初中数学相交线教案
七年级相交线教案

七年级相交线教案一、教学目标:1. 知识目标:- 掌握相交线的基本概念;- 理解相交线的性质和相关定义。
2. 能力目标:- 能够描绘两条相交线的示意图;- 能够辨认出两条线是否相交;- 能够应用相交线的性质解决问题。
3. 情感目标:- 培养学生的观察力和逻辑思维能力;- 增强学生在数学学习中的自信心。
二、教学重难点:1. 重点:- 相交线的概念和性质;- 判断两条线是否相交。
2. 难点:- 应用相交线的性质解决问题。
三、教学内容与方法:1. 教学内容:- 相交线的基本概念;- 相交线的性质和相关定义。
2. 教学方法:- 教师讲解结合示例演示;- 学生自主探究;- 小组合作讨论。
四、教学过程:1. 导入(5分钟)- 引入相交线的概念:请同学们举例描述一下身边的相交线的例子。
2. 概念讲解(15分钟)- 教师用白板讲解相交线的定义和性质;- 教师通过示意图演示相交线的情况,并让学生观察和描述相交线的特点。
3. 分组探究(20分钟)- 将学生分成小组,每个小组找到至少三组相交线的示意图,并思考它们各自的特点和性质;- 学生通过小组合作讨论,总结相交线的相关定义和性质,并将结果报告给全班。
4. 深化练习(15分钟)- 教师出示一些问题,让学生应用相交线的知识解答;- 学生单独完成,然后与同伴交流和讨论。
5. 归纳总结(10分钟)- 教师与学生一起回顾相交线的定义和性质;- 学生根据所学内容归纳总结相交线的相关知识点。
6. 作业布置(5分钟)- 布置一些练习题作为课后作业,巩固相交线的知识。
五、教学反思:通过本节课的教学,学生对相交线的概念有了初步的了解,并且能够通过观察和描述来判断两条线是否相交。
在小组探究环节中,学生通过合作讨论,巩固了相交线的性质和相关定义。
在问题解答和归纳总结过程中,学生能够运用所学知识解答问题,并巩固对相交线的理解。
在今后的教学中,可以增加一些拓展练习,用更多的实际例子来帮助学生加深对相交线的理解。
人教版数学七年级下册5-1-1 相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。
课题:相交线初中数学

课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?b5E2RGbCAP 例如:<1)∠AOC 和∠BOC 有一条公共边OC ,它们的另一边互为,称这两个角互为。
用量角器量一量这两个角的度数,会发现它们的数量关系是p1EanqFDPw <2)∠AOC 和∠BOD <有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的,称这两个角互为。
用量角器量一量这两个角的度数,会发现它们的数量关系是。
DXDiTa9E3d的两个角叫邻补角。
的两个角叫对顶角。
4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是和,根据“同角的补角相等”,可以得出=,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等.RTCrpUDGiT 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.5PCzVD7HxA 你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?【巩固运用】1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.【达标测评】1.如图所示,∠1和∠2是对顶角的图形有( >A.1个B.2个C.3个D.4个2.如图(1>,三条直线AB,CD,EF相交于一点O, ∠AOD的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。
初中数学的相交线教案

初中数学的相交线教案教学目标:1. 了解相交线的定义和性质;2. 能够识别和找出图形中的相交线;3. 能够运用相交线的性质解决相关问题。
教学重点:1. 相交线的定义和性质;2. 相交线的应用。
教学难点:1. 相交线的性质的理解和运用;2. 相交线问题的解决方法。
教学准备:1. 教学课件或黑板;2. 练习题和答案。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的相交线,如墙角、桌角等;2. 提问学生对相交线的理解和认识。
二、新课讲解(15分钟)1. 给出相交线的定义:相交线是指在同一平面内,两条直线相互交叉的现象;2. 讲解相交线的性质:相交线形成四个角,其中对顶角相等,邻补角互补;3. 通过对顶角和邻补角的定义,引导学生量一量图形中的角的度数,并发现它们的关系;4. 给出相交线的应用:通过相交线可以判断两条直线是否垂直,可以解决角度问题等。
三、练习巩固(15分钟)1. 出示练习题,让学生独立完成;2. 引导学生互相交流解题过程和方法;3. 讲解答案,并解释相交线的性质和应用。
四、课堂小结(5分钟)1. 让学生回顾本节课所学的内容,总结相交线的定义、性质和应用;2. 强调相交线在实际生活中的重要性。
五、课后作业(5分钟)1. 让学生完成课后练习题;2. 鼓励学生在生活中发现和运用相交线。
教学反思:本节课通过观察生活中的相交线,引导学生了解和认识相交线的定义和性质,并通过练习题让学生巩固所学知识。
在教学过程中,要注意引导学生积极参与,培养学生的观察能力和思维能力。
同时,要注重相交线在实际生活中的应用,让学生感受到数学的实用性。
相交线-冀教版七年级数学下册教案

