, ∴ ∠PDB =90°.在Rt △PDB 中,PD =3,DB =4,∴ BP =DB 2+DP 2=42+32=5. ··················································· 4分(2)如图,作∠CAD =∠BAP ,使AD =12AP .连接CD 、PD . ∵ AB =2AC ,AD =12AP , ∴ AB AC =AP AD =12. 又 ∠CAD =∠BAP ,∴ △ABP ∽△ACD .∴ CD =12BP =2.5. 在△PAD 中,PA =3,∠PAD =60°,AD =123, 易证 ∠APD =30°,∠PDA =90°.∴ ∠DPC =120°-30°=90°. 10分 在Rt △DPC 中,由勾股定理可得,PC =2. ·········································· 10分 B A P (第27题) D。
【全国区级联考】江苏省南京市建邺区2016-2017学年初三二模语文试题

试卷第1页,共9页绝密★启用前【全国区级联考】江苏省南京市建邺区2016-2017学年初三二模语文试题试卷副标题考试范围:xxx ;考试时间:30分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、下列加点成语使用有误的一项是( )A .到社区敬老院参加志愿服务的医生们表示,他们所做的事情是微不足道的。
B .杨绛先生的作品感染着几代人,她的猝然长逝,怎能不让人扼腕叹息?C .小明在演讲比赛中以精湛的技巧征服了评委并获得冠军,全家人乐此不疲。
D .历经周折,老人终于回到阔别已久的故乡,常年漂泊在外的愁绪荡然无存了。
试卷第2页,共9页第II 卷(非选择题)二、现代文阅读(题型注释)丰子恺漫画里的春天 陈向向众所周知,丰子恺是描绘童心的高手,他的漫画渗透着天真稚朴的气息,让生活在尘缘中的俗子,能暂缓“棋局”一般成人世界的谋虑,从孩童的眼神看到生命的真谛。
然而,人们忽略了,丰子恺也是漫画春天的高手,因为童心和春天是相通的。
一年社日都忘了,忽见庭前燕子飞。
禽鸟也知勤作室,衔泥带得落花归。
——清·吕霜以诗入画、以画配诗是中国文人画的传统,记得小时候看《红楼梦》,看到黛玉葬花,不免生怜。
然而春思是另一种情调,它有淡淡的惆怅,又有朦胧的期盼。
一个半倚廊柱的少女,手里拿着“烦恼扇”,双燕的飞姿和盆栽的生机,舞动出阵阵春韵,与少女寂寥的背影形成对比。
于是,在简洁的点、线、面中,我们找到了春的芳然。
春水满四泽,夏云多奇峰。
秋月扬明辉,冬岭秀寒松。
——晋·陶渊明当丰子恺看到少男少女在流水边徜徉嬉戏,享受春意的明媚,不禁吟出“春水满四泽”。
陶渊明的这句诗,原本只是描写春之景象,在丰子恺笔下却充满浓郁的人情。
江苏省南京市建邺区2017年中考二模英语试题及参考答案

江苏省南京市建邺区2017年中考二模英语试题及参考答案2017年南京市建邺区中考第二次模拟测试英语注意事项:1.本试卷共10页。
全卷满分90分。
考试时间为90分钟。
试题包含选择题和非选择题。
考生答题全部答在答题卡上,答在本试卷上无效。
2.请将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡上。
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其它位置答题一律无效。
第一卷选择题(共40分)一、单项填空(共15小题,每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。
1.Jiangsu Development Summit was open _____ May 20th in Nanjing.A.onB.inC.atD.by2.—I can’t believe Jim got first in the competition.— As you know, God helps those who help ______.A.yourselfB.himselfC.yourselvesD.themselves3._____ in the world is difficult for one who sets his mind to it.A.EverythingB.SomethingC.AnythingD.Nothing4.In 2017, about twelve subway lines _____ in Nanjing.A.buildB.are buildingC.were builtD.will be built5.—Robert, I’m afraid I _______ finish the work today.—It doesn’t matter, you may finish it tomorrow.A.needn’tB.can’tC.mustn’tD.shouldn’t6.— You look so worried, James. What happened?—I’m still thinking ______ I can pass the exam or not.A.thoughB.whetherC.unlessD.until7.I went out to take part in a party with my friends and didn’t come home untilmidnight last night. That’s ______ my mother got so angry with me.A.howB.whatC.whyD.when8.Which of the following words has a different pronunciation?A. planB. breadC. manyD. letter9. —Father’s day is coming. Have you prepared any presents for your father?—Not yet, but I’m sure I ______ one for him.A. boughtB. buyC. have boughtD. will buy10. The earth ______ us with so many resources that we can live a colourful life.A. preventsB. preparesC. providesD. produces11.In the words homeless and useless, the -less means ______.A. be full ofB. withoutC. veryD. can12. —Have you heard that there’s a big fire near your home last night?— Sure. Luckily, the firemen came quickly and ______ the fire.A. came outB. broke outC. put outD. cut out13. —It’s going to rain tonight. I’m a little worried about Adam. He’s still out.— Why not ______ him a call?A. giveB. to giveC. givingD. gave14. — Jenny, would you like to pick strawberries with me this Sunday?— ______, and where shall we meet?A. Sounds greatB. I’m afraid I can’t comeC. I d on’t like it very muchD. Sorry, I don’t have time15. — Could I use this dictionary?—______. It’s a spare one.A. Good idea.B. Just go ahead.C. Not at all.D. You’d better not.二、完形填空(共10小题,每小题1分,满分10分)阅读下面短文,从短文后所给各题的四个选项(A、B、C、D)中,选出可以填入空白处的最佳选项。
