二项式定理教学案设计
《二项式定理》教案

《二项式定理》教案(第一教时)执教人:时间:年月日一、教学目的> 学问目的:1、理解杨辉三角形。
其行为样例是:(1)能用不完全归纳法写出杨辉三角形;(2)能依据杨辉三角形对6)的二项式进展绽开。
2、驾驭二项式定理。
其行为样例是:(1)能依据组合思想及不完全归纳法猜出二项绽开式的系数。
:(尸=0,12・♦・,〃,〃£/7・)以及二项绽开式的通项7用=。
;4一/72" (2)能正确区分二项式系数和某一项的系数:(3)能应用定理对随意给定的一个二项式进展绽开、并求出它特定的项或系数。
> 实力目的:1、培育学生视察、分析、归纳、发觉事物内在规律的实力。
2、培育学生严格的逻辑思维实力及创建性思维实力。
A情感目的:培育学生自主探究意识,合作精神;体验二项式定理的发觉和创建历程,体会数学语言的简洁和严谨。
二、教学重点与难点1、重点:正确理解和驾驭二项式定理。
2、难点:二项式定理的推导,定理大致按“设想一打破一建构一论证”四个层次得到的。
(定理的证明本课不做要求)(教具:PPT课件)三、教学过程1、情景引入问题1:若今日是星期一,再过30天后是星期几?怎么算?预期答复:星期三,将问题转化为求“30被7除后算余数”是多少。
问题2:若今日是星期一,再过8〃(〃£N*)天后是星期几?怎么算?预期答复:将问题转化为求“8〃=(7 + 1)〃被7除后算余数”是多少,也就是探讨(4 +。
)〃(〃七N")的绽开式是什么?这就是本节课要学的内容,学完本课后,此题就不难求解了。
(设计急图:使学生明确学习目的,用悬念来激发他们的学习动机。
臭苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、理解和驾驭学问,并能正确陈述问题、顺当解决问题的倾向是学生学习的重要动力。
)2、新授(探究一>归纳)第一步:让学生绽开(a + b)1 = a + b(a + b)2 = a2 +2他 + 〃\(Q +Z?)3=(a +1>?(a + b) = o' +3a2h + 3ab2 +/ .(a + b)A = (。
《二项式定理》教学设计

《二项式定理》教学设计
一、教学目标
1、学习二项式定理的概念;
2、掌握二项式定理的证明方法;
3、熟练运用二项式定理计算阶乘。
二、课前准备
1、准备教学案例:“抛掷次数为n的骰子,其中点数之和为k,求出满足条件的概率”;
2、准备课堂活动:利用抽签游戏,引导学生理解二项式定理;
3、准备实物:骰子;
4、准备实践活动:利用抛掷骰子实验验证二项式定理。
三、课堂教学步骤
第一步、引入
1、介绍课题:二项式定理(一);
2、简单介绍二项式定理的概念:其是指当抛掷次数为n的骰子时,点数之和为k的概率,可以表示为n个“1”和“0”的排列组合,其中“1”代表抛掷出的点数为6,“0”代表抛掷出的点数不为6第二步、活动
1、布置抽签游戏:将班上学生分成2组,每组各抽取一张纸片,纸
片上分别写有“1”和“0”,由学生们举手抽签,当每组中有n个学生均
抽出“1”或“0”时,分数比较高的组即为胜利组;
2、进行讨论:根据抽签游戏,引导学生们讨论,抛掷次数为n的骰子,其中点数之和为k,求出满足条件的概率;
第三步、演示
1、讲解二项式定理:说明抛掷次数为n的骰子,其中点数之和为k。
二项式定理教学教案(详案)

课时
2
课题
二项式定理
教学目的 要求
教学重点 教学难点
知识目标:理解二项式定理,会用二项式定理求二项展开式。理解 和掌握二项展开式的规律,利用它能对二项式展开,进行相应的计算。
能力目标:会区别“系数”、“二项式系数”等概念,灵活正用和逆 用展开式。
情感目标:让学生感受数学内在的和谐,对称美及数学符号应用的 简洁美,进一步结合“杨辉三角”,对学生进行爱国主义教育,激励学生 的民族自豪感和为国富民强而勤奋学习的热情。
C40; 含 a3b 的项只能由 3 个括号取 a,余下的 1 个括号取 b 而得,即 C41a3b,系数为:
