第三章连续信源的信息熵
信源熵

I ( y j ) I ( y j | xi ) I ( y j )
19
条件互信息量
条件互信息量: 在给定 zk 的条件下,xi 与 y j 之间的互信
I ( xi ; y j ) 0 后验概率 先验概率,X 与 Y 统计独立
I ( xi ; y j ) 0 后验概率 先验概率:由于信道受到干扰, 信宿收到 y j 后不但未使 xi 的不确定度 减少,反而增大了 xi 的不确定度 两个消息之间的互信息不大于其中任一消息的自信息 I ( xi ; y j ) I ( xi ) I ( x i | y j ) I ( x i )
符号从平均意义上表征信源总体特性的一个量对于特定的信源其熵只有一个1log?niiipxpx????1logniiipxpx????信息熵的物理含义信源输出前表征信源的平均不确定度信源输出后表征信源发出的每个消息所能提供的平均信息量是一个统计量反映了随机变量x的随机性22统计热力学中熵是表示分子混乱程度的一个物理量在孤立系统中进行的自发过程总是沿着熵增加的方向进行它是不可逆的平衡态相应于熵取最大值的状态即熵增加原理香农借用热力学中熵来描述信源的平均不确定度在信息论中有用的信息熵只会减少不会增加所以信息熵也被称为负热熵ijxyxy
2
信源的分类
信源输出以符号形式出现的具体消息,其分类如下: 按发送消息的时间和取值空间的分布 离散信源 单符号离散信源 连续信源 信源发出的 按发出符号之间的关系 消息是离散的、 无记忆信源 有限的或无限可 列的符号,且一 有记忆信源 个符号代表一条 按发送一条消息所需要的符号数 完整的消息 单个符号信源 符号序列信源
三种表达形式等效
log log p( x i y j ) p( x i ) p( y j ) p( y j | x i ) p( y j )
信源熵的名词解释

信源熵的名词解释信源熵(Source Entropy)是信息论中一个重要的概念,用于衡量信息源的不确定性和信息的平均编码长度。
在信息论中,信息可以被看作是从一个信源中获取的,而信源熵用来描述这个信源的不确定性大小。
信源熵的计算方法是根据信源可能产生的符号的概率分布来进行的。
具体来说,如果一个信源有n个可能取值(符号)S1,S2,...,Sn,并且每个符号出现的概率分别为P1,P2,...,Pn,那么信源的熵H(S)可以通过下面的公式计算得出:H(S) = -P1log(P1) - P2log(P2) - ... - Pnlog(Pn)其中,log是以2为底的对数,P1,P2,...,Pn是概率分布。
信源熵的含义是,对于一个不确定性较大的信源,需要更长的编码长度来表示每一个符号,所以熵值越大,说明信息的平均编码长度越长。
相反,当一个信源的不确定性较小,即各个符号出现的概率分布较平均时,信息的平均编码长度较短,熵值较小。
以一个简单的例子来说明信源熵的概念。
假设有一个只有两个符号的信源,分别记为S1和S2,它们出现的概率分别为P1和P2。
如果这两个符号的概率分布相等(即P1 = P2 = 0.5),那么信源的熵就是最大的,因为这两个符号的不确定性相同,需要同样长度的编码来表示它们。
而如果其中一个符号的概率接近于1,另一个符号的概率接近于0,那么信源的熵就是最小的,因为其中一个符号的信息是确定的,只需要很短的编码来表示它。
这个例子可以帮助我们理解信源熵与不确定性之间的关系。
除了信源熵,信息论中还有一个重要的概念是条件熵(Conditional Entropy)。
条件熵是在已知一定的背景条件下,信源的不确定性大小,即在给定前提条件下的平均编码长度。
条件熵可以通过信源和条件之间的联合概率分布来计算,其公式为:H(S|T) = -ΣΣP(s, t)log(P(s|t))其中,P(s, t)表示符号s和条件t联合发生的概率。
信源及信源熵介绍

2.2.1 自信息量
2. 不确定度 定义:随机事件的不确定度在数量上等于它的 自信息量.
