第10讲 相关样本(两样本)非参数检验2:Wilcoxon符号秩检验
教育统计学第十章 非参数检验ppt课件

普通的秩和检验表,只给出n<=10情况下的实际临界值。当两个样本容量都较大时,T的抽
样分布接近于正态,可以近似地利用正态 T概率n分1 ( 布n 1 做2 秩n 2 和 1检) 验。T在抽样分布中的平均数为
规范误为
T
n1n 2 (n1 n 2 1) 12
Z T T T
例1:在一项关于模拟训练的实验中,以技工学校的学生为 对象,对5名学生用针对某一工种的模拟器进展训练,另外 让6名学生下车间直接在实习中训练,经过同样时间后对两 组人进展该工种的技术操作考核,结果如下:
例3:为了研讨RNA能否可以作为记忆促进剂,以老鼠为对 象分成实验组与控制组,实验组注射RNA,控制组注射生理 盐水,然后,在同样条件下学习走迷津,结果如下〔以所用 时间作为目的〕试检验两组有否显著差别。
实验组: 16.7,16.8,17.0,17.2,17.4,16.8,17.1,17.0,17.2,17.1,17 .2,17.5,17.2,16.8,16.3,16.9
期末课堂练习
第十章 非参数检验方法
一、两独立样本的差别显著性检验 1、秩和检验法 2、中数检验法 二、相关样本的差别显著性检验 1、符号检验法 2、符号秩次检验法 三、等级方差分析 1、克-瓦氏单向方差分析 2、弗里德曼双向等级方差分析
秩和检验
秩和法与参数检验中独立样本的t检验相对应。当“总体正态〞这一前提不成立,不能运用t检 验时以秩和法替代t检验。当两个样本都为顺序变量时,也需用秩和法来进展差别检验。
新法 90 84 87 85 90 94 85 88 92
例4的解
解: 配对 1 2 3 4 5 6 7 8 9
传统 85 88 87 86 82 82 70 72 80
Wilcoxon符号秩检验

04 Wilcoxon符号秩检验 的优缺点
优点
无需假设数据分布
Wilcoxon符号秩检验是一种非参 数检验方法,不需要假设数据服 从特定的分布,因此对于不符合 正态分布的数据也能得到较为准 确的结果。
对异常值不敏感
由于Wilcoxon符号秩检验是基于 秩次的检验方法,因此对于异常 值的存在并不敏感,能够得到较 为稳健的结果。
适用于配对样本
Wilcoxon符号秩检验适用于配对 样本的比较,能够充分利用样本 信息,提高检验的效能。
缺点
检验效能较低
相比于参数检验方法,如t检验,Wilcoxon符号秩检验的检 验效能较低,即当存在真实的差异时,该方法可能无法准 确地检测出差异。
对样本量要求较高
为了得到较为准确的检验结果,Wilcoxon符号秩检验需要 较大的样本量。当样本量较小时,该方法的准确性可能会 受到影响。
正态分布,因此适用于更广泛的数据
类型。
符号秩检验的定义
符号
在Wilcoxon符号秩检验中,首先计算每对观测值 之间的差值,并根据差值的正负赋予相应的符号 (+或-)。
检验统计量
根据符号和秩次计算检验统计量,通常使用 Wilcoxon符号秩统计量(W)或标准化后的z统 计量。这些统计量用于衡量两组观测值之间的差 异显著性。
非参数统计方法
Wilcoxon符号秩检验是一种非参数统 计方法,用于比较两个相关样本、配 对观测值或重复测量之间的差异。
稳健性
由于不对数据分布做严格假设, Wilcoxon符号秩检验对于异常值和偏 离正态分布的数据具有较好的稳健性 。
无需正态分布假设
与参数检验(如t检验)不同,
Wilcoxon符号秩检验不需要数据服从
两样本Wilcoxon秩和检验

的点估计
2)
的
M置X信区M间Y
得到所M有X mnM个Y差 (1 )%
记按升幂次序排列的这些差为
从表中查出 ,若满足 Xi Yj
W 2
,则所要的置信区间为
D1,D2,L,DN,Nmn p(WXY W 2 ) 2
(DW 2 , Dnm1W 2 )
对于例1:m=17,n=15,mn=255
查表得
所以
W 2 76
对于例(2D:Wm =2 ,1D2,nnm=17,Wmn2=)84 (D76, D255176 ) (D76, D180 ) (3916, 263)
查表得
所以
W 2 W0.025 19
WX
m(m 1) 2
140 1213 2
62
在U给定m显in著W性XY水,W平YX 22下,
鼠体重增2加p(无U显著22差) 异0..1003
故不能拒绝零假设,认为两种饲料对雌
0.05 p
M X MY 的点估计和区间估计
1) M X M的Y点估计
Me M0 Me M0
p值
PN (0,1) (Z z)
PN (0,1) (Z z) 2PN (0,1) (Z z)
例1:考虑上一节例1的中位数的比较问题 解:假设检验问题为:
H0 : M x M y H1 : M x M y
将
X1
,
X
2
,K
,
X
与
m
Y1
,
ቤተ መጻሕፍቲ ባይዱ
Y2
,K
, Yn
10非参数秩和检验

