甲醇水汽液平衡

合集下载

化工原理课程设计甲醇和水.doc

化工原理课程设计甲醇和水.doc

目录摘要 (3)Abstract (3)引言 (1)第1章设计条件与任务 (2)1.1设计条件 (2)1.2设计任务 (2)第2章设计方案的确定 (3)2.1操作压力 (3)2.2进料方式 (3)2.3加热方式 (3)2.4热能的利用 (3)第3章精馏塔的工艺设计 (5)3.1全塔物料衡算 (5)3.1.1原料液、塔顶及塔底产品的摩尔分数 (5)3.1.2原料液、塔顶及塔底产品的平均摩尔质量 (5)3.1.3物料衡算进料处理量 (5)3.1.4物料衡算 (5)3.2实际回流比 (6)3.2.1最小回流比及实际回流比确定 (6)3.2.2操作线方程 (7)3.2.3汽、液相热负荷计算 (7)3.3理论塔板数确定 (7)3.4实际塔板数确定 (7)3.5精馏塔的工艺条件及有关物性数据计算 (8)3.5.1操作压力计算 (8)3.5.2操作温度计算 (8)3.5.3平均摩尔质量计算 (8)3.5.4平均密度计算 (9)3.5.5液体平均表面张力计算 (10)3.6精馏塔的塔体工艺尺寸计算 (11)3.6.1塔径计算 (11)3.6.2精馏塔有效高度计算 (13)第4章塔板工艺尺寸的计算 (14)4.1精馏段塔板工艺尺寸的计算 (14)4.1.1溢流装置计算 (14)4.1.2塔板设计 (15)4.2提馏段塔板工艺尺寸设计 (15)4.2.1溢流装置计算 (15)4.2.2塔板设计 (16)4.3塔板的流体力学性能的验算 (16)4.3.1精馏段 (16)4.3.2提馏段 (18)4.4板塔的负荷性能图 (19)4.4.1精馏段 (19)4.4.2提馏段 (21)第5章板式塔的结构 (23)5.1塔体结构 (23)5.1.1塔顶空间 (23)5.1.2塔底空间 (23)5.1.3人孔 (23)5.1.4塔高 (23)5.2塔板结构 (24)第6章附属设备 (24)6.1冷凝器 (24)6.2原料预热器 (24)第7章接管尺寸的确定 (26)7.1蒸汽接管 (26)7.1.1塔顶蒸汽出料管 (26)7.1.2塔釜进气管 (26)7.2液流管 (26)7.2.1进料管 (26)7.2.2回流管 (26)7.2.3塔釜出料管 (26)第8章附属高度确定 (28)8.1筒体 (28)8.2封头 (28)8.3塔顶空间 (28)8.4塔底空间 (28)8.5人孔 (28)8.6支座 (28)8.7塔总体高度 (28)第9章设计结果汇总 (30)设计小结与体会 (32)参考文献 (33)摘要课程设计不同于平时的作业,在设计中需要我们自己做出决策,即自己确定方案、选择流程、查取资料、进行过程和设备计算,并要求自己的选择作出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。