江苏省南京市2016-2017年中考英语二模试卷含答案

2016-2017学年度第二学期第二阶段学业质量监测试卷九年级英语注意事项:1. 本试卷分选择题和非选择题两部分,共10页,满分为90分;考试时间90分钟。
2.答案一律填涂或书写在答题卡上。
选择题必须使用2B铅笔填涂,非选择题必须使用墨水笔书写。
选择题〔共40分〕一、单项填空〔共15小题;每小题1分,满分15分〕从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
1. English is considered as ______ useful language, so more and more people try to learn it well.A. aB. anC. theD. 不填2. — Cindy, you look worried. Do you need a hand?— You are so kind, ______ I want to do it on my own.A. andB. orC. soD. but3. After 79 minutes of flying, the C919 landed safely at Shanghai Pudong International Airport ______ 3:20 pm on Friday.A. onB. inC. atD. from4. —The English speech competition is coming. I am very nervous.— Cheer up. You should believe in ______.A. myselfB. yourselfC. ourselvesD. themselves5. There have been 7 underground lines in Nanjing and 9 more lines ______ in a few years.A. are builtB. will buildC. will be builtD. are going to build6. — Nature is our greatest treasure.— Yes. If humans don’t take action, natural resources will ______ one day.A. turn outB. put outC. carry outD. run out7.The famous scientist Danian Huang passed away on 1 January. It is a great ______ to Chinesescience.A. lossB. missC. newsD. challenge8. — These two pictures are exactly the same.— I don’t think so. If you look ______, you’ll find the colours of the mountains are different.A. nearlyB. mainlyC. closelyD. hardly9. — What did you do during the Dragon Boat Festival?— I ______ a dragon boat race with my cousin. It was so exciting.A. watchB. watchedC. am watchingD. have watched10. — What do you think of Readers on CCTV?— It’s so wonderful! I’ve never seen ______ programme before.A. a goodB. a betterC. the bestD. a worse11. — Excuse me, could you tell me ______?— In front of the gate of our school.A. what time should we arrive at the parkB. where should we meetC. where I can find you tomorrow morningD. what we need to take with us12. — It’s very kind of Lily to prepare all the things for the party.— Do you mean we ______ bring anything?A. can’tB. shouldn’tC. needn’tD. mustn’t13. In a dictionary, which of the following words is before the others?A. bananaB. picnicC. bicycleD. forget14. — Do you mind my opening the window? It’s really hot.— ______. Do as you like.A. Not at allB. Don’t worryC. Of courseD. I’m sorry you can’t15. — It is said that there may be a war between these two countries.— ______. Peace is what everyone wants.A. I hope soB. I hope notC. It depends on youD. I don’t mind二、完形填空〔共10小题;每小题1分,满分10分〕阅读下面短文,从短文后所给各题的四个选项(A、B、C和D)中,选出可以填入空白处的最佳选项, 并在答题卡上将该项涂黑。
2017年江苏省南京市建邺区中考数学二模试卷(解析版)