C41; 含 a2b2 的项只能由 2 个括号取 a,余下的 2 个括号取 b 而得,即 C42a2b2,系数为:
C42; 含的 ab3 的项只能由 1 个括号取 a,余下的 3 个括号取 b 而得,即 C43a3b,系数为:
x
注意:展开式中第
r+1
项的二项式系数
C
r n
与第
r+1
项的系数含义不同。
五、课堂小结(引导提问,10 分钟)
1、二项式定理
(a +b)n =C 0 an +C1 an-1b+…+C r a b n-r r +…+C n bn,其中各项系数就是组合数 C r ,
n
n
n
n
n
展开式共有 n+1 项,第 r+1 项是 Tr+1
C43; 含 b4 的项只能由 4 个括号都取 b 而得,即 C44b4,系数为 C44; 从而可得:
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
二项式定理教学设计教案

二项式定理教学设计教案第一章:导入1.1 教学目标让学生了解二项式定理的背景和意义。
引导学生通过实际例子发现问题,激发学习兴趣。
1.2 教学内容引入二项式定理的概念,解释其在数学中的重要性。
通过具体的例子,如完全平方公式,引导学生观察和总结一般规律。
1.3 教学活动利用多媒体展示完全平方公式的例子,引导学生观察和总结。
组织小组讨论,让学生分享自己的发现和思考。
1.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理的理解程度。
第二章:二项式定理的表述2.1 教学目标让学生掌握二项式定理的表述和公式。
引导学生理解二项式定理的推导过程。
2.2 教学内容给出二项式定理的表述和公式,解释各项的系数和指数的含义。
通过示例,引导学生理解二项式定理的推导过程。
2.3 教学活动通过示例和练习,让学生熟悉二项式定理的表述和公式。
引导学生参与推导过程,加深对二项式定理的理解。
2.4 教学评价通过练习和问题解答,评估学生对二项式定理的掌握程度。
第三章:应用二项式定理3.1 教学目标让学生学会运用二项式定理解决实际问题。
引导学生运用二项式定理进行组合计数和概率计算。
3.2 教学内容解释二项式定理在组合计数和概率计算中的应用。
提供实际问题,引导学生运用二项式定理解决问题。
3.3 教学活动通过示例和练习,让学生掌握二项式定理在组合计数和概率计算中的应用。
组织小组讨论,让学生分享自己的解题方法和经验。
3.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理应用的掌握程度。
第四章:拓展与深化4.1 教学目标让学生了解二项式定理的拓展和深化内容。
引导学生思考二项式定理在数学中的广泛应用和意义。
4.2 教学内容介绍二项式定理的拓展内容,如多项式定理和整数定理。
探讨二项式定理在数学中的广泛应用,如组合数学、概率论等领域。
4.3 教学活动通过示例和练习,让学生了解二项式定理的拓展内容。
组织小组讨论,让学生思考二项式定理在数学中的应用和意义。
二项式定理-教学设计

例3、在 的展开式中,求:
(1)第5项的二项式系数及第5项的系数。
(2)倒数第3项。
小结3。
题对点反馈练习:
1、 的展开式中 的系数是_______。
2、若二项式 的展开式中 的系数是84,则实数 =______。
(四)能力提升与题组探究:
典例:求 的展开式的常数项。
解法1)将三项式拆成二项式后利用通项计算。
解法2)通分因式分解后再算。
解法3)应用组合数法计算。
反思小结:解法1)过于复杂,计算量大。解法2)有命题的特殊性。解法3)为此类题的通解通法,需要熟练掌握分类分步计数原理。
题组拓展与探究:
探究一、 的展开式的常数项是_______。
探究二、在 的展开式中,含 的项的系数是________。
探究三、在 的展开式中, 的系数是______。
例1、(1)求 的展开式。
(2)化简:
小结1。
题对点反馈练习:
1、求 的展开式。
2、化简:
2)通项的应用:
例2、(1)在 的展开式中,系数是有理数的项共有多少项?