相交线-冀教版七年级数学下册教案
一、教学目标
1.知识与能力
1.1 掌握相交线、对顶角、同位角的概念
1.2 掌握对顶角、同位角的性质
1.3 能够运用相交线性质解决实际问题
2.过程与方法
2.1 培养学生独立思考、自主学习的能力
2.2 引导学生提高问题解决能力
2.3 培养学生团队合作精神
二、教学重点
2.1 相交线、对顶角的概念和性质
2.2 运用相交线性质解决问题
三、教学难点
3.1 同位角的概念和性质
3.2 运用同位角的性质解决问题
四、教学内容及时间安排
章节知识点时间
第一章相交线的概念1课时
第二章对顶角的概念和性质2课时
第三章同位角的概念和性质2课时
第四章运用相交线、对顶角、同位角的性质解决问题1课时
五、教学方法
5.1 情境法
通过听、看、说、做等方式,创设具有真实性、感性且有趣的情境,丰富教学体验,激发学生学习兴趣。
5.2 归纳法
让学生通过实例逐渐总结规律和概念,激发学生探讨的兴趣,增加学习的趣味和深度。
5.3 合作学习法
通过小组合作学习,促进学生间思想的交流和合作精神的培养,增强学生的自主学习能力和解决问题能力。
六、教学评价
6.1 学生表现评价
以小组为单位,每个小组根据学习任务制定相应的学习计划和工作安排,并按照要求完成,评价小组学习表现,了解学生对本单元概念的掌握程度和对知识的应用情况,培养学生的独立思考能力及团队合作精神。
6.2 教学效果评价
从学生掌握知识的深度和广度、学生学习审美的效果、实践活动的程度等方面评价教学效果,改进教学方法和策略,提高教学质量。
初中数学几何教案:相交线与平行线

初中数学几何教案:相交线与平行线相交线与平行线一、引入在初中数学的几何学习中,相交线与平行线是一个重要的概念。
它们不仅存在于我们日常生活中的各种场景中,而且在数学领域中有着广泛的应用。
通过学习相交线与平行线的性质与定理,我们可以更深入地理解空间中的几何关系,并能够运用这些知识解决实际的几何问题。
二、相交线的性质1.相交线的定义相交线是指在同一平面内,两条直线或曲线有一个或多个交点的情况。
相交线既可以是两条直线的交点,也可以是两条曲线的交点,同时也可以是一条曲线与一条直线的交点。
2.相交线的分类相交线根据其相交规律可以分为三类:相交于一点、相交于一条线段、以及相交于多个点。
当两条线在空间中的某个点相交时,我们称其为相交于一点。
这种情况最常见,比如两根电线在某个点发生交叉。
当两条线在空间中的某一条线段上相交时,我们称其为相交于一条线段。
比如两根铁轨在某一段上发生交叉。
当两条线在空间中的多个点上相交时,我们称其为相交于多个点。
比如两根绳子在交叉点上交织在一起。
3.相交线的性质相交线的最明显性质就是它们在某个点上相交,但除此之外,还存在着一些重要的性质。
首先,相交线在交点上的角度是相等的。
即使是两条曲线相交,通过适当的测量与计算也可以获得它们在交点上的角度。
其次,相交线之间可以互换位置。
即两条相交的线,可以通过交换位置得到另外两条相交的线,这是由相交线的传递性所决定的。
最后,相交线的交点一定在它们所在的平面上。
这个性质可以通过射影几何学得到证明,而且在实际问题的解决中也是非常重要的。
三、平行线的性质1.平行线的定义平行线是指在同一平面内,永不相交的两条直线。
平行线可以用符号“||”表示。
2.平行线的判定平行线有多种判定方法,其中最常用的是三角形内角和定理。
该定理指出,如果两条直线与一条直线相交时分别产生了一对同位内角以及一对同位外角互补,则这两条直线平行。
此外,我们还可以通过使用平行线的尺规作图法来判定两条线是否平行。
人教版初中数学七年级下册5.1.1《相交线》教案

在今天的课堂上,我们探讨了相交线的概念和性质,以及它们在实际生活中的应用。我注意到,学生在理解同位角、内错角、同旁内角这些概念时,起初有些混淆。我通过反复举例和直观演示,帮助他们逐步理清了这些角的区别和联系。这也提醒我,对于这类几何基础概念的教学,直观性和重复性是非常重要的。
我尝试了一种新的教学方法,让学生在小组讨论中解决实际问题,感觉效果还不错。学生们积极参与,讨论热烈,通过合作探究,他们不仅加深了对相交线性质的理解,还学会了如何将这些知识应用到解决具体问题中。这一点让我感到很欣慰,也证明了实践活动在数学教学中的价值。
人教版初中数学七年级下册5.1.1《相交线》教案
一、教学内容
人教版初中数学七年级下册5.1.1《相交线》教案:
1.理解相交线的概念,掌握两条直线相交形成的四个角及其分类。
2.学习同位角、内错角、同旁内角的概念,并能够识别和判条直线是否垂直。
4.探索并掌握垂直的性质及其应用,如:垂直线段最短、直角三角形的性质等。
4.强化学生的数学建模能力,将相交线的性质应用于解决实际问题,培养运用数学知识解决现实问题的能力。
5.培养学生的数学运算能力,通过几何作图和计算,巩固基本的几何变换和代数运算技能。
三、教学难点与重点
1.教学重点
-两条直线相交形成的四个角的识别及其分类,特别是同位角、内错角、同旁内角的定义和特点。
-垂直的概念及其判断方法,理解两条直线垂直的条件。
-掌握垂直性质及其在实际问题中的应用,如直角三角形的性质和垂线段最短原理。
-通过几何作图和计算,运用相交线和垂直的知识解决具体问题。
举例解释:
-在讲解同位角、内错角、同旁内角时,重点强调它们在两条相交直线上的位置关系和数量关系,通过直观图示和实际操作加深学生理解。
华师大版数学七年级上册第5章《相交线与平行线》教学设计

