二项式定理复习课的教学设计
高考数学总复习 二项式定理教案

河北省二十冶综合学校高中分校高考数学总复习 二项式定理教案教学目标:掌握二项式定理和二项展开式的通项公式,能解决二项展开式有关的简单问题教学重点:二项式定理及通项公式的掌握及运用教学难点:二项式定理及通项公式的掌握及运用教学过程:一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++ ⑶4()()()()()a b a b a b a b a b +=++++= 。
二、讲解新课:⑴()na b +的展开式的各项都是n 次式,即展开式应有下面形式的各项: n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,n a 的系数是0n C ;恰有1个取b 的情况有1n C 种,n a b 的系数是1n C ,……,恰有r 个取b 的情况有r n C 种,n r r ab -的系数是r n C ,……, 有n 都取b 的情况有n n C 种,nb 的系数是n n C ,∴二项式定理: 。
这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的 ,⑶它有 项,各项的系数(0,1,)r n C r n =叫 ,⑷ 叫二项展开式的通项,用 表示,即通项 .⑸二项式定理中,设1,a b x ==,则 。
三、讲解范例:例1.展开41(1)x +. 例2.求12()x a +的展开式中的倒数第4项例3.(1)求9(3x+的展开式常数项;展示一,展开6展示二.课本37页4题(1)(2)展示三,课本37页4题(3)(4)展示四.(1)求7(12)x +的展开式的第4项的系数; (2)求91()x x -的展开式中3x 的系数及二项式系数 展示五,课本37页5题(1)展示六,课本37页5题(2)。
二项式定理复习教案

二项式定理复习教案三维目标一、知识与技能1.二项式定理:(a+b)n =0n C a n +1n C a n-1b+…+k n C a n-k b k +…+nn C b n (n ∈N*) 2.通项公式:1+k T =k n C an-k b k(k =0,1,2,…,n) 二、过程与方法 1.理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式.2.能运用展开式中的通项公式求展开式中的特定项.三、情感、态度、价值观1.提高学生的归纳推理能力.2.进一步树立由特殊到一般的归纳意识.教学重点、难点重点:1.二项式定理及结构特征,2.展开式的通项公式难点:通项公式的灵活应用。
教学过程例1 .(1)求7)21(x +的展开式的倒数第4项,第4项二项式的系数及第四项系数;(2)7)1(x x -的展开式中x 3的系数. 此类问题一般由通项公式入手分析,要注意项的系数和二项式系数的概念区别.例2.若n的展开式中各项系数之和为64,则展开式的常数项为( ) A.-540 B.-162 C.162 D.540考查展开式各项系数与二项式系数的不同以及通项公式的应用.例3.设8878710(2)x a x a x a x a -=++++,则8710a a a a ++++= ,86420a a a a a ++++=考查赋值法的应用练习1. 41()n x 的展开式中,第3项的二项式系数比第2项的二项式系数大44,则展开式中不含x 的项是( )A 第3项B 。
第4项C 。
第7项 D.第8项2.若5(12)x -的展开式中,第2项小于第1 项且不小于第3项,则x 的取值范围是( )A .110x <-B 。
1010x -<≤C 。
11410x -≤<-D 。
104x -≤≤ 3.在56(1)(1)x x +-+展开式中,含3x 的项的系数是( )A .-5 B.5 C.-10 D.104.在10()x a -的展开式中,7x 的系数是15.则实数a 的值为 。
高中数学_二项式定理复习课教学设计学情分析教材分析课后反思

教学设计一、考情解读:先让学生明白考什么、怎么考的问题。
新的课程标准要求:能用多项式运算法则和计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。
高考中,以选择题,填空题为主要考察形式。