2017年江苏省南京市建邺区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(2分)2017年5月14日首届“一带一路”国际高峰论坛在中国北京召开,来自130多个国家的约1 500名各界贵宾出席论坛.用科学记数法表示1 500是()A.15×102B.1.5×102C.1.5×103D.0.15×104 2.(2分)下列各数中,是无理数的是()A.B.C.2D.sin30°3.(2分)计算(﹣ab3)2的结果是()A.﹣a2b5B.a2b5C.﹣a2b6D.a2b64.(2分)用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.(2分)如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC的度数是()A.45°B.60°C.67.5°D.82.5°6.(2分)已知二次函数y=ax2﹣ax(a为常数,且a≠0),图象的顶点为C.以下三个结论:①无论a为何值,该函数的图象与x轴一定有两个交点;②无论a为何值,该函数的图象在x轴上截得的线段长为2;③若该函数的图象与x轴有两个交点A、B,且S△ABC =1时,则a=8.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)9的平方根是.8.(2分)函数中,自变量x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)若反比例函数y=的图象经过点A(﹣1,m),则m的值是.11.(2分)一元二次方程x2﹣6x+5=0的两根分别是x1、x2,则x1•x2的值是.12.(2分)已知圆锥的底面半径是2cm,母线长为3cm,则圆锥的侧面积为cm2.13.(2分)某校九年级有15名同学参加校运会百米比赛,预赛成绩各不相同,前7名才有资格参加决赛,小明已经知道了自己的成绩,但他想知道自己能否进入决赛,还需要知道这15名同学成绩的.(填“极差”、“众数”或“中位数”)14.(2分)菱形ABCD的两条对角线长分别为6和8,则菱形ABCD的面积为,周长为.15.(2分)如图,矩形ABCD中,点E在边AB上,将一边AD折叠,使点A恰好落在边BC的点F处,折痕为DE,若AB=8,BF=4,则BC=cm.16.(2分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=2.点P是△ABC内部的一个动点,且满足∠P AC=∠PCB,则线段BP长的最小值是.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)解不等式组,并写出它的整数解.18.(6分)计算(1+)÷.19.(7分)用一条长20cm的绳子能否围成一个面积为30cm2的矩形?如能,说明围法;如果不能,说明理由.20.(8分)如图,在菱形ABCD中,点E、F在对角线AC上,且AE=CF.求证:(1)△ABE≌△ADE.(2)四边形BFDE是菱形.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.22.(8分)“约在江苏,共筑梦想”,为了解某校1000名学生在2017年5月20日“江苏发展大会”期间对会议的关注方式,某班兴趣小组随机抽取了部分学生进行问卷调查,某校抽取学生“江苏发展大会”期间对会议的关注方式的统计表并将问卷调查的结果绘制成如下不完整的统计表:(1)本次问卷调查抽取的学生共有人,其中通过电视关注会议的学生有人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过报纸关注会议的约有多少人?23.(8分)如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.(参考数据:sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)24.(9分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线段OBA表示小亮在整个训练中y与x的函数关系,其中点A在x轴上,点B坐标为(2,480).(1)点B所表示的实际意义是;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?25.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O与边AB、BC分别交于点D、E.过E作直线与AB垂直,垂足为F,且与AC的延长线交于点G.(1)求证:直线FG是⊙O切线.(2)若BF=1,CG=2,求⊙O半径.26.(10分)已知二次函数y=x2+bx+c的图象与x轴交于A、B两点,AB=2,其中点A的坐标为(1,0).(1)求二次函数的关系式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图象的顶点在x轴上,并直接写出平移后相应的二次函数的表达式.27.(10分)问题提出旋转是图形的一种变换方式,利用旋转来解决几何问题往往可以使解题过程更简单,起到事半功倍的效果.初步思考(1)如图①,点P是等边△ABC内部一点,且∠APC=150°,P A=3,PC=4.求PB的长.小敏在解答此题时,利用了“旋转法”进行证明,她的方法如下:如图②,将△APC绕点A按顺时针方向旋转60°后得到△ADB,连接DP.(请你在下面的空白处完成小敏的证明过程.)推广运用(2)如图③,在△ABC中,∠BAC=60°,AB=2AC,点P是△ABC内部一点,且∠APC =120°,P A=,PB=5.求PC的长.2017年江苏省南京市建邺区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(2分)2017年5月14日首届“一带一路”国际高峰论坛在中国北京召开,来自130多个国家的约1 500名各界贵宾出席论坛.用科学记数法表示1 500是()A.15×102B.1.5×102C.1.5×103D.0.15×104【解答】解:用科学记数法表示1 500是1.5×103,故选:C.2.(2分)下列各数中,是无理数的是()A.B.C.2D.sin30°【解答】解:A、分数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、sin30°=是分数,是有理数,选项不符合题意.故选:B.3.(2分)计算(﹣ab3)2的结果是()A.﹣a2b5B.a2b5C.﹣a2b6D.a2b6【解答】解:原式=a2b6,故选:D.4.(2分)用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选:D.5.(2分)如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC的度数是()A.45°B.60°C.67.5°D.82.5°【解答】解:∵四边形ABCD是正方形,∴∠CBD=45°,∵BC=BE,∴∠BEC=∠BCE=(180°﹣45°)=67.5°,故选:C.6.(2分)已知二次函数y=ax2﹣ax(a为常数,且a≠0),图象的顶点为C.以下三个结论:①无论a为何值,该函数的图象与x轴一定有两个交点;②无论a为何值,该函数的图象在x轴上截得的线段长为2;③若该函数的图象与x轴有两个交点A、B,且S△ABC =1时,则a=8.其中正确的有()A.0个B.1个C.2个D.3个【解答】解:①y=ax2﹣ax=ax(x﹣1),当y=0时,x=0或者1,∴无论a为何值,该函数的图象与x轴一定有两个交点为(0,0)(1,0);①正确;②∵无论a为何值,该函数的图象与x轴一定有两个交点为(0,0)(1,0),∴该函数的图象在x轴上截得的线段长为1;②错误;③y=ax2﹣ax对称轴为x=,∵当x=时,y=﹣a,∴S△ABC=AB•|﹣a|=|a|,当S△ABC=1时,|a|=1,解得:a=±8,③错误;故选:B.二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)9的平方根是±3.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.8.(2分)函数中,自变量x的取值范围是x≠1.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).10.(2分)若反比例函数y=的图象经过点A(﹣1,m),则m的值是﹣2.【解答】解:∵反比例函数y=的图象经过点A(﹣1,m),∴m==﹣2.故答案为:﹣2.11.(2分)一元二次方程x2﹣6x+5=0的两根分别是x1、x2,则x1•x2的值是5.【解答】解:∵一元二次方程x2﹣6x+5=0的两根分别是x1、x2,∴x1•x2=5.