振动波动部分例题及作业

合集下载

振动波动作业习题及解答

振动波动作业习题及解答

Ch.10.振动、Ch.11波动作业习题及解答AωOXt =0图2A图1ωt =0OX=010-1. 一小球与轻弹簧组成的谐振动系统,振动规律为0.05cos(8π3),x =t +π(t 的单位为秒, x 的单位为米)。

求: (1) 振动的角频率、周期、振幅、初相、速度和加速度的最大值; (2) t =1s 、t =2s 、t =10s 时刻的相位; (3) 分别画出位移、速度和加速度与时间的关系曲线。

解(1): 将小球的运动方程0.05cos(8π3),x =t +π与谐振动的表达式0cos()x A t ωϕ=+比较知,系统的角频率、周期、振幅和初相分别为:108π(s );=2(4)s ;0.05(m );3;T A πωπωπϕ-====系统振动速度、加速度的表式分别为02220sin(4sin(8π3)(m s);cos( 3.2cos(8π3)(m s )v =dx /dt =-A t t +πa =dv /dt =-A t t +πωωϕπωωϕπ+)=-0.+)=-速度和加速度的最大值为:12220.4π 1.26(m s );=3.2π31.6(m s )m m v A a A ωω--==≈=≈ 解(2): 由相位表达式0()8/3t t t ϕωϕππ=+=+知, t =1s 、t =2s 、t =10s 时刻振子的相位分别为:2549241333333(1s )8π(2s )16(10s )80t +t t +ππππππϕϕπϕπ=====+====;; 解(3): x (t ), v (t ), a (t )曲线如下图所示。

10-2.(选作题)某个与轻弹簧相连的小球,沿X 轴作振幅为A 的简谐振动,周期为T 。

其振动表达式用余旋函数表示。

若t =0时小球的运动状态分别为:(1) 0x A =-; (2) 过平衡位置向X正向运动; (3) 过x =0.5A 向X 负向运动; (4) 过x =X 正向运动。

振动和波动习题课(改)

振动和波动习题课(改)

x)
yBP
Acos[ t
2
(30 x)]
l
两波同频率,同振幅,同方向振动,所以相干静止的点满足:
(t 2 x) [t 2 (30 x)]
l
l
(2k 1)
k 0,1,2,...
化简后 30 2x kl
30 2x kl O x
X
因为: l u 4m
x 15 k 2
1
3
x 3 102 sin(4t 1 ) (SI)
2
6
画出两振动的旋转矢量图,并求合振动的振动
方程.
x1
5
102
cos(4t
1 3
)
x2
3
102
sin(4t
1 6
)
3
102
cos(4t
1 6
1 2
)
3 102 cos(4t 2 ) 3
x x1 x2
1
2 102 cos(4t 1 )
7.一简谐振动曲线如图所示,试由图确
定在t=2s时刻质点的位移为
,速
度为

t=2s, x=0
Vm
A
2 A
T
3
102
8.已知两个简谐振动 曲线如图所示,
X1的位相比X2的位相
A) 落后 1
2
C) 落后
B) 超前 1 √
2
D) 超前
9.一简谐振动的振动曲线如图,求此振动的 周期。
解: =/3+ /2=5/6 t=5= 5/6 = /6
2
之间)
(1)2 1 2k k 0,1,2,
A A1 A2 振动加强; 此时有= 1= 2
A1

大学物理振动波动例题习题

大学物理振动波动例题习题

振动波动一、例题(一)振动1.证明单摆是简谐振动,给出振动周期及圆频率。

2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。

当t = 0时, 位移为6cm ,且向x 轴正方向运动。

求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。

3. 已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。

在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。

2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。

已知原点的振动曲线如图所示。

求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差。

3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。

S 1距P 点3个波长,S 2距P 点21/4个波长。

求:两波在P 点引起的合振动振幅。

4.沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为固定端,求反射波的方程。

波动与振动-答案和解析

波动与振动-答案和解析

1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,已知0=t 时的初位移为, 初速度为s -1,则振幅A = ,初相位 =解:已知初始条件,则振幅为:(m )05.0)309.0(04.0)(222020=-+=-+=ωv x A 初相: 1.1439.36)04.0309.0(tg )(tg 1001或-=⨯-=-=--x v ωϕ因为x 0 > 0, 所以 9.36-=ϕ2. 两个弹簧振子的的周期都是, 设开始时第一个振子从平衡位置向负方向运动,经过后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为 。

解:从旋转矢量图可见,t = s 时,1A 与2A反相,即相位差为。

3. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的 (设平衡位置处势能为零)。

当这物块在平衡位置时,弹簧的长度比原长长l ∆,这一振动系统的周期为 解:谐振动总能量221kA E E E p k =+=,当A x 21=时4)2(212122EA k kx E p ===,所以动能E E E E p k 43=-=。

物块在平衡位置时, 弹簧伸长l ∆,则l k mg ∆=,lmgk ∆=,振动周期gl km T ∆==ππ224. 上面放有物体的平台,以每秒5周的频率沿竖直方向作简谐振动,若平台振幅超过 ,物体将会脱离平台(设2s m 8.9-⋅=g )。

解:在平台最高点时,若加速度大于g ,则物体会脱离平台,由最大加速度g A v A a m ===22)2(πω 得最大振幅为1A 1A 2Ax=t .0=t 5.0=t(m)100.11093.9548.94232222--⨯≈⨯=⨯==ππv g A 5. 一水平弹簧简谐振子的振动曲线如图所示,振子处在位移零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 点。

振子处在位移的绝对值为A 、速度为零、加速度为-2A 和弹性力-kA 的状态,对应于曲线的 点。

振动波动例题

振动波动例题
A 3.0cm 2.5Hz 24cm
解:
t =0
x =0 y =0
y0= 0.03 cos(2 ×2.5 t π ) π 2
v0
π j= 2
π 2 x π y = 0.03 cos 2 ×2.5 t 2 π 0.24 π 50 x π 0.03 cos 5 t π =
2 6 0.03 cos 5 (t 10 x ) π π = 2 6
例1. 有一个和轻弹簧相联的小球,沿x 轴作振幅为A的简谐振动,其表达式用余弦 函数表示。若t =0 时,球的运动状态为: (1)x0=-A; (2)过平衡位置向x 正方向运动; (3)过x=A/2处向 x 负方向运动; A (4)过 处向 x 正方向运动; 2 试用矢量图示法确定相应的初相的值,并写 出振动表式。
由波形图得:t =1/3 s时
y/cm
10
x0
v< 0 y0 =-0.05
o
-5
20
x/cm
1 0.05 0.1cos( j ) 3
1 2 j 3 3

j

3
波动方程为:
πx + π y =10cos π t 20 3
O点(x =0)的振动方程为:
cm (1)
π π 解: A =0.24m ω = 2 = 2 = π =1.57s-1 T 2 4 x 0 = A =0.24m φ =0 t =0 v0 = 0
振动方程为: x = 0.24 cosπ t 2 (1) t =0.5s cos (π × 0.5 ) x = 0.24 2 = 0.24 cos 0.25π
= 0.24 ×
2 =0.17m 2
(2)

大学物理习题详解—振动与波动部分

大学物理习题详解—振动与波动部分

第十二章 机械振动简谐振动12.1 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T ;(B )1T ;(C )1T /2;(D )1T /2 ;(E )1T /4. [ ] 答:(C )分析:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。

弹簧的弹力大小取决于弹簧的形变,在伸长相同的长度x 的情况下,弹簧越短,其变形越大,弹力f 也越大。

而胡克定律为:f kx =,即 fk x=,因此弹簧变短后弹性系数k 增大。

12T = 22k k =,下端挂一质量为12m 的物体,则系统振动周期2T 为: 2T 1112222T ⎛=== ⎝ 12.2 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线; (B )曲线2、1、3分别表示x 、v 、a 曲线; (C )曲线1、3、2分别表示x 、v 、a 曲线; (D )曲线2、3、1分别表示x 、v 、a 曲线; (E )曲线1、2、3分别表示x 、v 、a 曲线.第12. 3题图v (a)(b)t答:(E )分析:位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线;曲线2比1超前了2π,1是位移曲线12.3 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) . 答:(1)X =A cos (t T π2-2π) (2)X =A cos (t T π2+2π) (3)X =A cos (t Tπ2+π). 分析:关键是写出初位相,用旋转矢量法最方便:ωx xx(a )φ= -π/2ω ω(b )φ= π/2(c )φ= π12.4 设振动周期为T ,则a 和b 处两振动的时间差t ∆=____________。

振动波动检测题解答

振动波动检测题解答

A, x k;
1 C , x (2k 1) ; 2
1 B, x k ; 2
D, x (2k 1) 4.
振动和波动检测题部分解答
解:
y y1 y2 A cos
2x 0
2x

cos 2t
cos


2x

(2k 1)

2
x (2k 1)
由(1)、(2)两式可得
m2 g k x
振动和波动检测题部分解答
m1x T 2 m2 g
应该选 B
振动和波动检测题部分解答
2 一简谐振动曲线如图所示,则振动周期为[ B ]
x(cm)
A,2.62s; C,2.20s;
B,2.40s; D,2.00s.
4 2
t (s )
1
o
振动和波动检测题部分解答
解:
2 振动方程为 x 4 10 cos( ) T
2
当t=0时,
x0 0.02
2 v0 A sin 0 T


3
2 x 4 cos( ) T 3
振动和波动检测题部分解答
t 1时,x 0
2 0 0.04 cos( ) T 3
y
B
O
x
L
振动和波动检测题部分解答
解:
t x 设 y反 A cos[ 2 ( ) ' ] T t L y入B A cos[ 2 ( ) ] T
y 反B
t L A cos[ 2 ( ) ] T
2L
反OB '

振动波动作业解

振动波动作业解


x A/2
2
5 3 2 6
ቤተ መጻሕፍቲ ባይዱ


2 T t 6 5 12s 5
2
2 t t T
物理系:史彭
史彭振动波动作业解
4.一质点作简谐振动,已知振动频率为 f,则振动动能的 变化频率是: [ B ]
1 1 2 E K m m[A sin( t )] 2 2 2
3 1 2 2 sin t cos t ] 10 2 [sin sin t cos cos t ] 10 2 3 3 2 2 2 cos(t ) 10 2 3 x / 2 2 y cos(t ) 10 2 u 3 2 2x 2 y cos(t ) 10 u 3
x’ x
1 x y Acos[ (t ) ] u
物理系:史彭
史彭振动波动作业解
2.一平面简谐波沿 OX 轴传播,波函数为 y A cos[2 (t x / ) ] , 则在X1=L处,介质质点振动的初相位是 ;与X1处质点振动 状态相同的其它质点的位置是 ;与X1处质点振动速度大小 相同,但方向相反的其它各质点的位置是 。 各点初相位 2x / y X1=L
3 sin (t ) 4
2
1 2 1 E kA m 2 A2 2 2
EK 3 E 4
物理系:史彭
史彭振动波动作业解
二、填空题 1.一质点作简谐振动,其振动曲线如图所示。根据此图, 它的周期 ;用余弦函数描述时初相位 。
2

x
7 t t 12
物理系:史彭
史彭振动波动作业解
2.一质点作简谐振动,周期为 T 。质点由平衡位置向 X 轴正方向运动时,由平衡位置到二分之一最大位移这段路 所需要的时间为 [ B ]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[例1]用旋转矢量法讨论质点初始时刻位 移为以下情况时谐振动的初相位:A ;-A;0,且向负方向运动;-A/2 ,且向正方向运动 解:由旋转矢量法得
0 2
2 A 4 或 3 3
4 A 3 2 2

O
A
x
[例2]如图的谐振动x-t 曲线,试求其振 x/m 动表达式 2 解:由图知
[例7]两列相干平面简谐波沿x轴传播。 波源S1和S2相距d=30m,S1为坐标原点, 已知x1=9m和x2=12m处的两点是相邻的 两个因干涉而静止的点。求两波的波长 和两波源的最小位相差
S1
解:设S1、S2的初相位为1 、2 因x1和x2处为相邻干涉静止点,有0x1 Nhomakorabeax2
S2
x
x x2 2 (d x1 ) 2x1 [ 2 ] [1 ] (2k 1) 2 (d 2 x1 ) 2 1 (2k 1) 2 (d 2 x2 ) 同理 2 1 (2k 3)
2 T 4s T 2
x0 A
由旋转矢量法得
0.24 0.24 x 0 x 0.24 cos t m 2 (2) t=0.5s: 1 x 0.24 cos 0.17 m 2 2 2 2 F ma m x 0.01 ( ) 0.17 2 3 4.19 10 N
v0

x 0, v 0
2

2
O
x
[ 例 3] 质量为 0.01kg 物体作周期为 4s 、振 幅为0.24m的简谐振动。t=0时,位移 x=0.24m。求(1)谐振动表达式;(2)t=0.5s 时 , 物体的位置和所受的力; (3) 物体从 初始位置运动至 x =-0.12m 处所需的最短 时间 解:(1)设振动表达式为 x A cos( t ) 其中 A 0.24 m
A 2 m, T 2s O 2t / s 1 2 T 设振动表达式为 x A cos( t ) v A sin( t ) t=0时: x 0 即 0 A cos 2

旋转矢量法
A sin 0 sin 0 2 x 2 cos(t ) m 2
0.4
y A cos(t ) A 0 . 2 m x m 0.4 m
u 2 0 . 08 2 2 2 0.4 5 又t =0时: y 0 v 0 2 y m u 2 y 0.2 cos( t ) m 5 2 0 x m 波动方程为 2 x y 0.2 cos[ (t ) ]m 5 0.08 2
0
2 (3) t min 2 3 t min 3 0.12 2 3 4 t min 0.24 x s 0.24 0 2 3 T T 或 t min 4 12 T T T 6 12 4 4 s A x A 0 3
[例4]一水平放置的弹簧振子,质量为m ,弹性系数为k,当它振动时,在什么位 置动能和势能相等?它从该位置到达平 衡位置所需的最短时间为多少?
x / cm
0.05
2 T 20
1
0.1
1振动在t=0时:
t / s 1 2 2
x0 0 v0 0
5 M 4 5 x 5 2 cos(20 t ) cm A 4
2
5 A 2 x1 5 cos(20t 2) cm x2 5 cos(20t ) cm 2 2 由旋转矢量法 A 0M 1 0M 2 5 2 cm
解: (1)
1 2 1 2 2 kx kA 2 2
2 x A 2

(2)
t 2 4 4
t

4
m k
O
2 A 2
x
[例5]已知两谐振动的曲线(如图),它们是 同频率的谐振动,求它们的合振动方程 解:由图知 A 5 cm T 0.1s
5 0 5
0
S1
x1
S2
相减得
4 ( x2 x1 )
2( x2 x1 ) 2 (12 9) 6 m 2 (d 2 x2 ) 2 1 (2k 3) (2k 5)
k=-2时,位相差最小

2
2 1
作业:9-1、9-7、9-9、9-11、 9-15
2振动在t=0时: x0
5 4
O
M1
x
[例6]下图为一平面余弦横波 t=0时的波 形,此波形以u=0.08米/秒的速度沿x轴 正向传播。求:a,b两点的振动方向; 0点的振动方程;波动方程 解:由波形传播过程知 a向下, b向上 y m 设 0 点振动方程为 u 0.2
a b
O
0.2
相关文档
最新文档