(2)设二项式 的展开式中常数项为A,则A=______。
小结2。
题对点反馈练习:
1、已知在 的展开式中,第6项为常数项
(1)求n
(2)求展开式中所有的有理项。
(一)新知引入:
问1: ,
上述三式有何共同点?
问2:请你用组合的观点解释 的展开式,并归纳总结使出 的展开式。
归纳反思上述三问,阅读课本内容完成以下表格:
二项式定理
二项式系数
通项
二项式定理特例
定义反思及小结
(二)典例分类分析:
1)二项式定理的正用、逆用:
二项式定理教学设计高三

二项式定理教学设计高三一、教学目标1. 理解二项式定理的定义和基本性质。
2. 掌握二项式定理的运用方法。
3. 培养学生的逻辑思维和数学推理能力。
4. 培养学生对数学问题的兴趣和探索精神。
二、教学重点1. 掌握二项式定理的展开和应用。
2. 培养学生的数学思维和运算能力。
三、教学难点1. 帮助学生理解二项式定理的证明过程。
2. 培养学生抽象思维和推理能力。
四、教学过程1. 导入(5分钟)教师通过提问和讲述引导学生回顾高中阶段已学习的数学知识,如排列组合、多项式等内容。
然后向学生介绍今天的学习内容:二项式定理。
2. 概念解释(10分钟)教师通过示意图和具体例子,向学生阐述二项式定理的概念和基本性质。
帮助学生理解二项式定理是将两个数相加或相乘的展开式。
3. 二项式定理的展开(15分钟)教师通过板书和示范展示如何将二项式展开。
先给出一个简单的二项式,并指导学生按照二项式定理的公式进行展开。
然后通过一些具体的例子,让学生逐步掌握二项式定理展开的方法和技巧。
4. 二项式定理的应用(20分钟)教师通过实际问题和应用题,引入二项式定理的应用领域。
如组合数学、概率统计等。
通过解答一些实际问题,让学生认识到二项式定理在数学和实际生活中的重要性和应用价值。
5. 二项式定理的证明(20分钟)教师通过逻辑推理和数学推导,带领学生理解和证明二项式定理。
可以使用归纳法和数学归纳法等方法,引导学生参与证明的过程,提高学生的抽象思维和逻辑推理能力。
6. 练习和巩固(15分钟)教师设计一些练习题,让学生巩固和应用所学知识。
通过学生的练习,检验学生对二项式定理的掌握程度和运算能力。
7. 总结和拓展(5分钟)教师对本节课的内容进行总结,并给出一些延伸阅读和学习资料,鼓励学生在课后继续学习和探索。
五、教学评价1. 教师通过课堂讨论、学生练习和问题解答等形式,对学生的学习情况进行评价和反馈。
2. 鼓励学生积极参与课堂活动,发表自己的观点和思考。
二项式定理教案完整版

二项式定理教案完整版一、教学目标通过本节课的研究,学生应该能够:- 理解二项式定理的概念和基本公式;- 掌握计算二项式的展开式;- 掌握二项式系数的计算方法;- 能够应用二项式定理解决实际问题。
二、教学重点- 二项式的展开式计算方法;- 二项式系数的计算方法。
三、教学准备- 教材:《数学教材》第X册;- 教具:黑板、彩色粉笔、教学PPT;- 学具:练册、计算器。
四、教学过程步骤一:引入1. 向学生介绍二项式定理的概念,并与生活实际进行关联,引发学生的兴趣;2. 提出问题:“如果我们要计算(2x + 3y)^2,应该怎么做?”步骤二:讲解二项式的展开式1. 分析并解答问题,引出二项式展开式的概念;2. 介绍二项式定理的基本公式:(a + b)^n = C(n,0)·a^n·b^0 +C(n,1)·a^(n-1)·b^1 + ... + C(n,r)·a^(n-r)·b^r + ... + C(n,n)·a^0·b^n;3. 解释二项式系数C(n,r)的含义,并介绍其计算方法:C(n,r) = n! / (r!·(n-r)!);4. 给出示例,讲解二项式展开式的具体计算过程。