华师大版数学七年级上册第5章《相交线与平行线》教学设计一. 教材分析《相交线与平行线》是华师大版数学七年级上册第5章的内容,本章主要让学生掌握相交线与平行线的概念,学会用平行线与相交线的性质解决实际问题。
教材通过丰富的图片和实例,引导学生探究和发现平行线与相交线的性质,培养学生的观察能力、操作能力和推理能力。
本章内容在初中数学体系中具有重要地位,为后续几何学习打下基础。
二. 学情分析七年级的学生已具备一定的基础知识和观察能力,但对于抽象的几何概念和证明过程尚需引导。
学生在学习本章内容时,需要充分调动已有的知识和经验,通过观察、操作、猜想、验证等过程,掌握相交线与平行线的性质。
此外,学生需要学会用几何语言描述和证明平行线与相交线的关系,提高逻辑推理能力。
三. 教学目标1.了解相交线与平行线的概念,掌握它们的基本性质。
2.学会用平行线与相交线的性质解决实际问题。
3.培养学生的观察能力、操作能力、推理能力和几何语言表达能力。
4.培养学生合作学习、积极探究的学习态度。
四. 教学重难点1.相交线与平行线的概念及性质。
2.用平行线与相交线的性质解决实际问题。
3.几何语言的运用和证明过程的推理。
五. 教学方法1.采用问题驱动法,引导学生观察、操作、猜想、验证,激发学生学习兴趣。
2.运用合作学习法,让学生在小组内讨论、交流,培养学生的团队协作能力。
3.采用几何画板等软件辅助教学,直观展示相交线与平行线的性质。
4.注重个体差异,针对不同学生给予适时引导和帮助。
六. 教学准备1.准备相关图片、实例和教学素材。
2.制作课件,运用几何画板展示相交线与平行线的性质。
3.准备练习题和拓展题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用图片和实例,引导学生观察相交线与平行线的特点,激发学生学习兴趣。
提出问题:“你们认为什么是相交线?什么是平行线?”让学生发表自己的想法。
2.呈现(10分钟)展示教材中的相关内容,介绍相交线与平行线的定义及基本性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1 相交线
教学目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题. 重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用. 难点:理解对顶角相等的性质的探索. 教学过程
一、读一读,看一看
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件. 学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
二、观察剪刀剪布的过程,引入两条相交直线所成的角
教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化? 学生观察、思想、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征. 三、认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
(1)
O D
C
B A
学生思考并在小组内交流,全班交流.
当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:
∠AOC 和∠BOC 有一条公共边OC,它们的另一边互为反向延长线.
∠AOC 和∠BOD 有公共的顶点O,而是∠AOC 的两边分别是∠BOD 两边的反向延长线.
2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.
教师再提问:如果改变∠AOC 的大小, 会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念.
(1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
(2)初步应用.
练习1:下列说法,你同意吗?如果错误,如何订正.
①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.
②邻补角可看成是平角被过它顶点的一条射线分成的两个角.③邻补角是互补的两个角,互补的两个角也是邻补角?5.对顶角性质.
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书:
在图1中,∠AOC 的邻补角是∠BOC 和∠AOD,所以∠AOC 与∠BOC 互补,∠AOC 与∠AOD 互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD. 教师板书对顶角性质:对顶角相等.
强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.四、巩固运用
1.例:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.
b
a
4
3
21
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程. 2.练习:
(1)课本P5练习.
(2)补充:判断下列图中是否存在对顶角.
2
1
2
1
2
12
1五、作业
1.课本P9.1,2,P10.7,8.
2.选用课时作业设计.
课时作业设计 一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ()
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. () 二、填空题:
1.如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
F E O
D C
B
A F
E
O
D C B A
(1) (2)
2.如图2,直线AB 、
CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.三、解答题:
1.如图,直线AB 、CD 相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.
O D C
B
A
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?
课时作业设计答案: 一、1.× 2.∨
二、1.∠AOF,∠EOC 与∠DOF,160 2.150 三、1.(1)分别是50°,150°,50°,130° (2)分别是49°,131°,49°,131°.。