故答案为:5.12.(2分)已知圆锥的底面半径是2cm,母线长为3cm,则圆锥的侧面积为6πcm2.【解答】解:底面半径是2cm,则底面周长=4πcm,圆锥的侧面积=×4π×3=6πcm2.13.(2分)某校九年级有15名同学参加校运会百米比赛,预赛成绩各不相同,前7名才有资格参加决赛,小明已经知道了自己的成绩,但他想知道自己能否进入决赛,还需要知道这15名同学成绩的中位数.(填“极差”、“众数”或“中位数”)【解答】解:15个不同的成绩按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的成绩和中位数就可以知道是否获奖了.故答案为中位数.14.(2分)菱形ABCD的两条对角线长分别为6和8,则菱形ABCD的面积为24,周长为20.【解答】解:菱形ABCD的面积=×6×8=24;∵两条对角线长分别为6和8,∴两对角线的一半分别为3,4,由勾股定理得,菱形的边长==5,所以,菱形的周长=4×5=20.故答案为:24;20.15.(2分)如图,矩形ABCD中,点E在边AB上,将一边AD折叠,使点A恰好落在边BC的点F处,折痕为DE,若AB=8,BF=4,则BC=10cm.【解答】解:设EF=AE=x,则BE=8﹣x,∵∠B=90°,BF=4,∴Rt△BEF中,BE2+BF2=EF2,即(8﹣x)2+42=x2,解得x=5,∴EF=5,BE=3,∵∠DFE=∠A=90°,∠C=90°,∴∠CDF=∠BFE,又∵∠B=∠C=90°,∴△DCF∽△FBE,∴=,即=,∴CF=6,∴BC=BF+CF=4+6=10.故答案为:10.16.(2分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=2.点P是△ABC内部的一个动点,且满足∠P AC=∠PCB,则线段BP长的最小值是1.【解答】解:∵∠ACB=90°,∴∠ACP+∠PBC=90°,∵∠P AC=∠PCB∴∠CAP+∠ACP=90°,∴∠APC=90°,∴点P在以AC为直径的⊙O上,连接OB交⊙O于点P,此时PB最小,在Rt△CBO中,∵∠OCB=90°,BC=2,OC=1.5,∴OB==2.5,∴PB=OB﹣OP=2.5﹣1.5=1.∴PB最小值为1.故答案为1.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)解不等式组,并写出它的整数解.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.18.(6分)计算(1+)÷.【解答】解:(1+)÷=•=x﹣1.19.(7分)用一条长20cm的绳子能否围成一个面积为30cm2的矩形?如能,说明围法;如果不能,说明理由.【解答】解:设矩形的长为xcm,则宽为(10﹣x)cm.根据题意,得x(10﹣x)=30,即x2﹣10x+30=0.因为△=b2﹣4ac=102﹣4×30=﹣20<0,所以此一元二次方程无实数根.答:用一条长20cm的绳子不能围成一个面积为30cm2的矩形.20.(8分)如图,在菱形ABCD中,点E、F在对角线AC上,且AE=CF.求证:(1)△ABE≌△ADE.(2)四边形BFDE是菱形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD=BC,AD∥BC.∴∠BAC=∠BCA,∠DAC=∠BCA.∴∠BAC=∠DAC.即∠BAE=∠DAE.在△ABE和△ADE中,∴△ABE≌△ADE.(2)如图,连接BD,交AC于点O.∵四边形ABCD是菱形,∴OA=OC,OB=OD.又AE=CF,∴OA﹣AE=OC﹣CF.即OE=OF.∴四边形BFDE是平行四边形.又△ABE≌△ADE,∴BE=DE.∴四边形BFDE是菱形.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.【解答】解:(1)另外1人恰好选中副班长的概率是;(2)画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙的结果数为2,所以恰好选中甲和乙的概率==.22.(8分)“约在江苏,共筑梦想”,为了解某校1000名学生在2017年5月20日“江苏发展大会”期间对会议的关注方式,某班兴趣小组随机抽取了部分学生进行问卷调查,某校抽取学生“江苏发展大会”期间对会议的关注方式的统计表并将问卷调查的结果绘制成如下不完整的统计表:(1)本次问卷调查抽取的学生共有50人,其中通过电视关注会议的学生有8人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过报纸关注会议的约有多少人?【解答】解:(1)23÷46%=50(人),15÷50=30%,50×(1﹣46%﹣8%﹣30%)=8(人).答:本次问卷调查抽取的学生共有50人,其中通过电视关注会议的学生有8人;(2)选择条形图,如图所示:(3)1 000×8%=80(人).答:估计该校学生通过报纸关注会议的约有80人.故答案为:50,8.23.(8分)如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.(参考数据:sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)【解答】解:作AE⊥CD,垂足为E.在Rt△AEC中,CE=AE•tan26.6°≈40×0.50=20m;在Rt△AED中,DE=AE•tan37°≈40×0.75=30m;∴CD=20+30=50m.答:铁塔的高度为50米.24.(9分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线段OBA表示小亮在整个训练中y与x的函数关系,其中点A在x轴上,点B坐标为(2,480).(1)点B所表示的实际意义是2min时,小亮到达距离出发点480m的坡顶开始下坡返回;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?【解答】解:(1)点B所表示的实际意义是:2min时,小亮到达距离出发点480m的坡顶开始下坡返回;(2)小亮上坡速度:480÷2=240m/min,下坡速度:240×1.5=360m/min,所以,下坡时间为480÷360=min,2+=min,所以,点A的坐标为(,0),设直线AB的解析式为y=kx+b,则,解得.所以,y=﹣360x+1200;(3)设两人出发后xmin相遇,∵小刚上坡平均速度是小亮上坡平均速度的一半,∴小刚的速度是240÷2=120m/min,第一次相遇时,小刚下坡,小亮上坡,由题意得,120x+360(x﹣2)=480,解得x=2.5.答:两人出发2.5min后第一次相遇.25.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O与边AB、BC分别交于点D、E.过E作直线与AB垂直,垂足为F,且与AC的延长线交于点G.(1)求证:直线FG是⊙O切线.(2)若BF=1,CG=2,求⊙O半径.【解答】证明:(1)如图,连接OE.∵AB=AC,∴∠B=∠ACB.在⊙O中,OC=OE,∴∠OEC=∠ACB.∴∠B=∠OEC.∴OE∥AB.又AB⊥GF,∴OE⊥GF.又OE是⊙O的半径,∴FG与⊙O相切.解:(2)设⊙O的半径为r,则OE=r,AB=AC=2r.∵BF=1,CG=2,∴AF=2r﹣1,OG=r+2,AG=2r+2.∵OE∥AB,∴△GOE∽△GAF.∴=.∴=.∴r=2.即⊙O的半径为2.26.(10分)已知二次函数y=x2+bx+c的图象与x轴交于A、B两点,AB=2,其中点A的坐标为(1,0).