难度不大。
二、重点知识梳理:1、二项式定理相关概念规律:二项展开式中总共n+1项;各项次数和都等于二项式的指数幂n;字母a按降幂排列,从第一项起,次数由n逐项减1直到0;字母b按升幂排列,从第一项起,次数由0逐项加1直到n. 通项、二项式系数、项的系数2、二项式系数的性质1)对称性:与首末两端等距离的两个二项式系数相等(2)增减性:二项式系数是先增后减。
(3)最大值:当n为奇数时,中间两项同时取得最大值。
当n为偶数时,中间一项取得最大值(4)展开式中各二项式系数的和:012nn n n nC C C C++++=L2n三、高频考点突破高频考点一求二项展开式中的特定项或指定项的系数26x n的展开式中,第项为常数项。
(1)求n;(2)求含的项的系数;(3)求展开式中所有的有理项。
总结:本题的关键就是掌握二项展开式的通项,n未知时由已知特定项先求n, n已知时由通项求特定项。
常涉及的特定项有常数项(变量的幂指数为0)、有理项(变量的幂指数为整数)、整式项、某指定项的系数等【变式探究】622(2017)1(1)+x xI (1)(1+x)展开式中全国的系数为2552x y I (2)(x +x+y )的展开式中(2015全,国)的系数为总结:二项式的积的问题,多项式的展开式问题,都是体现二项式定理的本质(多项式运算法则和计数原理)高频考点二 二项式系数的和或各项系数的和的问题23344999912512...n x B C D 例、若二项式(3x -)的展开式中各项系数的和是,则展开式中的常数项为( )A.-27C 27C -9C 9C 总结:有关于展开式系数和(绝对值和)等的问题,用 赋值法进行运算。
二项式定理复习小结公开课教案教学设计课件资料

二项式定理复习小结公开课教案教学设计课件资料一、教学目标1. 回顾和巩固二项式定理的概念、公式及应用。
2. 提高学生对二项式定理的理解和运用能力。
3. 培养学生的逻辑思维和团队合作能力。
二、教学内容1. 二项式定理的定义及公式。
2. 二项式定理的展开式。
3. 二项式定理的应用。
4. 复习重点知识点和常见题型。
5. 课堂练习和讨论。
三、教学方法1. 采用多媒体课件辅助教学,直观展示二项式定理的推导和应用。
2. 采用案例分析法,引导学生通过具体例子理解和掌握二项式定理。
3. 采用小组讨论法,鼓励学生相互交流、合作解决问题。
4. 采用问答法,教师提问,学生回答,及时检查学生的学习效果。
四、教学步骤1. 导入新课:通过复习导入,回顾二项式定理的概念和公式。
2. 讲解与演示:讲解二项式定理的推导过程,并通过多媒体课件展示。
3. 案例分析:分析典型例题,引导学生运用二项式定理解决问题。
4. 小组讨论:学生分组讨论,分享解题心得和经验。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结与反思:教师引导学生总结二项式定理的重点知识点和常见题型。
五、教学评价1. 课堂练习:评价学生在课堂练习中的表现,检查掌握程度。
2. 小组讨论:评价学生在团队合作中的表现,培养团队合作能力。
3. 问答环节:评价学生的回答准确性,提高学生的逻辑思维能力。
4. 课后作业:布置课后作业,巩固所学知识,提高学生的自主学习能力。
六、教学资源1. 多媒体课件:包含二项式定理的定义、公式、展开式及应用案例。
2. 练习题:涵盖不同难度的题目,用于巩固知识和检查掌握程度。
3. 小组讨论材料:提供相关案例和问题,促进学生交流和合作。
4. 教学指导书:提供详细的教学步骤和指导,帮助教师顺利进行教学。
七、教学安排1. 课时:预计2课时(90分钟)。
2. 教学顺序:先回顾二项式定理的基本概念和公式,通过案例分析和小组讨论,让学生运用二项式定理解决问题。
高考数学复习知识点讲解教案第60讲 二项式定理

[解析] 设,则由题意得,解得 .
3.[教材改编] 已知 的展开式中各二项式系数的和为128,则展开式中 的系数是______.
672
[解析] 由题意得,则 ,则展开式的通项为,令,可得 ,所以展开式中的系数为 .
题组二 常错题
◆ 索引:对二项展开式的特点把握不准;不理解常数项、有理项等需满选B.
[总结反思]求几个多项式和的展开式中的特定项(系数),先分别求出每一个多项式的展开式中的特定项,再合并即可.
