初一数学上册第四章重要知识点

合集下载

人教版七年级上册数学第四章知识点总结与复习课件

人教版七年级上册数学第四章知识点总结与复习课件

应用格式:
C是线段AB的中点,
AC =BC =1/2AB AB =2AC =2BC
A
C
B
5.有关线段的基本事实 两点之间线段最短
三、角 1.角的定义 (1)有公共端点的两条射线组成的图形,叫做角 (2)角也可以看做由一条射线绕着它的端点旋转所形成的 图形
2.角的度量 度、分、秒的互化 1°=60′,1′=60″ 1″=(1/60)′,1′=(1/60)°
A'
D
C
F
N
M
B'
A
E
B
解:由折纸过程可知, EM平分∠BEB' , EN平分∠AEA'.
所以有∠MEB'=1/2∠BEB',∠NEA'=1/2∠AEA'. 因 ∠BEB'+∠AEA'=180°,
所以有∠NEM=∠NEA'+∠MEB' =1/2∠AEA'+1/2∠BEB' =1/2(∠AEA'+∠BEB') =90°.
M A N C
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠COM=1/2∠BOC=1/2×140°=70°,
∠CON=1/2∠AOC=1/2×50°=25°,
∴∠MON=∠COM-∠CON=70°-25°=45°;
(2)当∠AOC=α时, ∠MON等于多少度? B
(2)∠BOC=∠AOB+∠AOC=90°+α,
人教版七年级数学上 教学课件
第四章 图形初步认识
知识点总结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、几何图形 1.立体图形与平面图形 (1)立体图形的各部分不都在同一平面内,如

七年级数学上册第四章知识点及练习题

七年级数学上册第四章知识点及练习题

七年级数学上册第四章知识点及练习题第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义线段是有两个端点的崩直线,可以量出长度。

将线段向一个方向无限延伸就形成了射线,射线有一个端点,无法量出长度。

将线段向两个方向无限延伸就形成了直线,直线没有端点,也无法量出长度。

结论:射线是直线的一部分,线段是射线和直线的一部分。

2、线段、射线、直线的表示方法线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

3、直线公理过两点有且只有一条直线,简称两点确定一条直线。

4、线段的比较线段的比较有叠合比较法和度量比较法。

5、线段公理连接两点的线段是最短的,叫做这两点的距离。

6、线段的中点如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C是线段AB的中点,则AC=BC=1/2 AB或AB=2AC=2BC。

例题:1、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()解:无法确定A、B、C三点位置是否共线,无法确定答案,选D。

2、已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD= ________cm.解:BC=0.5AB=10cm,DB=2EB=6cm,CD=BC-DB=10-6=4cm。

3、平面上有三个点,可以确定直线的条数是()解:由直线公理,过两点有且只有一条直线,所以三个点可以确定三条直线,选C。

二、角1、角的概念角是由两条有共同端点的射线组成的图形,两条射线叫角的边,共同的端点叫角的顶点。

角还可以看成是一条射线绕着他的端点旋转所成的图形。

2、角的表示方法角用“∠”符号表示,分别用两条边上的两个点和顶点来表示(顶点必须在中间),或在角的内部写上阿拉伯数字或小写的希腊字母来表示。

七年级上册数学第四章几何图形初步知识框架

七年级上册数学第四章几何图形初步知识框架

七年级上册数学第四章几何图形初步知识框架、知识点及中考真题一、知识框架二、具体知识点(一)、几何图形1.平面图形:三角形、四边形、圆等.立体图形,棱柱、棱锥、圆柱、圆锥、球等.2. 立体图形的平面展开图:三视图3. 点、线、面、体:点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. 点动成线,线动成面,面动成体.(二)、直线、射线、线段1、三者的基本区别直线:无端点,表示为直线a或者直线AB 等,不能延长;射线:一个端点,表示为射线AB,能反向延长AB;线段:两个端点,表示为线段AB,能延长线段AB或反向延长线段BA. 2、直线的性质:经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点,叫做线段的中点.6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做两点的距离.8、点与直线的位置关系:(1)点在直线上 (2)点在直线外.(三)角1、角的定义:由公共端点的两条射线所组成的图形叫做角.2、角的度量单位及换算:度、分、秒.'601=o "'601=3、角的表示法:常表示成',,,1AOB ∠∠∠∠βα等.4、角的分类锐角、直角、钝角、平角、周角5、角的比较方法: (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值.7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向三、中考真题(2017广东)已知o A 70=∠,则A ∠的补角为( )A .o 110 B. o 70 C. o 30 D. o 20。