说明:
a. 两者的单位相同,但含义却不相同。 b. 具有某种概率分布的随机事件不管发生与否,都存在
不确定度,不确定度表征了该事件的特性,而自信息 量是在该事件发生后给予观察者的信息量。
15
2.2.1 自信息量
22
2) 因为X中各符号xi的不确定度I(xi)为非负值,p(xi)也 是非负值,且0 p(xi)1,故信源的平均不确定度H(X) 也是非负量。
3) 平均不确定度H(X)的定义公式与热力学中熵的表示形 式相同,所以又把H(X)称为信源X的熵。熵是在平均意 义上来表征信源的总体特性的,可以表征信源的平均不确 定度。
2
p(xi ) log 2 p(xi ) i 1
= 0.72比特/次 说明:
1) 自信息量I(x1)和I(x2)只是表征信源中各个 符号的不确定度,一个信源总是包含着多个符 号消息,各个符号消息又按概率空间的先验概 率分布,因而各个符号的自信息量就不同。所 以自信息量不能作为信源总体的信息量。
=3 × 105 × 3.32 比特/画面
25
有一篇千字文章,假定每字可从万字表中任选, 则共有不同的千字文 N=100001000=104000 篇 仍按等概率1/100001000计算,平均每篇千字文 可提供的信息量为 H(X)=log2N =4 × 103 × 3.32
1.3 × 104 比特/千字文
离散消息的信源,如文字、数字、数据等符号都是
离散消息。
{ 离散信源
离散无记忆信源 离散有记忆信源
{ {
5
发出单个符号的无记忆信源 发出符号序列的无记忆信源 发出符号序列的有记忆信源 发出符号序列的马尔可夫信源
2.6连续信源的熵

2.6连续信源的熵所谓连续信源就是指其输出在时间上和取值上都是连续的信源。
见图2.6.1。
各采样值的概率可用其概率分布密度函数来确定。
图2.6.2表示一个连续信源输出的幅度和其概率分布密度的关系。
设各种采样值之间无相关性,信源熵可写成:])(log[)(dx x p dx x p i ii ∑[例2.6.1]一连续信源,其输出信号的概率分布密度如图2.6.3所示,试计算其熵。
连续信源的熵不再具有非负性,这与离散信源显然不同。
同样可以定义两个连续变量的联合熵:⎰⎰-=dxdy xy lbp xy p XY H )()()(以及定义两个连续变量的条件熵;⎰⎰-=dxdy y x lbp xy p Y X H )/()()/( ⎰⎰-=dxdy x y lbp xy p X Y H )/()()/(连续信源的共熵、条件熵、单独熵之间也存在如下关系:)()()(Y H X H XY H +≤2.6.1三种特定连续信源的最大熵与离散信源不同,求连续信源的最大熵需要附加条件,常见的有三种。
1.输出幅度范围受限(或瞬时功率受限)的信源2.输出平均功率受限的信源 3.输出幅度平均值受限的信源 (1)限峰值功率的最大熵定理若代表信源的N 维随机变量的取值被限制在一定的范围之内,则在有限的定义域内,均匀分布的连续信源具有最大熵。
设N 维随机变量∏=∈Ni iib a X 1),( iia b>其均匀分布的概率密度函数为⎪⎪⎩⎪⎪⎨⎧-∉-∈-=∏∏∏===Ni i i Ni i i Ni i i a b x a b x a b x p 111)(0)()(1)(除均匀分布以外的其他任意概率密度函数记为)(x q ,并用[]X x p H c),(和[]X x q H c),(分别表示均匀分布和任意非均匀分布连续信源的熵。