10非参数秩和检验在统计学中,非参数检验是一种统计方法,它不依赖于数据的分布参数。
秩和检验(Wilcoxon rank-sum test)是非参数检验中最常使用的一种方法,它用于比较两组独立样本的差异。
非参数检验适用于以下情况:1.数据不满足正态分布假设。
2.样本容量较小,无法通过中心极限定理来近似正态分布。
3.数据包含离群值,对正态分布假设产生影响。
秩和检验是一种非参数统计方法,它基于数据的秩次而不是原始测量数值。
这种方法对异常值和偏态数据有较好的适应性。
秩和检验常用于比较两组样本,判断它们是否来自于同一总体分布。
下面将详细介绍秩和检验的步骤和原理。
步骤:1.收集样本数据,包括两组独立样本的观测值。
2.对两组样本的测量值进行合并,并给每个测量值分配一个秩次,按照从小到大的排序分配秩次。
如果有相同的测量值,可以为它们分配平均秩次。
3.计算两组样本的秩和:分别将两组样本中的秩次相加。
4.根据下面的原理和公式计算秩和检验的统计量。
5.根据临界值或P值判断两组样本的差异是否显著。
原理:秩和检验的原理是基于零假设(两组样本来自于同一总体分布)和备择假设(两组样本来自于不同的总体分布)。
秩和检验的统计量是两组样本的秩和之差的绝对值。
考虑两组样本X和Y,秩和检验的零假设为H0:X和Y来自于同一总体分布,备择假设为H1:X和Y来自于不同的总体分布。
秩和检验的统计量(记作W)可通过以下公式计算:W = min(WX, WY)其中,WX和WY分别是样本X和样本Y的秩和。
计算出统计量W后,可以根据秩和检验的临界值或计算出的P值进行假设检验,并判断两组样本的差异是否显著。
通常情况下,如果拒绝零假设,即P值小于设定的显著性水平(通常为0.05),则认为两组样本存在显著差异。
总结:非参数秩和检验是一种用于比较两组独立样本的方法,它不依赖于数据的分布参数。
秩和检验的步骤包括收集样本数据、计算秩次、计算秩和统计量和进行假设检验。
10非参数秩和检验

n2=7
T2=134
Kruskal-Wallis test
(1) 建立假设检验
H0:四组鼠脾DNA含量的总体分布相同
H1:四组鼠脾DNA含量的总体分布位置不全相同 α=0.05
(2) 计算统计量
‣ 四个样本总例数N=8+7+9+8=32。将四样本32个观
察值统一由小到大编秩,见上表第(2)、(4)、(6)、 (8)列。在不同组中有相同含量值10.3两个,12.3三 个,均取各自的平均秩次。
Kruskal-Wallis test
Ti 2 12 H 3( N 1) N ( N 1) ni 1262 1342 123.5 2 54.5 2 12 3( 32 1) 19.90 32( 32 1) 8 7 9 8
Wilcoxon rank sum test
(3) 查表及结论
‣ n=n2-n1,查T界值表T0.05(4)=91~159,
两组患者的平均生存时间不同。
T1=162
落在界值范围外,所以P<0.05,拒绝H0,认为
二、正态近似法
例10-3 44例健康人与24例慢性气管炎病人痰液嗜酸 性粒细胞数的测量值(×106/L),问健康人与慢性 气管炎病人痰液嗜酸性粒细胞数有无显著差别?
0
计量 T 与总体的平均秩和应该相差不大;当与平均
秩相差太大时,超过了抽样误差可以解释的范围,
则 有 理 由 怀 疑 原 假 设 的 正 确 性 , 从 而 拒 绝 H0 。
(刘启贵)
的血清抗体滴度水平间差异是否有统计学意义?
抗体 滴度 (1) 1:10 1:20 1:40 1:80 1:160 1:320 合计 气 雾 组 皮下注 80亿 100亿 射组 (2) (3) (4) 2 15 10 5 1 — 33 4 7 12 7 2 — 32 2 1 13 9 5 1 31 累计 平均 秩次 (6) 4.5 20 49 77 91.5 96 秩 80亿 (7) 9 300 490 385 91.5 — 1275.5 100亿 (8) 18 140 588 539 183 — 1468 和 皮下 (9) 9 20 637 693 475.5 96 1912.5 和
两配对样本非参数检验详解演示文稿

