基于PLC技术的污水处理控制系统设计资料
基于PLC控制的生活污水处理控制系统设计

基于PLC控制的生活污水处理控制系统设计基于PLC控制的生活污水处理控制系统设计一、引言生活污水的处理对保护环境和人类健康具有重要意义。
为了提高生活污水处理的效率和自动化程度,本文设计了一套基于可编程逻辑控制器(PLC)的生活污水处理控制系统。
二、系统的整体设计本系统包括生活污水收集、预处理、主处理和过滤处理四个部分。
PLC作为控制器,负责接收传感器信号、控制执行器和处理数据等功能。
三、生活污水收集生活污水通过下水管道收集到污水处理站。
在PLC控制下,收集过程中的泵、闸门和传感器协同工作,确保污水顺利流入污水处理站。
四、生活污水预处理在生活污水进入主处理前,必须进行预处理以去除部分污染物。
本系统采用化学法和物理法相结合的方式进行生活污水的预处理。
PLC通过控制药剂投加机和混合器等设备,确保预处理过程的精确和稳定。
五、生活污水主处理主处理是本系统的核心部分,其主要任务是去除污水中的悬浮物、有机物和无机物等。
本系统使用PLC控制的曝气池和二沉池进行主处理。
PLC通过控制曝气装置、池内搅拌器和污泥回流系统等设备,实现曝气、沉降和污泥处理等功能。
六、生活污水过滤处理经过主处理后的生活污水仍然含有一定的悬浮物和微生物。
本系统采用过滤处理的方式,通过PLC控制滤池内滤料的流动和清洗,将污水中的残余物质进一步去除。
七、系统的PLC控制本系统的控制由PLC实现。
PLC不仅负责控制传感器信号的采集和执行器的控制,还通过控制程序实现各个设备的协调和整体控制。
八、系统的优势1. 高效性:通过PLC控制,系统能够自动化地进行生活污水处理,提高处理效率和质量。
2. 稳定性:PLC控制确保了系统各个部分的精确和稳定,减少设备故障和维修频率。
3. 可扩展性:系统可以根据需要进行扩展和改进,以适应未来的生活污水处理需求。
4. 环保性:通过本系统的处理,生活污水的污染物得到有效去除,减少了对环境的负面影响。
九、总结基于PLC控制的生活污水处理控制系统可以提高生活污水的处理效率和自动化程度。
基于PLC控制的生活污水处理控制系统设计

基于PLC控制的生活污水处理控制系统设计1. 引言随着城市化进程的推进,生活污水处理成为了城市管理的重要议题之一。
生活污水的处理对于保护水体环境、确保公共卫生和可持续发展至关重要。
传统的生活污水处理方法存在一些问题,如处理过程复杂、能耗高、运行效率低等。
因此,设计一种基于PLC控制的生活污水处理控制系统,能够提高处理效率、降低运行成本,对于现代化城市的建设具有重要意义。
2. 系统架构基于PLC控制的生活污水处理控制系统主要由传感器、PLC控制器、执行器和人机界面组成。
传感器负责实时捕捉和采集生活污水的参数信息,如流量、浓度、温度等。
PLC控制器对传感器采集到的数据进行处理和分析,并生成相应的控制信号。
执行器根据PLC控制器发出的信号,对污水处理设备进行控制。
人机界面为操作员提供操作控制界面和参数设置界面。
3. 控制策略生活污水处理控制系统采用了一种多级控制策略。
首先,在初级处理环节,系统通过监测生活污水的流量、浓度和pH值等参数,调整加药量和反应时间,以保证生活污水中的有机污染物被有效去除。
其次,在中级处理环节,系统根据氨氮和总磷等指标的测量结果,控制曝气风机和搅拌器的运行,以实现氨氮和总磷的去除。
最后,在高级处理环节,系统根据水质要求,通过控制各种处理设备的运行,实现深度处理和卫生安全要求的达标排放。
4. 系统功能生活污水处理控制系统具备多种功能。
首先,系统能够实时监测和控制生活污水处理过程中的各种参数,确保处理过程的稳定性和连续性。
其次,系统能够根据污水污染程度自动调整处理设备的运行状态,提高处理效率,降低运行成本。
此外,系统还具备故障诊断和报警功能,能够快速定位问题,并及时采取相应的措施进行修复。