在1)()(11112121==⎰⎰⎰⎰N b a b a N b a b a dx dx dxx q dx dx dxx p N NN N的条件下有[]⎰⎰-=1112)(log)(),(b a Nb ac dx dx x q x q X x q H NN⎰⎰⎰⎰⎰⎰+-=⎥⎦⎤⎢⎣⎡∙=111111121212)()(log)()(log)()()()(1log )(b a Nb a b a N b a b a Nb a dx dx x q x p x q dx dx x p x q dx dx x p x p x q x q NNNNN N令0,)()(≥=z x q x p z显然运用著名不等式1ln -≤z z 0>z 则]),([11)(log1)()()()(1log)(]),([1211121111X x p H a bdx dx x q x p x q dx dx a bx q X x q H c Ni i ib a Nb a b a N Ni i ib ac N N NN=-+-=⎥⎦⎤⎢⎣⎡-+--≤∏⎰⎰⎰∏⎰==则证明了,在定义域有限的条件下,以均匀分布的熵为最大。
信源熵的计算公式

信源熵的计算公式
信源熵是计算信息量的重要指标,它可以通过计算可能出现的各种信源的熵而得出。
信源熵的计算公式如下:H(x)=-Σ p(x)log2 p(x),其中p(x)表示每个信息元素x出现的概率。
由于信源熵在计算信息量中独具重要意义,所以它成为各类信息处理实践中的重要工具,例如,它可用于高级编码技术中,优化信号传输的带宽;也可以应用于量化理论中,用来减少信号失真;此外,还可以与信号处理相关联,减少计算量,提高系统效能等。
总而言之,信源熵是计算信息量的重要指标之一,它能够有效帮助我们更好地提取信息,用更少的计算量实现更大的效果,可谓是信息处理领域中的一颗明珠。
2.4 连续信源的熵

+∞ +∞
−∞ −∞
p( x ) log p( x )dx − lim log ∆ ;
∆ →0
(2) 连续信源的相对熵定义为 连续信源的相对熵 相对熵定义为
H相 ( X ) = −∫
+∞ −∞
p( x ) log p( x )dx
记为
H(X ).
即连续信源的相对熵简称为连续信源的熵。 即连续信源的相对熵简称为连续信源的熵。 连续信源的熵 8
16
第 二 章 基 本 信 息 论
§2.4 连续信源的熵
三、连续信源的最大熵
2. 瞬时功率 或幅值)受限 瞬时功率(或幅值 受限 或幅值 约束条件 − V ≤ x ≤ V ,
∫
V
−V
p( x )dx = 1 .
结论 若信源输出的幅值限定在区域 [ −V ,V ] 内,则当输出 信号的概率密度是均匀分布时,信源具有最大熵。 信号的概率密度是均匀分布时,信源具有最大熵。 H max ( X ) = ln 2V ( na t )
∂F ∂ϕ 1 令 = −[1 + ln p( x )] + λ 1 = 0 , + λ1 ∂p ∂p
⇒ ln p( x ) = λ 1 − 1 ,
⇒ p( x ) = e λ 1−1 ,
代入
∫
V
−V
p( x )dx = 1 得
λ 1−1
∫
V
−V
e λ 1−1dx = e λ 1−1 2V = 1 ,
= log 2V (bi t ) .