(1)求二次函数的关系式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图象的顶点在x轴上,并直接写出平移后相应的二次函数的表达式.【解答】解:(1)因为点A的坐标为(1,0),AB=2,所以点B的坐标为(3,0)或(﹣1,0).将A(1,0),B(3,0)或A(1,0),(﹣1,0)代入y=x2+bx+c,得或所以二次函数的表达式为y=x2﹣4x+3或y=x2﹣1.顶点坐标分别为(2,﹣1)、(0,﹣1).(2)∵顶点坐标分别为(2,﹣1)、(0,﹣1),若二次函数图象的顶点在顶点在x轴上,∴抛物线的图象向上平移1个单位.∴二次函数的关系式为y=x2﹣4x+4或y=x2.27.(10分)问题提出旋转是图形的一种变换方式,利用旋转来解决几何问题往往可以使解题过程更简单,起到事半功倍的效果.初步思考(1)如图①,点P是等边△ABC内部一点,且∠APC=150°,P A=3,PC=4.求PB的长.小敏在解答此题时,利用了“旋转法”进行证明,她的方法如下:如图②,将△APC绕点A按顺时针方向旋转60°后得到△ADB,连接DP.(请你在下面的空白处完成小敏的证明过程.)推广运用(2)如图③,在△ABC中,∠BAC=60°,AB=2AC,点P是△ABC内部一点,且∠APC =120°,P A=,PB=5.求PC的长.【解答】解:(1)如图2中,∵将△APC绕点A按顺时针方向旋转60°后得到△ADB.∴AD=AP=3,DB=PC=4,∠P AD=60°,∠ADB=∠APC=150°.∵AD=AP,∠P AD=60°,∴△ADP为等边三角形.∴PD=P A=3,∠ADP=60°.又∠ADB=150°,∴∠PDB=90°.在Rt△PDB中,PD=3,DB=4,∴BP===5,(2)如图,作∠CAD=∠BAP,使AD=AP.连接CD、PD.∵AB=2AC,AD=AP,∴==.又∠CAD=∠BAP,∴△ABP∽△ACD.∴CD=BP=2.5.在△P AD中,P A=,∠P AD=60°,AD=,易证∠APD=30°,∠PDA=90°(取P A中点K,连接DK,利用等边三角形的性质即可证明)∴PD=,∴∠DPC=120°﹣30°=90°在Rt△DPC中,PC===2.。
初中物理江苏省南京市建邺区中考模拟物理二模考试卷 考试题及答案.docx
xx学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型 选择题填空题简答题xx 题 xx 题 xx 题 总分 得分一、xx 题(每空xx 分,共xx 分)试题1:飞机黑匣子发出频率为37.5千赫兹的脉冲信号,用录音磁带记录下来正常播放,人耳是不能直接听到的.下列措施能够帮助人耳听到这一声音的是A .慢速播放B .快速播放C .放大音量D .减小音量 试题2:下列数据,符合事实的是A .物理课本中一张纸的厚度约为1mm ;B .家用电冰箱正常工作电流约10AC .人正常步行的速度约为5Km /hD .人的正常体温为38℃ 试题3:下列操作或读数正确的是试题4:评卷人得分下列说法中不正确的是A.电磁波在空气中的传播速度约为3×108m/s B.手机是利用电磁波传递信息C.煤、石油、天然气、太阳能等都是不可再生能源D.红外线属于电磁波试题5:下列现象属于凝华的是A.露珠的形成B.寒冬,窗玻璃 C.将熔融状态的玻璃 D.冬天冰冻的冰花剔透轧制成玻璃板衣服也会干试题6:人眼看到斜插入水中的筷子向上折(图甲),图乙的四幅光路图中,能正确说明产生这一现象的原因的是试题7:晚上,小明在教室里通过窗玻璃看到自己的像,下列对该现象的描述正确的是A.所成的像是实像 B.人越靠近窗玻璃像就越大C.室内灯光越亮像就越清晰 D.透明玻璃比茶色玻璃成的像清晰试题8:如图所示,物体A随传送带一起向右上方匀速运动.下列说法正确的是A.物体所受重力与皮带的支持力是平衡力B.若没有摩擦物体将不能传送C.物体的机械能保持不变D.物体的动能转化为势能试题9:通过直接感知的现象,推测无法直接感知的事实,是常用的物理方法.下列根据现象所做出的推测,符合事实的是A.街边的路灯同时亮、灭路灯是串联的B.投篮抛向空中的篮球,离开手后还能继续运动手对空中的篮球还有力的作用C.小磁针放在磁体旁受力偏转磁体周围有磁场D.轻质球a、b靠近时相互吸引 a、b两球一定带异种电荷试题10:小明取一根粗细均匀的饮料吸管,在其下端塞入适量金属丝并用石蜡封口,制成简易密度计.现使吸管竖直漂浮在不同液体中,测量出液面到吸管下端的深度为h,如图甲所示.则图乙表示吸管所受的浮力大小F、液体的密度ρ与深度h关系的图像中,可能正确的是试题11:一位同学用如图所示的电路探究“电流与电阻的关系”.电源电压不变,下表是实验数据,若第四次实验时将定值电阻的阻值由30Ω调为40Ω后就直接读出电流表的示数,这个示数可能是R/Ω10 20 30 40 50I/A 0.6 0.3 0.2 0.12A.0.2B.0.17C.0.15D.0.13试题12:如图所示,电源电压保持6V不变,电流表的量程为0 ~ 0.6A,电压表的量程为0 ~ 3V,定值电阻的规格为“10Ω 0.5A”,滑动变阻器的规格为“20Ω 1A”.闭合开关,为了保证电路安全,在变阻器滑片移动过程中,下列说法正确的是A.电路消耗总功率允许的变化范围为1.2W~ 3WB.电流表示数允许的变化范围为0.2A~ 0.5AC.变阻器R2接入电路的阻值允许变化范围为2Ω~ 20ΩD.电阻R1消耗功率允许的变化范围为0.4W~ 0.9W试题13:如图是我国长征火箭运送飞船上太空的情景.(1)火箭点火向下喷出气体,火箭向上运动,说明物体间力的作用是;(2)火箭和飞船加速上升过程中,火箭的机械能将(选填“增大”、“不变”或“减小”),以火箭为参照物,飞船是的.试题14:在探究水沸腾特点的实验中,用酒精灯给烧杯中的水加热,当水温接近90℃时,每隔1min记录一次温度,绘制了如图所示的水温与时间关系的图像.(1)水沸腾时,离烧杯口较远的地方“白气”比较浓,而靠近烧杯口的地方几乎没有“白气”,这是由于.(2)由图像可知:水的沸点是℃.此时烧杯内水面上方的气压(选填“大于”、“等于”或“小于”)1标准大气压.试题15:如图所示,是内燃机工作时的冲程;一台单缸四冲程汽油机在一个工作循环中总共消耗了10g汽油(汽油的热值为4.6×107J/kg),这些汽油完全燃烧产生的热量是J;如果这台汽油机的效率为30%,则使用过程中汽油的热值为 J/kg,一个工作循环中输出的有用机械能为 J,而那些损耗的内能不会自发的转化为我们需要的能量,说明能量的转移或转化具有性.试题16:用同一压强计探究液体内部压强的情景如图所示.请仔细观察图,回答下列问题:(1) 图中橡皮膜底部受到液体压强更大(选填:“甲”或“乙”);(2)若两烧杯中分别装的是盐水和水,根据实验现象,可以确定(选填“A”或“B”)杯中装的水;(ρ盐水>ρ水)试题17:小丽用如图装置探究动滑轮的使用特点.使1N的重物以0.3m/s的速度匀速上升,所用拉力为0.7N,此时动滑轮的机械效率是,拉力的功率是W.若不计摩擦,动滑轮没能省一半力的主要原因是。
2017年南京市中考二模英语试卷及答案
2017年南京市中考⼆模英语试卷及答案2017年江苏省南京市中考模拟试卷英语2017.06选择题(共40分)⼀、单项填空(共15⼩题;每⼩题1分,满分15分)从A、B、C、D四个选项中,选出可以填⼊空⽩处的最佳选项,并在答题卡上将该项涂⿊。