5. 设计考虑在设计过程中,需要考虑以下几个方面。
首先,合理选择传感器和执行器,保证其稳定性和准确性。
其次,合理设置控制策略,根据生活污水不同处理阶段的特点进行调整,以提高处理效率和降低运行成本。
《2024年基于PLC的污水处理控制系统设计》范文

《基于PLC的污水处理控制系统设计》篇一一、引言随着工业化和城市化的快速发展,污水处理成为环境保护和可持续发展中不可或缺的一环。
传统的污水处理方法往往效率低下,操作复杂,难以满足现代工业的需求。
因此,基于PLC(可编程逻辑控制器)的污水处理控制系统设计应运而生。
本文将详细介绍基于PLC的污水处理控制系统的设计思路、方法及其实施过程。
二、系统设计目标本系统设计的主要目标是实现污水处理过程的自动化、智能化和高效化。
通过PLC控制,实现对污水处理的实时监控和自动控制,提高污水处理效率,降低人工成本,确保污水处理的稳定性和可靠性。
三、系统组成基于PLC的污水处理控制系统主要由以下几部分组成:1. PLC控制器:作为整个系统的核心,负责接收传感器数据、处理数据并发出控制指令。
2. 传感器:用于实时监测污水处理过程中的各种参数,如水质、流量、压力等。
3. 执行机构:根据PLC发出的指令,执行相应的动作,如泵的启停、阀门的开关等。
4. 上位机监控系统:用于实时显示污水处理过程的数据和状态,方便操作人员进行监控和管理。
四、系统设计流程1. 需求分析:根据实际需求,确定系统的功能、性能指标和设计要求。
2. 硬件选型:根据需求分析结果,选择合适的PLC控制器、传感器、执行机构等硬件设备。
3. 软件设计:编写PLC控制程序,实现数据的采集、处理和控制功能。
同时,设计上位机监控系统的界面和功能。
4. 系统调试:在实验室或实际现场进行系统调试,确保系统的稳定性和可靠性。
5. 安装与维护:将系统安装到实际现场,并进行日常的维护和保养工作。
五、系统实现1. PLC程序设计:根据系统需求,编写PLC控制程序。
程序应具备数据采集、数据处理、控制输出等功能。
同时,应考虑程序的可靠性和易维护性。
2. 传感器与执行机构的连接:将传感器和执行机构与PLC控制器进行连接,确保数据的实时传输和控制的准确性。
3. 上位机监控系统开发:开发上位机监控系统,实现数据的实时显示、历史数据查询、报警等功能。
基于PLC的污水处理系统设计

基于PLC的污水处理系统设计一、引言污水处理是一项重要的环境保护工作,对于保护水资源、维护生态平衡具有重要意义。
为了提高污水处理的效率和自动化程度,本文将介绍基于可编程逻辑控制器(PLC)的污水处理系统设计。
二、系统概述本系统采用PLC作为控制核心,通过传感器、执行器和人机界面等组成的硬件设备,实现对污水处理过程的自动化控制和监测。
主要包括进水处理、沉淀池处理、过滤处理、消毒处理和排放处理等环节。
三、系统设计1. 进水处理进水处理环节主要包括污水的初步过滤和调节,以保证后续处理的稳定性。
PLC通过控制进水泵的启停和调节,根据进水管道中的压力和流量传感器的反馈信号,实现对进水量的自动控制。
2. 沉淀池处理沉淀池处理环节通过PLC控制污水的沉淀和搅拌过程。
PLC根据沉淀池中的液位传感器反馈的信号,控制搅拌器的启停和搅拌时间,以确保沉淀效果达到要求。
3. 过滤处理过滤处理环节通过PLC控制滤料的清洗和更换过程。
PLC根据滤料的压差传感器反馈的信号,判断滤料是否需要清洗或更换,然后控制清洗装置的启停和清洗时间,以保证过滤效果。
4. 消毒处理消毒处理环节通过PLC控制消毒剂的投加和反应时间。
PLC根据水质传感器反馈的信号,判断消毒剂的投加量和反应时间,然后控制消毒剂泵的启停和投加时间,以确保消毒效果达到要求。
5. 排放处理排放处理环节通过PLC控制污水的排放和监测。
PLC根据排放管道中的压力和流量传感器的反馈信号,实现对排放量的自动控制。