1. 连续信源的离散化(逼近) 连续信源的离散化(逼近)
~ 离散化(或者说量化)为离散信源 或者说量化 连续信源 X 被离散化 或者说量化 为离散信源 X :
信息熵的计算

根据Charles H. Bennett对Maxwell's Demon的解释,对信息的销毁是一个不可逆过程所以销毁信息是符合热力学第二定律的。
而产生信息,则是为系统引入负(热力学)熵的过程。
所以信息熵的符号与热力学熵应该是相反的。
一般而言,当一种信息出现概率更高的时候,表明它被传播得更广泛,或者说,被引用的程度更高。
我们可以认为,从信息传播的角度来看,信息熵可以表示信息的价值。
这样我们就有一个衡量信息价值高低的标准,可以做出关于知识流通问题的更多推论。
信源的平均不定度。
在信息论中信源输出是随机量,因而其不定度可以用概率分布来度量。
记H(X)=H(P1,P2,…,Pn)=P(xi)logP(xi),这里P(xi),i=1,2,…,n为信源取第i个符号的概率。
P(xi)=1,H(X)称为信源的信息熵。
熵的概念来源于热力学。
在热力学中熵的定义是系统可能状态数的对数值,称为热熵。
它是用来表达分子状态杂乱程度的一个物理量。
热力学指出,对任何已知孤立的物理系统的演化,热熵只能增加,不能减少。
然而这里的信息熵则相反,它只能减少,不能增加。
所以热熵和信息熵互为负量。
且已证明,任何系统要获得信息必须要增加热熵来补偿,即两者在数量上是有联系的。
可以从数学上加以证明,只要H(X)满足下列三个条件:①连续性:H(P,1-P)是P的连续函数(0≤P≤1);②对称性:H(P1,…,Pn)与P1,…,Pn的排列次序无关;③可加性:若Pn=Q1+Q2>0,且Q1,Q2≥0,则有H(P1,…,Pn-1,Q1,Q2)=H(P1,…,Pn-1)+PnH;则一定有下列唯一表达形式:H(P1,…,Pn)=-CP(xi)logP(xi)其中C为正整数,一般取C=1,它是信息熵的最基本表达式。
信息熵的单位与公式中对数的底有关。
最常用的是以2为底,单位为比特(bit);在理论推导中常采用以e为底,单位为奈特(Nat);还可以采用其他的底和单位,并可进行互换。
信源熵的原理及应用

信源熵的原理及应用信源熵是信息理论中的重要概念,用于描述一个随机变量包含的信息量的度量。
在信息理论中,熵被定义为信源中每个符号所携带的平均信息量的期望值。
熵的原理可以通过以下步骤来理解:1. 假设一个离散概率信源,它产生n个符号{s1, s2, ..., sn}。
每个符号都有对应的概率{p1, p2, ..., pn}。
2. 每个符号si携带的信息量可以用-log(pi)来度量,其中pi是符号si出现的概率。
3. 信源熵H可以定义为每个符号携带信息量的期望值,即H = -Σ(pi * log(pi)),其中Σ表示对所有符号求和。
熵的应用广泛,下面是几个常见的应用:1.数据压缩:信源熵的性质使之成为数据压缩技术的基础。
压缩算法通过移除冗余信息来减少数据的存储和传输成本。
压缩算法的思路就是将频率较高的符号用较短的编码表示,将频率较低的符号用较长的编码表示,以减小整体的编码长度。
2.信息编码:熵可以衡量信息的不确定性。
在通信系统中,编码器使用熵的概念来将消息转换成可传输的信号。
常用的编码方案包括霍夫曼编码、香农-费诺编码和算术编码等。
3.最优传输速率:信源熵对于最优传输速率具有重要意义。
在理想的通信信道中,传输速率应该等于信源熵,以达到最高的传输效率。
当传输速率高于信源熵时,会出现信息丢失或传输错误。
4.信息隐藏:信源熵的概念也可以应用于信息隐藏领域。
信息隐藏是指将附加信息嵌入到覆盖载体中,使得这些信息对于一般观察者不可察觉。
利用信源熵的概念,可以构建一些隐蔽的嵌入方案,将秘密信息嵌入到原始图像或音频中。
总之,信源熵在信息理论中起着重要的作用,它是衡量信息量的基本度量方式,并且对数据压缩、通信编码、传输速率等方面具有广泛的应用。
通过对信源熵的研究,我们可以更好地理解信息的特性和效率,并且能够应用于真实世界中的各种通信系统和数据处理任务中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x)
dxdy
p(x) p(x) p(y)
P(x y) p(xy)
p(xy)
p( y)
p(x)
p(x) p( y x)dxdy p(x) p( y)dxdy
Rx Ry
Rx Ry
p(xy)dxdy p(x)dx p( y)dy 11 0
p(y) P(y x)
§3. 2 连续变量的相对熵
在取极限的过程中由于n→∞ 相当于 →0,此时这个离散变 量越来越逼近一个连续变量;而离散集合中的信息熵Hn(X)就分解 为两项,其中一项与划分精度无关,趋于一个常量——Hc(X)。 而另一项,随着 →0最终趋于一个无穷大的量。很显然这与取极 限之前的离散熵差别很大,那么这种极限形式能否表达出信源平 均不定度的概念吗?