原假设为:样本来自的两配对样本总体的 分布无显著差异。
检验步骤:
1.按照符号检验的方法,将第二组样本的 各个观察值减去第一组样本对应的观察值,如果 得到差值是一个正数,则记为正号;差值为负数, 则记为负号。(出现差值等于0时,删除此个案, 样本数n相应地减少。)
McNemar变化显著性检验以研究对象自身 为对照,检验其两组样本变化是否显著。
原假设:样本来自的两配对总体分布无显 著差异。
McNemar变化显著性检验要求待检验的两 组样本的观察值是二分类数据,在实际分析中 有一定的局限性。
McNemar变化显著性检验基本方法采用二 项分布检验。它通过对两组样本前后变化的频 率,计算二项分布的概率值。
5.根据检验统计量计算相伴概率值,与 设定的显著性水平进行比较作出检验判断。
10.7.2 SPSS中实现过程
研究问题 分析10个学生接受某种方法进行训练的效
果,收集到这些学生在训练前、后的成绩,如 表10-9所示。表格的每一行表示一个学生的4 个成绩。其中第一列表示,训练前的成绩是否 合格,0表示不合格,1表示合格;第二列表示 训练后的成绩是否合格,0表示不合格,1表示 合格;第三列表示训练前学生的具体成绩;第 四列表示训练后学生的具体成绩。问训练前后 学生的成绩是否存在显著差异?
如果得到的概率值小于或等于用户的显著 性水平,则应拒绝零假设H0,认为两配对样 本来自的总体分布有显著差异;如果概率值大 于显著性水平,则不能拒绝零假设H0,认为两 配对样本来自的2
3.两配对样本的Wilcoxon符号平均秩 检验
两配对样本的符号检验考虑了总体数据变 化的性质,但没有考虑两组样本变化的程度。
《医学统计学》第十章+非参数秩和检验

0.05
,即两个不同部位IL-6水平差值的总体中位数不为零
医学统计学(第7版)
符号秩和检验方法
(2)编秩次并求秩和统计量
首先求出各对数据的差值,见表的第(4)列;然后编秩次,按照差值绝
对值由小到大编秩,并按差值的正负给秩次加上正负号;若差值为“0”,舍
去不计,总的对子数也要减去此对子数(记为 n);若差值的绝对值相等,取
➢ 查表法:查 T 界值表(附表8),
T0.05(23) 73 ~ 203
,
T T 91 73
T 在此范围内,P >0.05, 按 α=0.05水准无理由拒绝 H0 ,即实行良好
的口腔卫生6个月后,尚不能说明此项干预对牙周改善有显著效果。
,
医学统计学(第7版)
(3) 确定P 值,做出推断
检测结果如下表(书中表10-1所示) 。
白癜风病人的不同部位白介素指标(pg/ml)
病人号
(1)
白斑部位
(2)
正常部位
(3)
d=(3)-(2)
秩次
(5)
1
2
3
4
5
6
7
8
合计
40.03
97.13
80.32
25.32
19.61
14.50
49.63
44.56
88.57
88.00
123.72
39.03
24.37
上表中第(1)列按第(2)与(3)列数据统一编秩号,第(5)列为各等级的平均秩次,
第(6)列则是较小样本的秩和,本例中 T=T1=560.5, 将其代入公式得出:
zc
| T n1 ( N 1) / 2 | 0.5
医学统计学精品教学第十章-非参数检验精品文档