同时,PLC还可以通过人机界面显示当前的排放情况,并记录相关数据。
四、系统优势1. 自动化程度高:基于PLC的污水处理系统可以实现对整个处理过程的自动控制和监测,减少人工操作,提高处理效率和精度。
2. 稳定可靠:PLC作为控制核心,具有良好的稳定性和可靠性,能够确保系统长时间稳定运行。
3. 灵活可扩展:基于PLC的污水处理系统具有良好的灵活性和可扩展性,可以根据实际需求对系统进行调整和扩展。
基于PLC的化工污水处理自动化控制系统设计

基于PLC的化工污水处理自动化控制系统设计基于PLC的化工污水处理自动化控制系统设计一、引言随着工业化进程的加快,化工行业的发展越来越快速,但同时也带来了大量的污水排放问题。
化工污水含有大量的有机物质,重金属离子以及其他有害物质,对环境造成了严重的污染。
因此,对于化工污水的处理和利用变得越来越重要。
传统的化工污水处理方法不仅效率低下,而且操作繁琐,无法满足现代化工行业的需求。
为此,设计一个基于PLC的自动化控制系统成为了迫切需要解决的问题。
二、系统设计原则和目标本设计旨在设计一个基于PLC的化工污水处理自动化控制系统,以提高化工污水处理的效率、稳定性和可靠性。
具体原则和目标如下:1. 系统应具备高度自动化的特点,减少人为操作的干预。
2. 系统应能够实时监测污水处理的各项参数,并做出相应的处理。
3. 系统应具备稳定性和可靠性,能够适应不同污水处理工况的需求。
4. 系统应能够实现对化工污水处理过程的可视化监控和远程控制。
三、系统框架和功能模块设计为了实现上述目标,本设计将化工污水处理自动化控制系统分为三个主要的功能模块:传感器模块、控制模块和人机界面模块。
1. 传感器模块传感器模块主要负责对污水处理过程中的各项参数进行实时监测,包括PH值、溶解氧浓度、浊度等指标的监测。
采用先进的传感器技术,可以实现对不同参数的准确测量,将测得的数据传输给控制模块进行处理。
2. 控制模块控制模块是整个系统的核心部分,负责根据传感器模块获取的数据进行逻辑判断,并控制执行机构进行相应的处理操作。
具体的控制策略可以根据不同的污水处理工况进行调整。
例如,可以根据溶解氧浓度的变化调整曝气系统的运行状态,或者根据PH值的变化调整药剂的投加量。
3. 人机界面模块人机界面模块主要用于实现对整个系统的监控和控制。
通过人机界面模块,操作员可以直观地查看污水处理系统的运行情况,包括传感器测量数据、控制模块的工作状态、报警信息等。
同时,操作员也可以通过人机界面模块对整个系统进行设置和调整,实现对系统的远程控制。
基于PLC的污水处理控制系统设计

基于PLC的污水处理控制系统设计基于PLC的污水处理控制系统设计一、引言污水处理是现代城市环境绿色发展的重要组成部分,它对于保护水资源、改善环境质量具有重要意义。
污水处理控制系统的设计是实现高效处理污水的关键。
本文将介绍基于PLC的污水处理控制系统的设计。
二、PLC技术在污水处理控制中的应用PLC(Programmable Logic Controller)是一种高性能、多功能、可编程的控制器,被广泛应用于工业自动化控制系统中。
对于污水处理控制系统来说,PLC可以实现控制、监测、调节等功能,提高处理效率和稳定性。
三、系统设计方案1. 系统架构设计基于PLC的污水处理控制系统主要包括传感器/仪表、PLC、执行器设备以及人机界面。
传感器/仪表用于监测污水处理过程中的各项参数,将数据传输给PLC。
PLC作为控制主机,接收传感器数据后进行逻辑运算和控制命令的产生,并通过数据通信方式控制执行器设备完成相应动作。
人机界面用于操作者对系统的监控和操作。
2. 传感器及仪表选择污水处理过程中需要监测的参数包括流量、浊度、pH值、温度等。
传感器/仪表的选择应考虑其测量准确度、可靠性和抗干扰能力,并能与PLC进行数据通信。
3. PLC程序设计PLC程序设计是污水处理控制系统设计的关键环节。