变式题 已知 ,则 的值为_____.
[解析] 令,可得,令 ,可得①,令 ,则②,所以① ②可得,所以 ,即 .
角度2 几个多项式积的展开式中的特定项(系数)问题
C
A.4 B. C. D.60
[解析] ,其展开式的通项为,令,可得,其中 的展开式的通项为,令,得 ,所以,故的系数为 .故选C.
(2) [2023·湖南郴州模拟] 若的展开式中 的系数为3,则 _ ___.
[解析] ,其展开式的通项为,,,, ,令,则,或, ,所以,即,因为,所以 .
和
[解析] 由题意知, 的展开式的通项为,,1,2, ,8,令,得 或8,所以,,故有理项是和 .
探究点二 二项式系数与各项的系数问题
角度1 二项式系数
例2(1) 已知 的展开式中第4项与第5项的二项式系数相等,则展开式中 的系数为( )
B
A. B.84 C. D.560
[解析] 因为的展开式中第4项与第5项的二项式系数相等,所以 ,则的展开式的通项为,令 ,则展开式中的系数为 .故选B.
变式题(1) 已知 ,则 ( )
D
A.30 B. C.17 D.
[解析] 根据二项式定理得,所以 ,,则 ,所以 .故选D.
二项式定理教学设计高三

二项式定理教学设计高三一、教学目标1. 理解二项式定理的定义和基本性质。
2. 掌握二项式定理的运用方法。
3. 培养学生的逻辑思维和数学推理能力。
4. 培养学生对数学问题的兴趣和探索精神。
二、教学重点1. 掌握二项式定理的展开和应用。
2. 培养学生的数学思维和运算能力。
三、教学难点1. 帮助学生理解二项式定理的证明过程。
2. 培养学生抽象思维和推理能力。
四、教学过程1. 导入(5分钟)教师通过提问和讲述引导学生回顾高中阶段已学习的数学知识,如排列组合、多项式等内容。
然后向学生介绍今天的学习内容:二项式定理。
2. 概念解释(10分钟)教师通过示意图和具体例子,向学生阐述二项式定理的概念和基本性质。
帮助学生理解二项式定理是将两个数相加或相乘的展开式。
3. 二项式定理的展开(15分钟)教师通过板书和示范展示如何将二项式展开。
先给出一个简单的二项式,并指导学生按照二项式定理的公式进行展开。
然后通过一些具体的例子,让学生逐步掌握二项式定理展开的方法和技巧。
4. 二项式定理的应用(20分钟)教师通过实际问题和应用题,引入二项式定理的应用领域。
如组合数学、概率统计等。
通过解答一些实际问题,让学生认识到二项式定理在数学和实际生活中的重要性和应用价值。
5. 二项式定理的证明(20分钟)教师通过逻辑推理和数学推导,带领学生理解和证明二项式定理。
可以使用归纳法和数学归纳法等方法,引导学生参与证明的过程,提高学生的抽象思维和逻辑推理能力。
6. 练习和巩固(15分钟)教师设计一些练习题,让学生巩固和应用所学知识。
通过学生的练习,检验学生对二项式定理的掌握程度和运算能力。
7. 总结和拓展(5分钟)教师对本节课的内容进行总结,并给出一些延伸阅读和学习资料,鼓励学生在课后继续学习和探索。
五、教学评价1. 教师通过课堂讨论、学生练习和问题解答等形式,对学生的学习情况进行评价和反馈。
2. 鼓励学生积极参与课堂活动,发表自己的观点和思考。
二项式定理期末复习教案

二项式定理----期末复习导学案3教学目标:1.理解二项式定理及展开式的应用2.理解通项的意义并灵活应用3.正用、逆用定理来解决一些简单的问题。
教学过程:复习:1.二项式定理、二项式系数、通项。
2.二项式系数的性质练习:1.在8)12xx -(的展开式中,二项式系数之和为__▲___;含3x 的项的系数是___▲___. 2. 4.若7270127(12)x a a x a x a x -=++++L ,则2a 的值是( )A .84B .84-C .280D .280-3. 二项式62)x的展开式的常数项为 ( ) A .60 B .60- C .120 D .120-4.在432)1()1()1()1(---+---x x x x 的展开式中,2x 的系数等于____________.5. 设0122334455666)12(a x a x a x a x a x a x a x ++++++=-,则=++++++0123456a a a a a a a( )A . 63B . 62C. 6D.1 6. 9)1(x x - 展开式中含3x 的项为__,它是展开式的第____项.7.102)1(xx -展开式中,5x 项的系数为( ) A . 1 B .1- C .510C - D .510C 8. 