七年级上册数学第四章知识点

七年级上册数学第四章知识点

1.比例的概念和表示方法:比例是指两个或两个以上的数之间的等比关系。

一般用a:b或a/b表示,其中a和b都是实数且b不等于0。

两个比例相等,就是指两个比例的值相等,如a:b=c:d。

在等式两边同时乘以一个非零数时,等式的值仍保持不变。

2.比例的性质:(1)比例的倒数仍然成比例,即a:b=1/b:1/a。

(2)比例中的比值是相等的,即a:b=c:d,则a/b=c/d。

(3)比与比中成比例的两个值交换位置后,依然成比例,即a:b=b:a。

3.比例线段及其性质:比例线段是指在一直线上的两个或两个以上的线段,它们之间的比相等。

具体来说,当A、B、C三点在同一条直线上时,如果AB/BC=PQ/QR,那么P、Q、R也在同一条直线上。

4.比例线段的求解:(1)已知比例线段中的一个线段和总长,可以求出其他线段的长度。

如在线段AB上,已知AP/PB = 2/3,并且AB = 15cm,可以通过计算得出AP = 6cm,PB = 9cm。

(2)已知两个比例线段的长度,可以求出另一个比例线段的长度。

如在线段AB上,已知AP/PB = 2/3,BP/QB = 3/7,可以通过计算得出AP = 6cm,BP = 9cm,QB = 21cm。

5.比例的应用:比例在生活中的应用非常广泛,常见的有:(1)速度的比例:速度是距离与时间的比值,常用表示为v=s/t。

例如,五个小时内行驶200千米,其平均速度就是200/5=40千米/小时。

(2)图形的相似:当两个图形的形状、比例相似时,可以通过比例关系确定两个图形中各个部分的对应关系。

(3)购物打折:商场打折时,常常会以比例的方式给出折扣。

如打7折就是表示买到的东西只需支付原价的70%。

以上就是七年级上册数学第四章有关比例与比例线段的主要知识点。

通过掌握这些知识点,可以帮助学生在解决实际问题时运用比例关系进行计算和推理。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

七年级上册数学第四章知识点

七年级上册数学第四章知识点

一、比例的概念和性质比例是指两个或多个数量之间具有相等关系的比较。

当两个比例相等时,我们称为比例。

比例的表达方式通常为:a:b或a/b。

其中,a和b 都是具有相同单位的数。

在比例中,a叫做被比或者前项,b叫做比或者后项。

比例通常也可以写为 double colon 的形式,如 a:b 可以写为 a::b。

比例的性质:1.比例中,任意可以互相交换位置而不改变比例的值,即a:b=b:a。

2.若比例中的每一项同时乘以或除以相同的非零数,比例的值不变。

二、等比例线段和分部比例等比例线段指的是一个线段被不同点分成若干份的情况下,这些小线段之间的比例是相等的。

分部比例指的是在一个比例中,已知其中一项和比值,求另一项的问题。

可以根据已知项和比值,通过比例性质进行求解。

三、比例的计算比例的计算主要分为两种情况:比例的倍数和反比例。

1.比例的倍数:可以将比例的两项分别与同一个数相乘或者相除,得到新的比例。

比如,将a:b的比例的两项同时乘以2,得到2a:2b的比例,这时候的新比例是原比例的倍数;再比如,将a:b的比例的两项分别除以2,得到a/2:b/2的比例,这时候的新比例也是原比例的倍数。

2.反比例:比例的倒数也是一个比例的话,这两个比例就是反比例。

比如,若a:b是一个比例,且a/b的倒数是b/a,则a:b和b:a是一对反比例。

比例的计算可以通过交叉相乘法、定比分线法及连通法等进行。

四、综合运用在比例的学习中,还可以通过大比例的分析和计算等方式进行综合运用。

如:已知一个直角三角形的两条直角边的长度比为3:4,求这两条直角边的实际长度。

在解决这个问题时,可以设一个未知数x,假设其中一条直角边的长度为3x,另一条直角边的长度为4x。

根据三角形的性质可得出两直角边的长度的平方和等于斜边的平方。

通过求解方程,可以得到未知数的值,进而求出直角边的实际长度。

以上就是七年级上册数学第四章的主要知识点。

掌握这些知识点后,能够灵活运用比例的概念和性质,能够准确计算比例问题,同时能够运用比例解决实际问题。

七年级数学(上册)各章知识点第四章

七年级数学(上册)各章知识点第四章

七年级数学(上册)各章知识点四第四章图形认识初步幻灯片281、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。