根据实际控制需求,编写逻辑程序,实现对传感器数据的处理和分析,以及对执行器设备的控制。
4. 执行器设备选择根据污水处理控制系统的需求,选择合适的执行器设备,如泵、阀门等。
执行器设备应能与PLC进行数据通信,实现远程控制。
5. 人机界面设计人机界面主要通过触摸屏或者计算机软件实现。
操作者可以通过界面进行对系统的监控和操作,如参数设定、报警显示等。
四、系统优势基于PLC的污水处理控制系统具有以下优势:1. 高效稳定:PLC具有高速、高精度的数据处理能力,可以实时响应控制命令,提高处理效率和稳定性。
2. 自动化控制:PLC可以实现各种逻辑控制和自动化操作,降低人工干预,提高处理效率。
PLC下的污水处理控制系统设计

PLC下的污水处理控制系统设计提纲:1. PLC控制系统介绍2. 污水处理系统概述3. PLC在污水处理过程中的应用4. PLC污水处理系统的设计与优化5. PLC污水处理系统故障分析与处理分析:1. PLC控制系统介绍PLC控制系统是当今工业生产中应用极广的一种自动化控制系统。
它具有操作灵活、可靠度高、响应速度快、易于维修等特点,可以对各种自动化设备进行控制,并且具有很好的扩展性与兼容性。
2. 污水处理系统概述污水处理是人类处理生活生产废水的过程,主要是为了减少废水对环境和生态造成的破坏。
污水处理过程主要包括预处理、初级处理、中级处理和高级处理四个阶段,每个阶段的处理方式不同,但都需要通过自动化控制系统来实现。
3. PLC在污水处理过程中的应用PLC在污水处理过程中的应用非常广泛,主要包括沉淀池、滤池、生化池、滤饼浓缩、管道控制等方面。
PLC通过不同的传感器、执行器和控制面板对污水进行实时监测和控制,以保证污水处理的效率和质量。
4. PLC污水处理系统的设计与优化PLC污水处理系统的设计需要考虑到实际应用环境、设备的品质和成本、程序的稳定性和兼容性等方面。
同时,还需要通过不断的数据分析和优化,来提高污水处理过程的效率和节约资源的要求。
5. PLC污水处理系统故障分析与处理PLC污水处理系统故障的原因可能来自机器设备的质量问题、软件的问题、传感器和执行器的问题等方面。
这时,需要通过调用备件、重新调整程序、更换设备等措施来处理故障,以保证污水处理的顺畅进行。
案例:1. 海德农业集团的污水处理项目海德农业集团的污水处理项目采用了全自动化、人性化的PLC污水处理系统。
系统可以实现多重防护、安全稳定运行,并且可以通过网络实时监视和远程控制整个污水处理过程。
2. 美丽城市的污水处理系统美丽城市的污水处理系统采用了多参数控制技术,可以针对不同的污水水质和要求,实现多种处理方式。
这个系统建立了完整的数据存档和分析体系,实现了对污水处理数据和结果的科学管理和评估。
基于PLC的污水处理自动控制系统设计

基于PLC的污水处理自动控制系统设计基于PLC的污水处理自动控制系统设计一、引言污水处理是目前社会发展中的重要环保工程,通过对污水进行处理,可以实现对水资源的合理利用,减少水污染对环境造成的影响。
随着科技的不断发展,传统的手动控制方式正在逐渐被自动控制系统取代。
本文旨在介绍基于可编程逻辑控制器(PLC)的污水处理自动控制系统设计。
二、系统结构设计基于PLC的污水处理自动控制系统主要由三个部分组成:传感器、PLC控制器和执行器。
传感器用于检测污水处理过程中的各种参数,如水位、温度、PH值等。
这些传感器将实时监测到的数据传输给PLC控制器,通过将这些数据进行处理和分析,PLC控制器可以根据预设的控制策略,进行自动控制和调节。
PLC控制器是整个系统的核心部分,负责接收传感器传出的数据并进行处理,根据各个参数的设定值以及逻辑控制程序,自动控制系统的运行。
PLC控制器还可实现对数据的存储和报警功能,当水质超过设定阈值时,系统会自动发出警报并进行相应的处理。