12C ...,7A.x=4,n=3 B.x=4,n=4 C.x=5,n=4 D.x=6,n=5n n n n x C x C x ++若能被整除,则x,n 的值可能为( )例题分析9(本小题共13分)已知nm x x x f )1()1()(+++=,*N ∈m ,*N ∈n . (Ⅰ)当2,6==n m 时,写出)(x f 的展开式(按x 的升幂排列);(Ⅱ)若)(x f 的展开式中x 的系数是19,求)(x f 的展开式中2x 的系数的最小值.答案1.256; 1024-2.A3.A4. -105.D6. 384x -,47.C8.C9(本小题共13分)(Ⅰ)……………………………6分(Ⅱ)由已知得1911=+n m C C ,即19=+n m ……………………………8分)(x f 的展开式中2x 的系数为……………………………10分又*N ∈n所以 当9=n 或10=n 时,)(x f 的展开式中2x 的系数有最小值81……………………………13分小结:课后练习:课本32B 组练习654322666556446336226160626615201682211)1()1()(x x x x x x x x x C x C x C x C x C x C C x x x f ++++++=+++++++++=+++=41719)219(919192)1(2)1(2222⨯+-=⨯+-=-+-=+n n n n n m m C C n m。
二项式定理复习教案

二项式定理【考纲要求】掌握二项式定理和二项式系数的性质,并能运用它们计算和论证一些简单问题。
【基础知识】1.二项式定理:n n n r r n r n n n n n n nn b C b a C b a C b a C a C b a ++++++=+--- 222110)( 2.二项式通项公式:r r n r n r b a C T -+=1 (r=0,1,2,…,n )3.二项式系数的性质: n b a )(+的展开式的二项式系数有如下性质:(1)在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。
(2)如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。
(3) n n n n n n n n n nC C C C C C 212210=++++++-- (4)15314202-=+++=+++n n n n n n nC C C C C C (奇数项二项式系数之和等于偶数项二项式系数之和)4.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n xn ⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1)⑶ a 0+a 2+a 4+a 6……=2)1()1(-+f f ⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f ⑸ a 0=f(0)⑹ |a 0|+|a 1|+|a 2|+|a 3|……+|a n |=5. 注意(1)奇数项、偶数项、奇次项、偶次项各自表示的意义。
(2)“某项”、“某项的二项式系数”、“某项的系数”之间的区别【课前练习】1、设S=(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,它等于下式中的( )(A )(x -2)4 (B )(x -1)4 (C )x 4 (D )(x +1)42、100+展开所得关于x 的多项式中系数为有理数的共有( )项.(A )50 (B )17 (C )16 (D )153、31(||2)||x x +-展开式中的常数项是( ). (A )-20 (B )-12 (C )-8 (D )20法一:(|x |+||1x -2)3=(|x |+||1x -2)(|x |+||1x -2)(|x |+||1x -2) 得到常数项的情况有:①三个括号中全取-2,得(-2)3;②一个括号取|x |,一个括号取||1x ,一个括号取-2,得C 13C 12(-2)=-12, ∴常数项为(-2)3+(-12)=-20.解法二:(|x |+||1x -2)3=(||x -||1x )6. 