步骤三:练与巩固1. 给学生发放练册,并分发相关练题;2. 让学生自主完成练,帮助他们巩固所学知识;3. 监督学生的练过程,及时纠正错误并解答疑惑。
步骤四:应用与拓展1. 提出一些与实际问题相关的二项式展开式计算问题,并让学生尝试解决;2. 引导学生理解二项式展开式在数学和实际生活中的应用价值;3. 鼓励学生拓展思维,探索其他与二项式展开式相关的问题。
五、教学总结通过这节课的研究,我们了解了二项式定理的基本概念和计算方法,掌握了二项式的展开式计算方法,并通过练和应用将理论知识应用到实际问题中。
希望同学们能够继续努力研究,提高自己的数学能力。
6.3.1 二项式定理 教案 人教高中数学选修第三册

典例分析,定理的简单应用
教师:强调规范作答步骤引导学生完成例题。
【例1】求 的展开式.
【例2】(1)求 的展开式的第4项系数;
教师: 展开式的第4项是什么?第4项的二项式系数是多少?第4项的系数是多少?
(2)求 的展开式中 的系数.
学生:思考并在练习本上完成问题。
媒体作用:
学生讲:培养学生的思维与语言表达能力。
课堂小结
学生总结
教师引导学生总结本节学习的知识和数学方法。
设计意图:师生共同回顾总结,引领学生感悟数学认知的过程,体会数学核心素养,锻炼学生的概括能力、语言表达能力,可以使学生加深对本节课的认识,掌握基本数学思维方法.
布置作业
巩固定理,预习新知
学生课后完成分层作业和预习作业。
设计意图:课后练习是对定理的巩固,预习作业为下节内容做好铺垫
学生:
设计意图:
创设有效的数学情景能激发学生的学习兴趣,为学生提供良好的学习环境.
这个问题将“多项式展开有哪些项”包含其中,为后面的研究做好铺垫.
新知探究
设置问题,验证猜想
教师:观察 的展开式,思考展开式中的这几种类型的项是如何得到的?
你能推导 , 的展开式是如何得到的吗?
展开式中的各项的系数是如何确定的?
6.3.1二项式定理
第一课时
一、基本信息
教材、学科
人教A版选择性必修第三册、数学
章节
第六章第3节二项式定理
学时
1课时
年级
高二年级
课型
新授课
教具、学具
二、核心素养目标
1、借助二项式定理的证明,提升学生的归纳推理能力,树立由特殊到一般的数学思想,增强了学生的逻辑推理能力。使学生掌握二项式定理及推导方法,二项式展开式、通项公式的特点,并能利用二项式定理计算或证明一些简单问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二项式定理》教案设计
一、教学目标
1.知识与技能:
(1)理解二项式定理是代数乘法公式的推广.
(2)理解并掌握二项式定理,能利用计数原理证明二项式定理.
2.过程与方法:
通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式.
3. 情感、态度与价值观:
培养学生的自主探究意识,合作精神,体验二项式定理的发现和创造历程,体会数学语言的简洁和严谨.
二、教学重点、难点
重点:用计数原理分析3)(b a +的展开式,得到二项式定理.
难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.
三、教学过程
(一)提出问题,引入课题
引入:二项式定理研究的是n b a )(+的展开式,如:2222)(b ab a b a ++=+,
?)(3=+b a ?)(4=+b a ?)(100=+b a 那么n b a )(+的展开式是什么?