执行器主要是指控制阀门和泵等设备,根据PLC控制器的指令进行开关控制,实现对水处理过程中各个操作步骤的自动控制。
三、系统功能设计基于PLC的污水处理自动控制系统设计具备以下几个主要功能: 1. 自动调节处理工艺:根据传感器获取到的数据,PLC控制器能够自动调整和控制处理工艺的参数,如调节进水和出水阀门的开关,控制污水流量等,以实现污水处理工艺的最佳状态。
2. 实时监测与报警:传感器能够实时监测到各项数据,如水质、水位、温度等,当检测到数据超出设定的阈值范围时,PLC控制器会自动发出报警信号,指示系统进行相应的处理。
3. 数据存储与分析:PLC控制器可以将传感器获取到的数据进行存储,并利用数据分析软件进行数据分析,从而判断处理工艺的效果和系统运行的稳定性。
4. 远程控制和监控:通过网络连接,可以实现对污水处理自动控制系统的远程控制和监控。
操作人员可以通过远程终端设备实时查看和控制系统运行状态,及时处理异常情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子技术课程设计报告题目:plc控制的污水系统学生姓名:张晗学生学号:**********年级:13级专业:电气工程及其自动化班级:电气(3)班指导教师:聂文燕机械与电气工程学院制2015年11月PLC的污水控制系统的设计学生:张晗指导老师:聂文燕机械与电气工程学院电气工程及其自动化摘要目前,我国大多数污水处理控制系统自动化水平不高、安全性低、管理不当,效率普遍低于世界标准。
污水处理系统中的曝气过程控制、数据通讯和监控管理是急需解决的主要问题。
中国污水处理自控系统相对落后,污水处理成本居高不下,污水厂排放的处理过的污水的水质不稳定,所以如何建立有效的自控系统,优化运行效果,减少运行费用,具有重要意义。
本文介绍了工厂污水处理的基本工艺和流程,并通过研究设计一套基于PLC 控制的污水处理系统。
文章首先介绍了基于PLC污水处理控制系统的工艺及相关流程,控制系统硬件结构及设计、工作原理以及设计PLC控制系统的基本原则和步骤,来说明PLC在污水处理过程中的应用。
先根据污水处理要求设计了设备的电器控制与自动控制线路,主要包括设备的启停、状态信号故障信号、和信号采集等,最后按照工艺要求设计PLC控制系统,其中包括PLC的选型、系统资源配置以及按照污水处理工艺编制PLC程序。
关键词:污水处理,PLC,工艺流程1工业污水处理控制系统总体介绍1.1工业污水处理基本概念城市污水、生活污水、生产污水或经过工业企业局部处理后的生产污水,往往都排入排水系统。
这些污水除含有碳水化合物、蛋白质、氨基酸、动植物脂肪、尿素、氨、肥皂和合成洗涤剂等物质外,还含有细菌、病毒等使人致病的微生物。
经处理后的污水,最后出路有三种:①排放水体;②灌溉田地;③重复使用。
污水污染物可根据化学性质和物理形态进行不同的分类。
按化学性质,污水中的污染物质可分为无机性物质和有机性物质,其化学元素以炭、氮、磷为主。
按物理形态,污水中的污染物质可分为固体悬浮物即呈颗粒状的污染物质、胶体污染物质和溶解性污染物质。
好氧有机污染物的性质稳定,在微生物的作用下,借助微生物的新陈代谢功能而降解为无机物,如二氧化碳、水、硝酸根离子等稳定的无机物。
有机物的种类很多,其共性是在微生物的作用下被降解时,都要消耗水中的溶解氧,所以在工程实际中,采用以下的几个综合污染指标来表述:生物化学需氧量或生化需氧量(Bio-chemical Oxygen Demand, BOD)mg/L、化学需氧量(Chemical Oxygen Demand, COD) mg/L、总有机碳(Total Organic Carbon) mg/L、总需氧量(Total Oxygen Demand) mg/L。
虽然BOD20。
能较精确地描述污水的生化需氧量,但其测定的时间太长,需20天。