设第r +1项为常数项,则T 1+r =C r 6·(-1)r ·(||1x )r ·|x |r -6=(-1)6·C r 6·|x |r 26-,得6-2r =0,r =3. ∴T 3+1=(-1)3·C 36=-204、设n 为自然数,则01122(1)2(1)n n k k n k n n n n n n C C C C ---++-++-等于( )(A ) (B )0 (C )-1 (D )15、(x +y )10展开式中有_______项;(x +y +z )10展开式中有_________项.6、(1-z )+ (1-z )2++ (1-z )10的展开式中z 2的系数是_________.7、(1-x 3)(1+x )10展开式中x 5的系数是_______.8、已知9(a x -的展开式中x 3项的系数为94,常数a 的值________. 【典型例题】例1、求(1+x -2x 2)5的展开式中x 4项的系数.例2、若(1+2x )n 中第6项与第8项的二项式系数相等,求按升幂排列的前3项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理复习课的教学设计
1、教学内容:高中数学理科选修2-3:《二项式定理复习课》
2、教学对象分析:
学生高二学习了《二项式定理》的全部内容,对这部分内容有了初步的了解,但遗忘率比较大,对二项式定理的题型已经生疏,因此让学生在老师的指导下,对《二项式定理》进行复习应用,巩固和加深。
在复习的过程中,渗透了《排列组合》等其它的内容,加强了知识点之间的联系,培养学生综合运用知识的能力。
3、教学内容分析:
本节内容包括以下几部分:
(1)二项式展开式的特点。
(2)二项式展开式项的系数和二项式式系数。
(3)二项式定理的四个应用。
教学目标:
(1)知识目标:复习二项式定理,正确理解和区分二项式系数、通项、二项式项的系数等概念,会利用通项公式及二项式系数的性质解决有关计算问题.
(2)能力目标:通过讲练结合使学生掌握二项式定理习题的一般解题方法,提高分析和解决问题的能力。
(3)情感目标:通过学生的主体活动,营造一种愉悦的情境,使学生自始至终处于积极思考的氛围中,不断获得成功的体验,从而对自己的数学学习充满信心。
教学重点: 二项式定理的应用
教学难点 : 二项式定理及二项式系数性质的灵活应用
教学方法:讲练结合 教学过程:
1、知识回顾:
(1)二项式定理:
=+n b a )( (*N n ∈).
二项式展开式的通项公式为=+1r T .
(2)二项式系数:
①n b a )(+展开式的二项式系数之和为 ,即
=++++++n n k n n n n C C C C ......C 210
②奇数项的系数之和等于 的系数之和,即=++...C 20
n n C =
2、热身练习:
(1)(2x+1)4的展开式中3x 的系数是( )
A .6
B .32
C .8
D .48
(2)、若n x x )1(+展开式的二项式系数之和为64,则展开式的常数项为 .
(3)若9922109...)1(x a x a x a a x ++++=-,则129a a a ++
+= ( )
A 、1-
B 、0
C 、1
D 、2
(4)1110除以9的余数是 ( )
A.1
B.2
C.4
D.8
小结:题型一:求项的系数
题型二:求特定项
题型三:求展开式系数和
题型四:整除问题
3、综合例题: 例.已知二项式n x
)121(4+(*N n ∈)展开式中,末三项的系数依次成等差数列,求此展开式中所有的有理项。
灵活运用
(1)求62)32(x x +的展开式中含5x 的项.
(2)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是( )
(A )-15 (B )85 (C )-120 (D )27
4、小结:
(1)求特定项(如常数项,系数最大的项,有理项等),关键是用好通项公
式.
(2)对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋
值法,赋值法...
是二项式系数和问题的常用解法. (3)利用二项式定理可以证明整除性问题或求余数问题,证明时要注意变
形的技巧,通常利用构造法...
构造二项式以利于证明. 高考怎么考
(1)(2008广东理)已知62)1(kx +(k 是正整数)的展开式中,8x 的系数小于120,则k = .
(2) (2009湖南理)在3333)1()1()1(x x x +++++的展开式中,x 的系数为
(3)(2004天津理) 若)(...)21(2004200422102004R x x a x a x a a x ∈++++=-,
=++++++++)(...)()()(20040302010a a a a a a a a 。
(用数字作答)
(4)(2009江西文)若n n n n n x C x C x +++......C 221
能被7整除,则x ,n 的值可能是
( )
A 、4,3
B 、4,4
C 、5,4
D 、6,5。