因此任何复杂的统计对象,经多种处理后就可由 浅入深地逐步解决问题。正如我们在离散信源中:
ai
消息
事件
X
随机 变量
X X (t,)
随机
随机
序列 H ( X )
过程
HL(X )
I (ai ) H ( X )
自信息
信息熵
任何处理过程总要丢失信息,
H H m1
H X (t,)
随机过程的熵
I(X ;Y ) 0
and
Then :
3°.
I ( X ;Y ) Hc ( X ) Hc (Y ) Hc ( XY ) Hc ( XY ) Hc ( X ) Hc (Y ) I ( X ;Y )
def
Hc ( X ) p(x) log p(x)dx
R
where, R is the domain of x . 为什么说相对熵反映连续变量的客观存在的平均不定度?首 先一个随机变量,当它的概率分布一旦确定,则它的不定性就该 给定,而不能随划分精度的变化而变化。第二,由于信息量的概 念是不定度的解除量,如果在相同划分精度下,再讨论两者之差 时,H()将会消失。所以我们可看到仅从Hc(X)上就可真正反映出 信息的全部属性 (包括非负性) 。因此,我们只要相对熵的定义就 足够了。同时我们也能给出两个连续变量的互信息问题:
Hc (Y X ) p(x) p( y x) log p( y x)dxdy
Rx Ry
p( xy )
and I ( X ;Y ) p(xy)log
dxdy
Rx Ry
p(x) p( y)
Hc ( X ) Hc ( X Y ) Hc (Y ) Hc (Y X )
Hc ( X ) Hc (Y ) Hc ( XY )
a
n 信息散度 D( p//q )
def
Hc(X ) H ()
(relative entropy)
where :
def b
Hc ( X ) p( x) log p( x)dx
称为相对熵
a
Differential entropy
def
and
H () lim(log )
称为绝对熵
0
n
absolute entropy
Rx Ry
Rx
Ry
Hc(X ) Hc(X Y )
§3. 3 相对熵的性质
2°.Hc ( X ) can be a negative; but, I ( X ;Y ) 0.
I ( X ;Y ) Hc ( X ) Hc ( X Y ) Hc (Y ) Hc (Y X )
and
Hc ( X Y ) Hc ( X ) Hc (Y X ) Hc (Y );
正交变换 Orthogonal Transformation
x( )
Amplitude
continuous
Hc (X )
所谓正交变换是一种数学处理手段,将在T时间内的 受限于最高频率为F的随机过程,无失真地变换成2FT个 随机变量。最理想的正交变换是: K—L expansion。
§3. 1 连续信源的离散化
«信 息 理 论 基 础 »
第三章:连续信源的信息熵
§3. Entropy of Continuous Source
§3.1 连续信源的离散化 §3.2 随机变量的相对熵 §3.3 相对熵的性质 §3.4 常见几种概率密度下的相对熵 §3.5 连续信源的最大熵定理 §3.6 平稳高斯随机过程的信息熵与互信息 §3.7 熵功率与功率不等式
p(x) f (x)
于第i个区间的概率就等于:
def
pi Pn (xi ) P[a (i 1)] x (a i)
ai
a(i1) p( x)dx p( xi )
where : b a ; n
i 1, 2, n
xi a (i 1), a i
a0
Δ
xi b x
Then : 按积分中值定理上式一定成立。
, an , pn
finite
symbol
or
sequence
而连续信源是指信源所发出的消息都是由一个个随机
过程( stochastic process)所形成。如:语音信号 X (t,)
它不仅幅度上,而且在时间上也都是 连续的,即分别属
于一个无限的集合之中。
§3. 1 连续信源的离散化
因此,我们所研究的问题就复杂了,然而任何复杂
p(x) f (x)
def
where : F (x) P(x),为概率分布函数。