【设计意图】把问题作为教学的出发点,直接引出课题.激发学生的求知欲,明确本课要解决的问题.
(二)引导探究,发现规律
1、多项式乘法的再认识.
问题1. ))((2121b b a a ++的展开式是什么?展开式有几项?每一项是怎样构成的?
问题2. ))()((212121c c b b a a +++展开式中每一项是怎样构成的?展开式有几项?
【设计意图】引导学生运用计数原理来解决项数问题,明确每一项的特征,为后续学习作准备.
2、3)(b a +展开式的再认识
探究1:不运算3)(b a +,能否回答下列问题(请以两人为一小组进行讨论):
(1) 合并同类项之前展开式有多少项?
(2) 展开式中有哪些不同的项?
(3) 各项的系数为多少?
(4) 从上述三个问题,你能否得出3)(b a +的展开式?
探究2:仿照上述过程,请你推导4)(b a +的展开式.
【设计意图】通过几个问题的层层递进,引导学生用计数原理对3)(b a +的展开式进行再思考,分析
各项的形式、项的个数,这也为推导n b a )(+的展开式提供了一种方法,使学生在后续的学习过程中有
“法”可依.
(三) 形成定理,说理证明
探究3:仿照上述过程,请你推导n b a )(+的展开式.
)()(*110N n b C b a C b a C a C b a n n n k k n k n n n n n n ∈+++++=+-- ——— 二项式定理
证明:n b a )(+是n 个)(b a +相乘,每个)(b a +在相乘时,有两种选择,选a 或选b ,由分步计数原理
可知展开式共有n 2项(包括同类项),其中每一项都是k k
n b a -),1,0(n k =的形式,对于每一项k k n b a -,
它是由k 个)(b a +选了b ,n -k 个)(b a +选了a 得到的,它出现的次数相当于从n 个)(b a +中取k 个
b 的组合数k n C ,将它们合并同类项,就得二项展开式,这就是二项式定理.
【设计意图】通过仿照3)(b a +、4)(b a +展开式的探究方法,由学生类比得出n b a )(+的展开式.二项式定理的证明采用“说理”的方法,从计数原理的角度对展开过程进行分析,概括出项的形式,用组合知识分析展开式中具有同一形式的项的个数,从而得出用组合数表示的展开式.
(四) 熟悉定理,简单应用
二项式定理的公式特征:(由学生归纳,让学生熟悉公式)
1. 项数:共有+n 1项.
2. 次数:字母a 按降幂排列,次数由n 递减到0;字母b 按升幂排列,次数由0递增到n .
各项的次数都等于n .
3. 二项式系数: 依次为n n k n n n n C C C C C ,,,,,,210 ,这里),,1,0(n k C k n ⋅⋅⋅=称为二项式系数.
4. 二项展开式的通项: 式中的k k n k n b a
C -叫做二项展开式的通项. 用1+k T 表示. 即通项为展开式的第+k 1项: 1+k T =k k n k n b a C - 变一变 (1)n b a )(- (2)n x )1(+
例. 求6)12(x
x -的展开式. 思考1:展开式的第3项的系数是多少?
思考2:展开式的第3项的二项式系数是多少?
思考3:你能否直接求出展开式的第3项?
【设计意图】熟悉二项展开式,培养学生的运算能力.
(五) 课堂小结与反思,课后作业
小结与反思(由学生归纳本课学习的内容及体现的数学思想)
1. 公式: )()(*110N n b C b a C b a C a C b a n n n k k n k n n n n n n ∈+++++=+--
2. 思想方法:1.从特殊到一般的思维方式. 2.用计数原理分析二项式的展开过程.
作业
巩固型作业:课本36页习题1.3 A 组 1、2、3
思维拓展型作业:二项式系数n
n k n n n n C C C C C ,,,,,,210 有何性质.。