1. Time marches on! Our middle school life will be over a month. I will miss it forever!A. atB. duringC. inD. on2. It’s never too old to learn. Karl Marx began to learn English in his .A. fiftyB. fiftiesC. fiftiethD. the fiftieth3. —There are four bedrooms in the villa, with its own bathroom.【来源:21·世纪·教育·⽹】—That’s great. We four adults have got a few kids.A. neitherB. noneC. eachD. either4. Always believe that smile at the world, the world will smile back to you.A. andB. orC. asD. though5. —Wechat has made a great diffe rence to people’s life.—__________. We can use it to communicate with others easily.A. CompletelyB. PossiblyC. ProbablyD. Exactly6. —Could you help me do some cleaning, Jason?—Certainly. Mom will be crazy if she sees this , I think.A. messB. menuC. marketD. message7. —Many people prefer spending much time on smart phones to reading today.—That’s to o bad. Everyone be a book lover. Reading brings much pleasure.A. wouldB. mayC. mustD. should8. —Hello! I’d like to speak to the Customer Service Department.—Please hold and I’ll your call to it.A. look throughB. put throughC. run throughD. go through9. —Do you know why the store to close by the local government?—Because of the high prices on goods. Business must be honest, you know.A. would be askedB. was askedC. askedD. has asked10. When you travel abroad, you can hardly avoid products made in China.A. to buyB. buyC. buyingD. be bought11. Believe in yourself. If you always yourself with others, you may get much stress.A. compareB. connectC. considerD. contact12. When you s tart your new journey, you shouldn’t forget you came from.A. whereB. whatC. whenD. why13. —Can you imagine in 100 years from now?21·世纪*教育⽹—It’ll be unbelievable.A. how will life be likeB. how life will be like21*cnjy*comC. what life will be likeD. what will life be like14. —Miss White, I am afraid I have got low marks in the exam.—, dear! Take it easy. I am sure if you try your best, you will pass it easily next time. A. You’re welcome B. Come onC. All rightD. Well done15. —Hello! My computer has caught a virus and it no longer works properly now.—Don’t worry.What’s your telephone number?A. What can I do for you then?B. I am sorry to hear that.C. Please take care of your computer.D. Our worker will contact you soon.⼆、完形填空(共10⼩题;每⼩题1分,满分10分)阅读下⾯短⽂,从短⽂后所给各题的四个选项(A、B、C和D)中,选出可以填⼊空⽩处的最佳选项, 并在答题卡上将该项涂⿊。
江苏省南京市建邺区中考二模化学试题
南京市建邺区2017—2018学年度第二学期第二次学业质量监测九年级化学总分:80分时间:60分钟2028.06.04可能用到的相对原子质量:H—1C—12O—16Na—23Mg—24Cl—35.5Ca—40一、选择题(本题共15小题,每小题只有一个选项符合题意。
每小题2分,共30分)1.地壳中元素含量位列第二位的是()A.Si B.O C.Fe D.C2.下列微粒中,能够保持氢气化学性质的是()A.H B.H+C.H2D.2H3.下列标志中,应贴在浓硫酸运输车上的是()A.B.C.D.4.下列物质的用途中,利用其化学性质的是()A.液氮用作冷冻剂C.干冰用于人工降雨5.下列溶液的pH>7的是()A.生理盐水B.酸雨B.氧气用于炼钢D.铜用于制作导线C.稀氨水D.白醋6.下列实验操作中,不正确的是()A.加热液体B.稀释浓硫酸C.蒸发食盐水D.取用粉末状药品7.右图是X原子的结构示意图和X元素在元素周期表中的信息,下列关于X的说法正确的是()A.n等于2B.X属于非金属元素C.X的相对原子质量为24.31gD.X原子失去电子后形成的离子是阴离子8.现有甲、乙、丙三种金属,采用将其中的一种金属分别放入另外两种金属的硫酸盐溶液中的方法进行实验,得到三种金属间的转化关系(如下图所示)。
则三种金属的活动性由强B .H +、Fe 3+、SO 42 、ClC .K +、H +、SO 42 、OHD .Na +、Ba 2+、Cl 、CO 32到弱的顺序是( A .甲、丙、乙 B .乙、甲、丙 C .乙、丙、甲 D .丙、乙、甲)9.下列各组离子在溶液中一定能大量共存,并形成无色透明溶液的是( ) A .K +、Na +、NO 3-、Cl﹣ ﹣﹣﹣ ﹣ ﹣ ﹣10.下列关于 CO 和 CO 2 的说法,不正确的是( ) (提示:在相同的温度和压强下,相同体积的气体具有相同的分子数,反之亦然) A .都属于氧化物B .组成元素相同,构成的分子不同C .相同质量的 CO 和 CO 2 中,所含碳元素的质量相等D .在相同的温度和压强下,相同体积的 CO 和 CO 2 中,氧原子的个数比为 1:211.实验室制取某些气体的装置如下图,下列说法正确的是()A .装置①和④组合可以用来制取氧气B .装置②和③组合可以用来制取氢气C .装置②和⑤组合可以用来制取干燥的二氧化碳D .装置②可以控制反应的发生和停止12.甲、乙两种不含结晶水的固体物质的溶解度曲线如右图,下列说法中正确的是( A .甲的溶解度比乙大B .t 1℃时,甲的饱和溶液中溶质与溶液的质量比为 1:4C .t 2℃时,甲、乙的两种溶液中溶质的质量分数相等D .