几何图形分为平面图形和立体图形。

(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。

(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体、圆锥。

幻灯片292、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。

从正面看从左面看从上面看图2图1幻灯片303、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平图形称为立体图形的展开图。

(1)圆柱和圆锥的侧面展开图(2)棱柱和棱锥的展开图(3)根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------长方体或正方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三角形(4个)-----(三)棱锥。

C展开图中含有圆和长方形-----圆柱;D展开图中含有扇形------圆锥。

幻灯片314、点、线、面、体⑴体:几何体简称为体。

⑵面:包围着体的是面,面分为平面和曲面。

⑶线:面与面相交的地方形成线,线分为曲线和直线。

⑷点:线与线相交的地方是点。

点动成线、线动成面、面动成体。

几何图形的组成:由点线面体组成。

点是构成图形的基本元素,而点本身也是最简单的几何图形。

5、直线:把线段向两端无限延伸形成的图形叫做直线。

⑴表示方法:直线AB或直线L⑵点与直线的关系:点在直线上、点在直线外⑶直线的基本性质:经过两点有且只有一条直线(两点确定一条直线);⑷交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

幻灯片326、射线:把线段向一方无限延伸的图形叫做射线。

①表示方法:端点字母必须写在前②射线可以看做是直线的一部分,识别射线是否相同----端点相同、延伸方向也相同。

七年级上册数学人教版第四章知识点

七年级上册数学人教版第四章知识点

七年级上册数学人教版第四章知识点数学课要有一定的速度学习,慢腾腾的学习是训练不出思维速度,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。

下面是我整理的七年级上册数学人教版第四章知识点,仅供参考希望能够帮助到大家。

七年级上册数学人教版第四章知识点1.我们把实物中抽象的各种图形统称为几何图形。

2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。

3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。

4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5.几何体简称为体。

6.包围着体的是面,面有平的面和曲的面两种。

7.面与面相交的地方形成线,线和线相交的地方是点。

8.点动成面,面动成线,线动成体。

9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

(公理)13.连接两点间的线段的长度,叫做这两点的距离。

14.角∠也是一种基本的几何图形。

15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1〃。

16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。

18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角19.等角的补角相等,等角的余角相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱的展开图是——(4—);圆锥的展开图是——(—6—); 三棱柱的展开图是_(_3_)_.
练习2.下列图形能折叠成什么图形?
圆柱
五棱柱
圆锥
三棱柱
练习3. 如图是一个小正方体的展开图,把展开图 折叠成小正方体后,与有“建”字的一面相对的那一面 上的字是( D ).

设 和谐社
c

(A)和 (B)谐 (C)社 (D)会
例1:分别从正面、左面、上面观察这个长 方体,看一看各能得到什么平面图形?
从正面看
从左面看
从上面看
例2:分别从正面、左面、上面看圆柱、圆锥、 球,各能得到什么平面图形?
立体图形
从正面看
从左面看
从上面看
.
提示:可见棱应画为实线形线段;不可见棱应 画为虚线形线段.








从 上 面 看

立体图形
正面
左面
上面







从 上 面 看
探究:右图是一个 由 9 个正方体组成的立 体图形,分别从正面、 左面、上面观察这个图 形,各能得到什么平面 图形?
正面
左面
上面
练一练:
从正面、左面、上面 看这个由正方体组合成的 立体图形各能得到什么平 面图形?
从正面看
从左面看
从上面看
练一练:分别从正面、左面、上面观察下面的立体图 形,各能得到什么平面图形?
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
练习:下列图形中可以作为一个正方体的展 开图的是( C ).
(A)
(B)
(C)
(D)
制作立体模型的步骤: 1.画出展开图; 2.裁剪、 折叠、粘贴; 3.修饰、加工.
画出正确的展开图是关键.
正方习1. 将正确答案的序号填在横线上:
相关文档
最新文档