考虑到好氧分解速率一般在开始的几天最快,在20℃温度下,污水五日生化需氧量(BOD5),约占BOD20的70%~80%,因此把BOD5作为衡量污染水的有机物浓度指标。
化学需氧量(COD)的特点是能够精确的表示污水中有机物的含量,并且测定时间短,但它不能像BOD那样表示出微生物氧化的有机物量。
1.2本设计系统工业污水处理工艺及描述:本工业污水处理工艺流程图如下图2-4所示:图2-4 工艺流程图污水由进水系统通过粗格栅和清污机进行初步排除大块杂质物体,到达除砂池中。
在除砂池系统中细格栅和转鼓清污机进一步净化污水中的细小颗粒物体,将污水中的细小沙粒滤除后进入氧化沟反应池。
在该氧化沟系统中进行生化处理,分解污水中的有害物质,此环节用到一些化学药剂来加强处理效果,如复合碱、氯气、油絮凝剂等。
对污水进行除油、消毒、调整PH值。
同时在该系统中设置有溶解氧仪超声波检测器,通过它对污水中的含氧量进行检测,根据其反馈到PLC的值来控制曝气机变频器的运行,改变污水中溶解氧的含量。
潜水搅拌机的作用是推进水流,使氧化沟的污水和活性污泥处于剧烈搅拌充分混合接触,使生化反应更加充分,以最大程度地分解污水中的有害成分。
经处理的污水进入沉淀池中,在刮泥机的作用下进行物理沉淀,为了加强沉淀效果,同时加入混凝剂和絮凝剂利用高分子助凝剂的强烈吸附架桥作用更加容易沉降。
污水经沉淀池处理最后到达脱水环节,离心式脱水机作用下进行脱水处理后排出清水。
1.3工业污水处理系统控制形式早期的控制系统多采用继电器——接触器控制系统,但随着电子技术的飞速发展,控制要求的不断提高,该类控制方法已不能满足现代工业污水处理系统的控制要求,因此已逐渐被淘汰,取而代之的是DCS、现场总线控制、PLC等控制方。
(1)DCS系统。
DCS是集散控制系统的简称,又称为分布式计算机控制系统,是由计算机技术、信号处理技术、测量控制技术、通信网络技术等相互渗透形成的。
由计算机和现场终端组成,通过网络将现场控制站、检测站和操作站、控制站等连接起来,完成分散控制和集中操作、管理的功能,主要是用于各类生产过程,可提高生产自动化水平和管理水平,其主要特点如下:采用分级分布式控制,减少了系统的信息传输量,使系统应用程序比较简单。
实现了真正的分散控制,使系统的危险性分散,可靠性提高。
扩展能力较强。
软硬件资源丰富,可适应各种要求。
实时性好,响应快。
(2)现场总线控制系统。
现场总线控制系统是由DCS和PLC发展而来的,是基于现场总线的自动控制系统。
该系统按照公开、规范的通信协议在智能设备之间,以及智能设备与计算机之间进行数据传输和交换,从而实现控制与管理一体化的自动控制系统,其优点:可以用计算机丰富的软件、硬件资源。
响应快,实时性好。
通信协议公开,不同产品可互连。
(3)PLC系统。
PLC是可编程逻辑控制器的简称,用它作为处理系统的控制器,实现控制系统的功能要求,也可利用计算机作为其上位机,通过网络连接PLC,对生产过程进行实时监控,其特点如下:编程方便,开发周期短,维护容易。
通用性强,使用方便。
控制功能强。
模块化结构,扩展能力强。
1.4工业污水处理系统的功能要求工业污水处理系统的主要功能是完成对城市污水的净化的作用,将城市中排除的污水通过该系统处理后,输出符合国家标准的水质。
长期以来,工业污水处理技术虽然经过了迅速发展,但仍滞后于城市发展的需要,工业污水处理率低、设备运转率低等极大地影响了城市发展。
为实现工业污水处理技术的简易、高效、低能耗的功能,并且实现自动化的控制过程,采用PLC作为核心控制器是个较好的方案。
PLC作为工业污水处理系统的控制系统使得设计过程变得更加简单,可实现的功能变得更多。
与各类人机界面的通信可完成PLC控制系统的监视,同时使用户可通过操作界面功能控制PLC系统。
由于PLC的CPU强大的网络通信能力,使得工业污水处理系统的数据传输与通信变得可能,并且也可实现其远程监控。
利用PLC作为控制器的工业污水处理系统主要涉及两个方面:一是信号输入;二是控制输出信号。