将等质量甲、乙的两种饱和溶液分别由 t 3℃降温至 t 2℃,析出甲的质量一定 比析出乙的质量大 )13.除去下列物质中的少量杂质(括号内为杂质),拟定实验方案可行的是( A .CO (CO 2)——通过装有足量无水氯化钙的干燥管B .Ag 粉(Zn )——加入过量的稀盐酸,过滤,洗涤,干燥C .KCl 固体(KClO 3)——加入适量的二氧化锰,充分加热D .NaCl 溶液(NaHCO 3)——加入适量稀硫酸 )第 2 页,共 9 页15.下列实验不能达到实验目的的是( )14.下列对各组物质鉴别方案的描述,正确的是( ) A .O 2、CO 、CO 2 三种气体,用燃着的木条不能将其鉴别出来B .棉线、羊毛、涤纶三种纤维,用灼烧闻气味的方法不能将其鉴别出来C .磷矿粉、氯化铵、硫酸钾三种化肥,通过看外观能将其鉴别出来D .CaO 、Ca(OH)2、CaCO 3 三种固体,用稀盐酸能将其鉴别出来二、(本题包括 1 小题,共 11 分) 16.(11 分)能源利用与社会可持续发展密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017建邺区二模试题及答案2017年九年级学情调研卷(Ⅱ)数学注意事项:本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....)1.2017年5月14日首届“一带一路”国际高峰论坛在中国北京召开,来自130多个国家的约1 500名各界贵宾出席论坛.用科学记数法表示1 500是()A.15×102 B.1.5×102C.1.5×103D.0.15×1042.下列各数中,是无理数的是A.227B.π2C.2D.sin30°3.计算(-ab3)2的结果是A.-a2b5 B.a2b5 C.-a2b6 D.a2b6 4.用尺规作图法已知角∠AOB的平分线的步骤如下:①以点O 为圆心,任意长为半径作弧,交OB 于点D ,交OA 于点E ;②分别以点D 、E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 的内部相交于点C ; ③作射线OC .则射线OC 为∠AOB 的平分线.由上述作法可得△OCD ≌△OCE 的依据是 A .SAS B .ASA C .AAS D .SSS5.如图,正方形ABCD 中,E 是BD 上一点,BE =BC ,则∠BEC 的度数是A .45°B .60°C .67.5°D .82.5° 6.已知二次函数y =ax 2-ax (a 为常数,且a≠0),图像的顶点为C .以下三个结论: ①无论a 为何值,该函数的图像与x 轴一定有两个交点;②无论a 为何值,该函数的图像(第4题)CDEA OB(第5题)BCDAE在x 轴上截得的线段长为2;③若该函数的图像与x 轴有两个交点A 、B ,且S △ABC =1时,则a =8.其中正确的有 A .0个 B .1个 C .2个 D .3个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ .8.函数y =1x -1 中,自变量x 的取值范围是▲ .9.分解因式2a (b +c )-3(b +c )的结果是 ▲ . 10.若反比例函数y =2x 的图像经过点A (-1,m ),则m 的值是 ▲ .11.一元二次方程x 2-6x +5=0的两根分别是x 1、x 2,则x 1·x 2的值是 ▲ .12.已知圆锥的底面半径为2cm ,母线长为3cm ,则其侧面积为 ▲ cm 2.(结果保留π) 13.某校九年级有15名同学参加校运会百米比赛,预赛成绩各不相同,前7名才有资格参加决赛,小明已经知道了自己的成绩,但他想知道自己能否进入决赛,还需要知道这 15名同学成绩的 ▲ .(填“极差”、“众数”或“中位数”)14.菱形ABCD 的两条对角线长分别为6和8,则菱形ABCD 的面积为 ▲ .15.如图,矩形ABCD 中,点E 在边AB 上,将一边AD 折叠,使点A 恰好落在边BC 的点 F 处,折痕为DE ,若AB =8,BF =4,则BC = ▲ cm .16.如图,在Rt △ABC 中,∠ACB =90°,AC=3,BC =2.点P 是△ABC 内部的一个动点,且满足∠PAC =∠PCB ,则线段BP 长APBC(第16题)ABCDE F(第15题)的最小值是 ▲ .三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎨⎧3x +1≤2(x +1),-x <5x +12,并写出它的整数解.18.(6分)计算(1+2x -1)÷x +1x 2-2x +1.19.(7分)用一条长20cm 的绳子能否围成一个面积为30cm 2的矩形?如能,说明围法; 如果不能,说明理由.20.(8分)如图,在菱形ABCD 中,点E 、F在对角线AC 上,且AE =CF . 求证:(1)△ABE ≌△ADE .(2)四边形BFDE 是菱形.21.(8分)初三(1)班要从甲、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会.求下列事件的概率: (1)已确定甲参加,另外1人恰好选中乙; (2)随机选取2名同学,恰好选中甲和乙.22.(8分)“约在江苏,共筑梦想”,为了解某校1000名学生在2017年5月20日“江苏 发展大会”期间对会议的关注方式,某班兴趣小组随机抽取了部分学生进行问卷调查, 并将问卷调查的结果绘制成如下不完整的某校抽取学生“江苏发展大会”期间对会议的关注方式的统计表(第20题)FECBDA统计表:方式频数百分比网络23 46%电视报纸8%其他15合计100%(1)本次问卷调查抽取的学生共有▲ 人,其中通过电视关注会议的学生有▲ 人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过报纸关注会议的约有多少人?23.(8分)如图,平地上一幢建筑物AB与铁塔CD相距40m.在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°.求铁塔的高度.(参考数据:sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)CA 26.6°37°24.(9分)小明和小敏进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线段OBA表示小明在整个训练中y与x的函数关系.(1)点B所表示的实际意义是▲ ;(2)求线段AB所在直线的函数表达式;(3)如果小敏上坡平均速度是小明上坡平均速度的一半,那么两人出发后多长时间第一次相遇?25.(8分)如图,△ABC中,AB=AC,以AC 为直径的⊙O与边AB、BC分别交于点D、E.过E作直线与AB垂直,垂足为F,且与AC的延长线交于点G.(1)求证:直线FG是⊙O切线.(2)若BF=1,CG=2,求⊙O半径.GC26.(10分)已知二次函数y=x2+bx+c的图像与x轴交于A、B两点,AB=2,其中点A的坐标为(1,0).(1)求二次函数的关系式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图像的顶点在x轴上,并直接写出平移后相应的二次函数的表达式.27.(10分) 问题提出旋转是图形的一种变换方式,利用旋转来解决几何问题往往可以使解题过程更简单,起到事半功倍的效果. 初步思考(1)如图①,点P 是等边△ABC 内部一点,且∠APC =150°,PA =3,PC =4.求PB 的长. 小敏在解答此题时,利用了“旋转法”进行证明,她的方法如下:如图②,将△APC 绕点A 按顺时针方向旋转60°后得到△ADB ,连接DP .