1
第十章 非参数秩和检验
吴库生 汕头大学医学院预防医学教研室
参数统计与非参数统计
1、参数统计(parametric statistics) 样本所来自的总体分布具有某个已知
的函数形式(如正态分布),而其中有 的参数是未知的,统计分析的目的是对 这些未知的参数进行估计或检验。
2019/10/13
28
符号秩和检验的SPSS实现
2019/10/13
秩和检验
29
Wilcoxon Signed Ranks Test
结 果
Ranks
N Mean RankSum of Ranks
光 电 比 色 法 -Negative Ranks
5a
氰 化 高 铁 法 Positive Ranks
5b
4.60 6.40
X
41.00±29.81
14.75±11.73
方差齐性检验:
F
S12(大) S22(小)
864.94816.2863 137.5929
F F0.05,(7,7) 4.99
P<0.05
两样本方差不齐,不能应用t检验
2019/10/13
医学统计学-秩和检验
31
采用Wilcoxon两独立样本秩和检验
10
Contents
第一节 配对资料的符号秩和检验(Wilcoxon配对法) 第二节 两独立样本比较的秩和检验(Wilcoxon两样本
法) 第三节 完全随机设计多个样本比较的秩和检验
(Kruskal-Wallis检验)
2019/10/13
秩和检验
11
第一节 两配对样本差值的符号秩和检验 (Wilcoxon signed rank test)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Wilcoxon符号秩检验的操作步骤: 3、分别列出符号为正的秩和符号为负的秩,并分别求秩和。记为W+和W-。取 其中的最小值记为统计量T。
W+=10 W-=26 最小的为10,记为统计量。 如果水平差别不显著,两个秩和应该大致相等,都接近于 期望值 n(n 1) ??总秩和是n(n+1)/2,各占一半,即n(n+1)/4
wilcox.test(x1,x2,paired=T,alternative= " less ")
R软件操作(提高篇)
若是另一种数据格式,一个变量,另一个是组变量,则: A=read.table(“scale and infor.txt”,header=T) A attach(A) wilcox.test(information~scale,paired=T) 或
案例1: 改制前后,某厂八个车间竞争性的比较:
问改制前后竞争性有无显著差异? 注意,不知道是否服从正态分布 上次学过,可用符号检验。
符号检验有不足吗(例2)
x1
x2
差的符号
37
36.9
+
38
37.9
+
39
38.9
+
40
39.9
+
41
80
-
42
90
-
43
100
-
44
120
-
若用符号检验,差别显著吗? 你感觉实际上差别显著吗?(SPSS试验,数据为”符号检验模拟1.sav” 数不变,样本容量扩大 一倍呢?两倍呢?
4
Wilcoxon符号秩检验的操作步骤: 4、查符号秩检验表,如果T小于临界值,则拒绝原假设,认为差别显著(左边 检验)。
T=10,大于临界值5, 接受原假设,认为 差别不显著。
符号秩检验SPSS操作(模拟 1.sav)
• p=0.257>0.05,接受原假设 ,认为差别不显著(双边) 。单边,p=0.257/2
符号检验模拟1的SPSS操作
• P=1,大于ห้องสมุดไป่ตู้.05,接 受原假设,差别不 显著。
符号检验模拟1的R软件操作
• binom.test(4,8,0.5)
• P=1,大于0.05,接 受原假设,差别不 显著。
符号检验有不足吗
x1
x2
差的符号
37
36.9
+
38
37.9
+
39
38.9
+
40
39.9
+
41
。 • 补救:即考虑了符号(继承),又考虑数
值(创新) • 形成了Wilcoxon符号秩检验。
Wilcoxon符号秩检验的操作步骤: 1、求每对数据之差d.
x1
x2
d
37
36.9
38
37.9
39
38.9
40
39.9
41
80
42
90
43
100
44
120
Wilcoxon符号秩检验的操作步骤: 2、对d的绝对值由小到大进行排序(序号即秩),相同的赋予平均秩。 在Excel中操作,文件为“符号秩检验模拟1.xls”
80
-
42
90
-
43
100
-
44
120
-
数不变,样本容量扩大 到3倍,你感觉差别会显著吗? 用符号检验,SPSS试验,数据为”符号检验模拟2sav”
符号检验模拟2SPSS试验
• P=1,大于0.05,接受 原假设,差别不显著 。结论正确吗?问题 出在哪儿了?
符号检验的不足
• 只考虑差的符号(正还是负) • 没考虑差的数值(大还是小) • 显著:高出2分和高出20分是有显著区别的
作业:改制前后竞争力的Wilcoxon符号秩检验
T=1.5<3,拒绝原假设,认为差异显著。 思考,比符号检验功效是否提高?
第10讲 相关样本(两样本)非参数检验 2:
Wilcoxon符号秩检验
传统的非参数统计
• 单样本非参数检验 • 两样本(独立和相关)非参数检
验 • 多样本(独立和相关)非参数检
验
相关样本(两样本)非参数检验
1 符号检验 2 Willcoxon符号秩检验 3 McNemar检验(即配对卡方检验) 4 边际同质性检验(marginal homogeneity)
符号秩检验SPSS操作(模拟2.sav
拒绝原假设,可见, 比符号检验更敏感。
案例1的R软件操作: x1=c(37,72,57,44,43,64,55,65) x2=c(40,73,59,43,51,67,61,74) wilcox.test(x1,x2,paired=T)
注意:这是双边的p值。若用单边,该值除 以2即可。或者