2 硬件系统配置2.1主要组成部分工业污水处理系统的结构比较复杂,设备较多,在氧化沟中其控制过程及原理大致相同,都是通过控制曝气机的转速来调节污水中的含氧量,其基本组成如图3-1所示。
图4-1工业污水处理系统基本组成示意图(1)进水系统。
进水系统主要有进水管道和进水泵房组成,进水管道主要由粗格栅机和清污机组成,进水泵房主要有两台潜水泵组成。
进水管道的主要功能是将污水中的大块物体排除,其中的粗格栅是根据程序设定的时间进行间歇工作,而清污机的运行和停止是根据粗格栅两侧的液位差来决定的,当液位差超过某个值时,启动清污机;当液位差小于某个值时停止清污机的运行。
进水泵房中的潜水泵运行及停止是通过安装在泵房内的液位传感器来决定的,当液位较低时只启动一台潜水泵,当液位较高时启动两台潜水泵,若液位持续升高时,则输出报警以示意有故障发生。
(2)除砂系统。
除砂系统主要由细格栅系统和沉砂池组成,细格栅系统是由细格栅机和转鼓清污机组成,沉砂池的主要设备是分离机。
细格栅系统的主要功能是进一步净化污水中的颗粒物体,将污水中细小的沙粒滤除,其中的细格栅机是根据程序设定时间进行间歇工作,而转鼓清污机的运行和停止则根据细格栅两侧的液位差来决定,当液位差超过某个值时,启动清污机;当液位差小于某个值时停止清污机的运行,这和粗格栅系统的运行方式一致。
沉砂池中分离机的运行和后续处理中的转碟曝气机的运行同步,即启动转碟曝气机的时候同时启动分离机,对沉砂池中的沙粒进行排除。
(3)氧化沟系统。
氧化沟系统由氧化沟和污泥回流系统构成,氧化沟是工业污水处理系统中最重要的环节,因此控制量较多,控制过程叫复杂,包括转碟曝气机和潜水搅拌机,污水回流系统主要有污泥回流泵构成。
氧化沟的功能是对污水进行生化处理,分解污水中的有害物质,使其达到一定的水质标准,其中是转碟曝气机是关键设备,在氧化沟中设置有溶解氧仪对污水中的含氧量进行检测,根据其反馈到PLC的值来控制曝气机变频器的运行,改变污水中溶解氧的含量。
(4)沉淀系统。
沉淀系统主要设备为刮泥机,其功能是对进行氧化沟处理后的污水进行物理沉淀,将污泥和清水分离,刮泥机在整个系统启动后就开始持续运行。
在该系统中用到一定化学药剂主要包括混凝剂、絮凝剂、复合碱等,主要用来调节改善混凝条件及絮凝体结构,利用高分子助凝剂的强烈吸附架桥作用,使细小松散的絮凝体变的粗大而紧密,容易发生沉降。
(5)污泥脱水环节。
污泥脱水系统主要包括离心式脱水机,其主要功能是对氧化池中处理过污水的活性污泥进行脱水处理,由于对污水进行处理后,活性污泥中有新的微生物及其他杂质,因此需要先对活性污泥添加一定量的药物,便于污泥脱水。
离心式脱水机主要有聚合物泵、污泥机和切割机构成,以上设备按照顺序控制的方式启动,依次启动聚合物泵、污泥机和切割机,完成对污泥的脱水处理。
2.2电气控制系统电气控制系统主要包括操作面板、显示面板、电气控制柜等单元。
由于在该系统中需要检测较多的数字输入量,并且还要检测模拟量的输入,根据设定的程序进行数据处理后,输出控制信号,因此系统的控制逻辑与时序就需要严格照检测信号的输入进行控制。
(1)操作面板。
操作面板主要包括手动、自动、各类设备的启动按钮等。
(2)显示面板。
显示面板由于要显示较多的数据,因此一般采用触摸屏或者人机界面。
(3)电气控制柜。
电气控制柜是电气控制的核心设备,主要包括变频器、各类传感器的输入信号、PLC及其扩展模块等。
2.3工业污水处理系统的工作原理2.3.1控制系统总体框图工业污水处理系统的电气控制系统总框图如图4-2所示,PLC为核心控制器,通过检测操作面板按钮的输入、各类传感器的输入,以及相关模拟量的输入,完成相关设备的运行、停止和调速控制。
3-2电气控制系统框图2.3.2工作过程在手动状态下,各类设备的控制是根据操作面板上的按钮输入来控制,无逻辑控制,即可不根据传感器的状态进行控制。