(请你在下面的空白处完成小敏的证明过程.)C BAP图①PABCD图②(第27题)推广运用(2)如图③,在△ABC 中,∠BAC =60°,AB =2AC ,点P 是△ABC 内部一点,且∠APC =120°,PA =3,PB =5.求PC 的长.2017届初三学情调研试卷(Ⅱ)数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评CBA P图③ (第27题)分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.±3.8.x≠1.9.(b+c)(2a-3).10.-2.11.5.12.6π.13.中位数.14.24.15.10.16.1.三、解答题(本大题共11小题,共88分)17.(本题6分)解:解不等式①,得x≤1.解不等式②,得x>-2.所以,不等式组的解集是-2<x≤1.该不等式组的整数解是-1,0,1.6分18.(本题6分)解:(1+2x-1)÷x+1x2-2x+1题号 1 2 3 4 5 6 答案 C B D D C B=x+1x-1·(x-1)2x+1=x-1. ································· 6分19.(本题7分)解:设矩形的长为x cm,则宽为(10-x)cm.根据题意,得x(10-x)=30,即x2-10x+30=0.因为△=b2-4ac=102-4×30=-20<0,所以此一元二次方程无实数根.答:用一条长20cm的绳子不能围成一个面积为30cm2的矩形. ························ 7分20.(本题8分)证明:(1)∵四边形ABCD是菱形,∴AB=AD=BC,AD∥BC.∴∠BAC=∠BCA,∠DAC =∠BCA.∴∠BAC=∠DAC.即∠BAE=∠DAE.在△ABE和△ADE中,⎩⎪⎨⎪⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴ △ABE ≌△ADE . ······· 4分 (2)如图,连接BD ,交AC 于点O . ∵ 四边形ABCD 是菱形, ∴ OA =OC ,OB =OD . 又 AE =CF ,∴ OA -AE =OC -CF .即 OE =OF .∴ 四边形BFDE 是平行四边形.又 △ABE ≌△ADE ,∴ BE =DE .∴ 四边形BFDE 是菱形. 8分 21.(本题8分)解:(1)13. ·································· 3分(2)随机选取两名同学,可能出现的结果有6种,即(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁),并且它们出现的可能性O(第20题) F ECBDA相等.恰好选中甲和乙(记为事件A )的结果有1种,即(甲,乙),所以P (A )=16. ··············· 8分22.(本题8分)解:(1)50,4. ····························· 2分 (2)选择条形图或扇形统计图,画图正确. ··································· 5分(3)1 000×16%=160人.答:估计该校1 000名学生中通过报纸关注会议的约有160人. ·· 8分 23.(本题8分) 解:如图,过点A 作AE ⊥CD ,垂足为E ,则∠AEC =∠AED =90°. 由题意得:∠CAE =26.6°,∠DAE =37°,AE =BD =40 m . 在Rt △AEC 中, ∵ tan ∠CAE =CE AE,∴ CE =AE ·tan26.6°. 同理可得 DE =AE ·tan37°.所以 CD =CE +DE ≈40×(0.50+0.75)CDAB(第23题)26.6°37°E=50 (m) .答:铁塔的高度约为50 m. ········ 8分24.(本题9分)解:(1)小明出发2分钟跑到坡顶,此时离坡脚480米.··································· 2分(2)小明上坡的平均速度为480÷2=240(m/min),则其下坡的平均速度为240×1.5=360(m/min) .故回到出发点时间为2+480÷360=103(min).所以A点坐标为(103,0),设AB所在直线的函数表达式为y=kx+b,因为y=kx+b的图像过点B(2,480)、A(103,0),所以⎩⎨⎧480=2k+b,0=103k+b.解方程组,得⎩⎨⎧k =-360,b =1200.所以AB 所在直线的函数表达式为y =-360x +1200. ··························· 5分 (3)根据题意,可知小敏上坡的平均速度为240×0.5=120(m/min).设小敏出发x min 后距出发点的距离为y 敏 m ,所以y 敏=120x .解方程组⎩⎨⎧y =120x ,y =-360x +1200,得⎩⎨⎧x =2.5,y =300.因此,两人第一次相遇时间为2.5(min ). ··········································· 9分 25.(本题8分)证明:(1)如图,连接OE . ∵ AB =AC , ∴ ∠B =∠ACB . 在⊙O 中,OC =OE , ∴ ∠OEC =∠ACB . ∴ ∠B =∠OEC .CGO E∴OE∥AB.又AB⊥GF,∴OE⊥GF.又OE是⊙O的半径,∴FG与⊙O相切. ······ 4分解:(2)设⊙O的半径为r,则OE=r,AB=AC=2r.∵BF=1,CG=2,∴AF=2r-1,OG=r+2,AG =2r+2.∵OE∥AB,∴△GOE∽△GAF.∴OEAF=OGAG.∴r2r-1=r+22r+2.∴r=2.即⊙O的半径为2. ······· 8分26.(本题10分)解:(1)因为点A的坐标为(1,0),AB=2,所以点B的坐标为(3,0)或(-1,0).将A (1,0),B (3,0)或A (1,0),(-1,0)代入y =x 2+bx +c ,得⎩⎨⎧b =-4,c =3,或⎩⎨⎧b =0,c =-1.所以二次函数的表达式为y =x 2-4x +3或y =x 2-1.顶点坐标分别为(2,-1)、(0,-1). ··············································· 6分(2)分别对(1)中的两个函数的图像进行平移. ······································· 10分27.(本题10分)解:(1)∵ 将△APC 绕点A 按顺时针方向旋转60°后得到△ADB .∴ AD =AP =3,DB =PC =4,∠PAD =60°,∠ADB =∠APC=150°.∵ AD =AP ,∠PAD =60°,∴ △ADP 为等边三角形. ∴ PD =PA =3,∠ADP =60°.又 ∠ADB =150°, ∴ ∠PDB =90°.在Rt △PDB 中,PD =3,DB =4,∴ BP =DB 2+DP 2=42+32=5. ··················································· 4分(2)如图,作∠CAD =∠BAP ,使AD =12AP .连接CD 、PD . ∵ AB =2AC ,AD =12AP , ∴ AB AC =AP AD =12. 又 ∠CAD =∠BAP ,∴ △ABP ∽△ACD .∴ CD =12BP =2.5. 在△PAD 中,PA =3,∠PAD =60°,AD =123, 易证 ∠APD =30°,∠PDA =90°.∴ ∠DPC =120°-30°=90°. 10分 在Rt △DPC 中,由勾股定理可得,PC =2. ·········································· 10分 B A P (第27题) D。