def
f (x) p(x), 为概率分布密度。
b
b
P(x b) f (x)dx p(x)dx 1
a
a0
Δ
bx
§3. 2 连续变量的相对熵
如果把x∈[a,b]的定义域划分成n个小 区间,且每个小区间宽度相等。那么处
一个连续变量总可以采用数字量化的方式简化成一个离散变量
来近似,而且量化单位越小则所得的离散变量就越接近那个连续变 量。因此我们针对连续变量的概率统计规律——概率分布密度函数
( probability density function)也可采用上述近似方法。
x
def x
F (x) f (t)dt P(x) p(t)dt
Ry
1
Rx
Rx Ry
Hc ( X ) Hc (Y X )
§3. 3 相对熵的性质
and
Hc(X ) Hc(X Y )
p(x) log p(x)dx p( y) p(x y) log p(x y)dxdy
Rx
Rx Ry
p(x) p( y x) log p(x)dxdy p( y) p(x y) log p(x y)dxdy
的问题都可以分解成比较简单的问题分步解决。故通
常我们有一些处理连续变量的方法。
Stochastic
Random
Random
process
vector
variable
X (t,)
Time
discretization
X
MMaemrkoorvyilaenss
X
x H( p)
Amplitude discretization
n
n
n
Hn ( X ) pi log pi pn (xi ) log pn (xi ) pn (xi ) log pn (xi )
i 1
i 1
i 1
n
1n
(log ) pn (xi ) pn (xi ) log pn (xi ) (log )
i 1
i 1
§3. 2 连续变量的相对熵
第三章. 连续信源的信息熵
§3. 1 连续信源的离散化
( Discretization of Continuous Source)
我们前面所介绍的信源均指离散信源,即信源所发 的消息都是由符号或符号序列所组成; 而且每一个符号 的取值都属于一个有限元素组成的集合之中。
x
A
a1, p1,
a2 , p2 ,
第三章. 连续信源的信息熵 §3. 3 相对熵的性质
( The Properties of Differential Entropy)
1°. 可加性
proof :
Hc(XY ) Hc( X ) Hc(Y X ) Hc(Y ) Hc(X Y )
and Hc(Y X ) Hc(Y ); Hc(X Y ) Hc( X )
let p(xy) p(x) p( y x) p( y) p(x y)
then Hc( XY ) p(xy)log p(xy)dxdy
Rx Ry
p(x) p( y x)log[ p(x) p( y x)]dxdy
Rx Ry
p( y‖ x)dy p(x)log p(x)dx p(x) p( y x)log p( y x)dxdy
最多保持不变。所以简化处理就 得付出代价即:容忍信息的丢失,
H1
H
(X
)
除非正交变换和极限处理。
H0 log n
序列熵的表达类型
第三章. 连续信源的信息熵
§3. 2 连续变量的相对熵
( The differential entropy of Continuous random Variable)
§3. 2 连续变量的相对熵
因为对于一个连续变量,它的取值有无穷多个,无论它取任何 值,其随机事件所对应的不定度一定是无穷大量。而对熵来说, 应是这个随机事件集合的平均值,既然每一个事件的自信息都是 无穷大,则它的集合平均值也应是无穷大才对。又因为从绝对的 观点来看,每一个连续信源的平均不定度都是无穷大,那么这个 熵的价值也就无意义了。但是再仔细分析一下,上式中只有H() 项才与划分精度有关, 这说明只有此项能反映人为地利用离散模 式向连续型逼近的近似程度。换句话说,这仅是强加上的人为因 素,并不代表事物原有的客观属性。比如,对于同样概率分布的 随机变量x,如果仅划分精度不同时,可取1 ,2代表两种划分 精度,则我们所得到的熵的表达式: