函数求值域的方法
函数值域的十种求法

函数值域的十种求法
1、通过定义域的极限来求函数值域:由于函数表示法中的变量x的取值范围是定义域,而函数值f(x)的取值范围则可以通过定义域极限的方法来求得。
2、通过函数定义关系来求函数值域:由于函数在定义域内有一定的定义关系,所以可以根据函数定义关系来求函数值域。
3、由于函数在定义域内有一定的性质,所以可以根据函数性质来求函数值域。
4、由于函数在定义域内有一定的对称性,所以可以根据函数的对称性来求函数值域。
5、由于函数在定义域内有一定的单调性,所以可以根据函数的单调性来求函数值域。
6、根据函数的奇偶性来求函数值域:如果函数在定义域内具有奇偶性,则可以根据函数的奇偶性来求函数值域。
7、由于函数在定义域内有一定的常数性,所以可以根据函数的常数性来求函数值域。
8、根据函数增减性来求函数值域:如果函数在定义域内具有增减性,则可以根据函数的增减性来求函数值域。
9、由于函数在定义域内有一定的循环性,所以可以根据函数的循环性来求函数值域。
10、根据函数的图像形状来求函数值域:如果函数在定义域内具有特定的图像形状,则可以根据函数的图像形状来求函数值域。
函数值域的13种求法

函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的方法大全

求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
函数值域求法十一种

函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。
例如,求函数 $y=\frac{1}{x}$ 的值域。
解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。
2.配方法配方法是求二次函数值域最基本的方法之一。
例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。
解:将函数配方得:$y=(x+1)^2+2$。
由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。
故函数的值域是:$[2,4]$。
3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。
解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。
1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。
2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。
4.反函数法例如,求函数 $y=3x+4$ 的值域。
解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。
例13.求函数y sinx cosx的值域。
解:由三角函数的性质可知。
1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。
求值域的10种方法

求值域的10种方法值域是一个函数在定义域内所有可能的输出值的集合。
找到函数的值域通常是为了确定函数可能的取值范围,并且在数学和计算中都是非常重要的。
以下是求值域的10种方法:1.列举法列举法是最简单直接的方法。
通过观察函数的定义,给出一组有序的输出值,并将这些值组成一个集合。
这些值将构成函数的值域。
例如,对于函数f(x)=x^2,我们可以通过进行一系列的替换运算,然后给出输出值的集合{0,1,4,9,16,...}。
2.图像法在图像法中,我们首先绘制函数的图像,然后找到图像上所有纵坐标的值。
这些纵坐标的集合构成了函数的值域。
例如,对于函数f(x)=x^2,我们可以绘制一个抛物线形状的图像,然后观察所有纵坐标的值。
3.解析法解析法是通过使用代数表达式或方程来确定函数的值域。
例如,对于函数f(x)=x^2,我们可以使用代数方法将方程f(x)=y转化为x^2=y。
然后通过解这个方程,我们可以得到y可能的取值范围,即函数的值域。
4.图像逼近法在图像逼近法中,我们通过绘制函数的图像,并观察图像在最高和最低点之间所有可能的纵坐标值。
这些纵坐标的集合构成函数的值域。
5.猜测法猜测法是一种直觉方法,凭借对函数的直觉和理解猜测出其可能的取值范围。
这种方法通常需要一定的数学背景和经验,并且在实践中被广泛应用。
6.极值法在极值法中,我们通过找到函数的极大值和极小值来确定函数的值域。
极大值是函数图像的局部最高点,极小值是函数图像的局部最低点。
函数的值域就是极值点之间的所有可能的函数值。
7.夹逼法夹逼法是通过使用两个已知函数(夹逼函数)来夹住待求函数,然后确定待求函数的值域。
待求函数的值域将位于夹逼函数的值域之间。
8.对数法对数法是通过取函数的对数来确定函数的值域。
求函数的对数在一些问题中很有用,因为它可以将具有无穷大或无穷小解的问题转化为具有有限解的问题。
9.差集法差集法是通过找到函数定义域的补集,然后从全体实数集中去除差集的元素,得到函数的值域。
函数值域12种求法

函数值域的12种求法在函数的三要素中,定义域和对应法则起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
一、函数值域的12种求法1. 观察法对于一些比较简单的函数,其值域可通过直接观察即可得到。
例1. 求函数 x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数 x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 函数单调性法:根据函数单调性及定义域求函数值域例9. 求函数 )10x 2(1x log 2y 35x ≤≤-+=-的值域。
解:令1x l o g y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112l o g 2y 33m i n =-+=-当x=10时,339log 2y 35max =+=故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数 1x 1x y --+=的值域。
解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然 21y ,y 在 ],1[+∞上为无上界的增函数所以1y y =,2y 在 ],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值 2,原函数有最大值 222=显然 0y >,故原函数的值域为 ]2,0(3. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域。
函数求值域的15种方法

函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同函数类型值域求解方法归纳题型一:二次函数的值域: 配方法(图象对称轴) 例1. 求6a )(2+-=x x x f 的值域解答:配方法:4a 64a 62a 6a )(2222-≥-+⎪⎭⎫ ⎝⎛-=+-=x x x x f 所以值域为⎥⎦⎤⎢⎣⎡∞+-,4a 62例2. 求6)(2+-=x x x f 在[]11,-上的值域解答:函数图像法:423216)(22+⎪⎭⎫ ⎝⎛-=+-=x x x x f画出函数的图像可知,6)(2+-=x x x f 在21=x 时取到最小值423,而在1-=x 时取到最大值8,可得值域为⎥⎦⎤⎢⎣⎡8423,。
例3. 求6a )(2+-=x x x f 在[]11,-上的值域解答:由函数的图像可知,函数的最值跟a 的取值有关,所以进行分类讨论: ① 当2a-≤时,对称轴在1-=x 的左侧,所以根据图像可知,a 7)1(max -==f f ,a 7)1(min +=-=f f , 此时值域为[]a 7a 7-+,.② 当0a2≤≤-时,对称轴在1-=x 与y 轴之间,所以根据图像可知,a 7)1(max -==f f ,4a 6)2a (2min-==f f ,此时值域为⎥⎦⎤⎢⎣⎡--a 74a 62,. ③ 当2a0≤≤时,对称轴在y 轴与1=x 之间,所以根据图像可知,a 7)1(max +=-=f f ,4a 6)2a (2min-==f f ,所以此时值域为⎥⎦⎤⎢⎣⎡+-a 74a 62,④ 当a 2≤时,对称轴在1=x 的右侧,所以根据图像可知,a 7)1(max +==f f ,a 7)1(min -=-=f f所以此时的值域为[]a 7a 7+-,题型二:指数、对数函数的值域: 采用换元法例4. 求()62log )(22+-=x x x f 的值域解答:复合形式用换元:令622+-=x x t,则由例1可知,[)+∞∈,5t根据单调性,可求出t 2log 的值域为[)+∞,5log 2例5. 求624)(1++=+x x x f 的值域解答:因为()224x x=,所以,采用换元法,令xt 2=,则()+∞∈,0t 则原函数变为622++t t ,可以根据二次函数值域的求法得到值域为()+∞,6题型三:分式函数的值域分式函数的值域方法:(1) 分离变量(常数)法;(2) 反函数法(中间变量有界法);(3) 数形结合(解析几何法:求斜率);(4) 判别式法(定义域无限制为R ); 例6. 求函数132)(++=x x x f 的值域 解法一:分离变量法。
将分式中分子部分的变量分离出去。
则可以换元,令1+=x t ,原函数变为tt t 1212+=+,由反比例函数的性质可知,值域为()()+∞∞-,22,解法二:反函数法。
利用原函数的值域就是反函数的定义域,来求值域。
令132)(++==x x x f y ,则32+=+x y yx ,得到23--=y y x ,可知2≠y例7. 求函数132)(++=x x x f 在[]10,的值域 解法一:分离变量之后采用函数图像法。
令1+=x t,[]2,1∈t ,原函数变为tt t 1212+=+,可以画出t 12+的图像,或者根据单调性直接可以得到值域为⎥⎦⎤⎢⎣⎡325, 解法二:反函数法。
将23--=y yx 代入[]10,中,求解1230≤--≤y y 不等式,可以得到值域范围⎥⎦⎤⎢⎣⎡325,。
例8. 求函数133)(2+++=x x x x f 的值域解法一:分离变量法,令1+=x t ,原函数变为1112++=++tt t t t 由均值不等式可知当21,0≥+>t t t ,当21,0-≤+<tt t ,可以得到原函数的值域为(][)+∞-∞-,31,解法二:判别式法。
令133)(2+++==x x x x f y ,则332++=+x x y yx ,整理得关于x 的一元二次方程()0332=-+-+y x y x,满足方程有解,该方程的判别式()()03432≥---=∆y y 可得31≥-≤y y 或,即函数的值域为(][)+∞-∞-,31,例9. 求函数133)(2+++=x x x x f 在[]10,的值域 解答:此题限制了定义域,导致判别式法失效,采用分离变量法,画出函数图像来求函数的值域。
令1+=x t ,[]2,1∈t ,原函数变为1112++=++tt t t t 画对勾函数图像, 可得t t 1+的值域范围是⎥⎦⎤⎢⎣⎡252,,则函数的值域为⎥⎦⎤⎢⎣⎡273,题型四:三角函数的值域求三角函数的值域方法:(1)二次换元配方;(2)三角函数有界性; (3)数形结合(单位圆求斜率)。
例:求函数2cos 4sin 3)(++=x x x f 的值域解答:使用辅助角公式,()2sin 52cos 4sin 3)(++=++=ϕx x x x f ,可知函数的值域为[]73,例10. 求函数2cos 4sin23)(2++=x x x f 的值域解答:先化简,再转为一次三角函数后使用辅助角公式,()42sin 13222cos 22sin 32cos 4sin23)(2++=+++=++=ϕx x x x x x f 可知函数的值域为[]134134+-,例11. 求函数2cos 4cos2)(++=x x x f 的值域解答:先化为同角的三角函数,再换元为二次函数求解值域。
1cos 4cos 22cos 41cos 22cos 4cos2)(22++=++-=++=x x x x x x x f 令[]1,1,cos -∈=t x t ,则原函数化为()11214222-+=++t t t ,则按前面的例题可得函数的值域为[]31,-,例12. 求函数x x x x f sin 2cos 2sin2)(-+=值域()()()x x x x x x x x f cos sin 2cos sin 1cos sin 2cos sin 2)(2----=--=令[]2,2,cos sin -∈-=t x x t,则原函数化为122+--t t ,同理,按二次函数的值域求法,可得结果[]221,--。
注意:用()()2cos sin 121cos sin cos sin 22x x x x x x --=-+=换元。
题型五:绝对值函数的值域:绝对值函数值域:(1)零点分类讨论法(2)数形结合:利用绝对值几何意义。
例13. 求函数15)(--+=x x x f 的值域解法一:零点分类讨论法。
当1≥x 时,6)(=x f ;当5-≤x 时,6)(-=x f ;当15≤≤-x 时,42)(+=x x f 。
所以函数的值域为[]66,- 解法二:利用绝对值的几何意义,画出数轴,15-+x x 与分别表示x 到-5与1的距离,根据数轴图像,可以直接得到值域为[]66,-例14.求函数322)(22-+-+=x x x x x f 的值域 解答:零点分类法将十分麻烦,利用换元法,令[)+∞-∈+=,1,22t x x t ,则原函数化为3--t t ,则根据数轴法,可以得到函数的值域为[]33,-题型六:根式函数的值域根式函数的值域方法:(1)代数换元法;(2)三角换元法;(3)解析几何法:距离、切距等。
(3)单调性法。
例15. 求函数x x x f -+=1)(的值域解法一:换元法,令[)+∞∈-=,0,1t x t,则原函数化为12++-t t ,根据二次函数值域的求法,可得原函数值域为⎪⎭⎫⎢⎣⎡+∞,45。
例16. 求函数x x x f ++=1)(的值域解法一、解法二同上一例题,注意换元时的等价性,结果[)+∞-,1解法三:单调性法,题目中函数为单调递增,根据函数的定义域[)+∞-,1,代入可得函数的值域[)+∞-,1。
例17. 求函数21)(x x x f -+=的值域解法一:三角换元法,令⎥⎦⎤⎢⎣⎡-∈=2,2,sin ππθθx ,这样换元既可以保证换元的等价性,同时可以使得开方后的表达式去掉绝对值符号,⎪⎭⎫ ⎝⎛+=+=+=-+=-+4sin 2cos sin cos sin sin 1sin 122πθθθθθθθx x 注意⎥⎦⎤⎢⎣⎡-∈2,2ππθ,画出三角函数图像可得值域为[]2,1-。
例18. 求函数212)(x x x f ++=的值域解法一:三角换元,类似于上一道题,令⎪⎭⎫⎝⎛-∈=2,2,tan ππθθx ,这样可以得到θθθθθθcos 2sin cos 2tan tan 12tan 1222+=+=++=++x x ,化为三角分式,在利用解析几何法将其转化为两点的斜率可以做出图像得到值域为[)+∞,3解法三:对勾换元法,利用121221222=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+x x x x 进行换元,令()+∞∈-=,0,212t t t x ,则原函数化为tt t t t t 21232122212+=⎪⎭⎫ ⎝⎛++-,根据均值不等式可得值域[)+∞,3题型七:对勾函数:by =ax +(a >0,b >0,x >0)的x值域。
均值不等式法:转化成型如y =ax +xb(a>0,b>0),利用均值不等式求值域 注意:利用均值不等式求最值或求值域时要满足:一正 二定 三相等当时2x -4x +5例2.x >2,求y =的最小值;2x -4()()2x -2+1解:y =2x -2()x -21=+22x -2()≥21=12x -2()当仅当时x -21且=22x -2时即x =3取“=” 变22x式:若x >0,y =的最大值.x -x +12解:y =1x +-1x≤2 ()当仅当时1且x =即x =1取“=”x ()[]()∈变1式2.求f x =sinx +.x 0,π的值域.sinx +5⎡⎤⎢⎥⎣⎦17,56()()≥变1式3.求f x =x -.x 1的值域.x[)0,+∞题型七:高次函数、超越复杂函数值域高次函数、超越复杂函数值域:求导法结合单调性。
例25:543552y x x x =-++,[1,2]x ∈-例析求函数值域的方法常用的方法有:直接法、配方法、判别式法、基本不等式法、逆求法(反函数)、换元法、图象法、利用函数单调性等。
(一)方法讲解1、求值域的常用方法;(1)观察法:从自变量x 的范围出发,推出()y f x =的取值范围(2)单调性法:如果()f x 在[,]a b 上单调递增,则其值域为[(),()]f a f b ;如果()f x 在[,]a b 上单调递减,则其值域为[(),()]f b f a 。