二甲醚-甲醇-水三元体系汽液平衡的测定与计算

二甲醚-甲醇-水三元体系汽液平衡的测定与计算

p s i r a e w ih n r a i g ha e nc e s d t i c e sn pr s ur e s e。 bu d c e s d t e r a e w ih nc e s n t m pe a u e T h r od a i t i r a i g e rtr. em yn m c c lul to f v p — i i e u lbru a a o m e h t rm e h n — a e e n r y t m wa a re a c a i n o a or l ・ qu d q ii i m d t f di t yle he — t a olw t r t r a y s s e ・ ・ s c rid ou u i g t e ho ba e o e a i n t by s n he m t d s d n qu to of t t — c i iy oe fc e , w ih s a e a tv t c fiint t PR e ua i n or u a iy q to f f g ct c e fc e sofv p a e a d N RT L qu ton f r a tv t o fi int f l i p s o f iint a orph s n e a i o c i iy c e fce s o i d ha e, a he c lul t d qu nd t a c a e
Zh ngz u Un v r iy , Zhe e ho i e st ngz u 4 00 ho 50 2, H e nan, Chi na)
Absr c : The io he m a a o -i ui qu lbru a a f r di e hy t rm e ha lw a e e n r s t m ta t s t r lv p r lq d e ii i m d t o m t le he — t no — t r t r a y yse we e m e s r d a 3 3. 5 r a u e t 3 1 K , 35 .1 K , 37 .1 K a 3 . 5 3 5 3 5 nd 93 1 K i s l— uc n y g t t d t tc n a e fs ki g t pe a ia e s a i e ii rum e 1 T h e f c pr s ur nd e p r t e qu lb i c l. e fe t of e s e a t m e a ur on a r lq i qu lbru v po — i u d e ii i m of i e hy e h r d m t l t e —

化工原理课程设计——水与甲醇精馏 精典版

化工原理课程设计——水与甲醇精馏  精典版

目 录前 言............................................... 错误!未定义书签。

第一节 设计方案.................................................... 5 1.1操作条件的确定 ................................................ 5 1.操作压力的确定 ................................................ 5 2.进料状态 ...................................................... 5 3.加热方式 ..................................................... 6 4.回流比 ........................................................ 6 1.2确定设计方案的原则 ............................................ 7 第二节 工艺流程图................................................... 7 第三节 板式精馏塔的工艺计算........................................ 8 3.1 物料衡算 ...................................................... 8 3.3 理论塔板数的计算 .............................................. 9 3.4实际板数的确定 ............................................... 11 第四节 塔径塔板工艺尺寸的确定...................................... 13 4.1 各设计参数 .. (13)4.1.1 操作压力精m p ............................ 错误!未定义书签。

甲醇-水精馏化工原理课程设计

甲醇-水精馏化工原理课程设计

《化工原理课程设计》报告10000kg/h 甲醇~水精馏装置设计一、概述 (3)1.1 设计依据 (3)1.2 技术来源 (3)1.3 设计任务及要求 (3)二、计算过程 (4)1 设计方案及设计工艺的确定 (4)1.1 设计方案 (4)1.2.设计工艺的确定 (4)1.3、工艺流程简介 (4)2. 塔型选择 (5)3. 操作条件的确定 (5)3.1 操作压力 (5)3.2 进料状态 (5)3.3加热方式的确定 (6)3.4 热能利用 (6)4. 有关的工艺计算 (6)4.1精馏塔的物料衡算 (9)4.1.1 原料液及塔顶、塔底产品的摩尔分率 (9)4.1.2 原料液及塔顶、塔底产品的平均摩尔质量 (10)4.1.3物料衡算 (10)4.2 塔板数的确定 (10)4.2.1 理论板层数NT的求取 (10)4.2.3 热量衡算 (12)4.3 精馏塔的工艺条件及有关物性数据的计算 (14)4.3.1 操作压力的计算 (14)4.3.2 操作温度的计算 (14)4.3.3 平均摩尔质量的计算 (15)4.3.4 平均密度的计算 (15)4.3.5 液相平均表面张力的计算 (16)4.3.6 液体平均粘度的计算 (17)4.4 精馏塔的塔底工艺尺寸计算 (18)4.4.1塔径的计算 (18)4.4.2 精馏塔有效高度的计 (19)4.5 塔板主要工艺尺寸的计算 (19)4.5.1溢流装置的计算 (19)4.5.2 塔板布置 (21)4.6 筛板的流体力学验算 (24)4.6.1 塔板压降 (24)4.6.2 液面落差 (25)4.6.3 液沫夹带 (26)4.6.4 漏液 (26)4.6.5 液泛 (27)4.7 塔板负荷性能图 (27)4.7.1、液漏线 (27)4.7.2、液沫夹带线 (28)4.7.3、液相负荷下限线 (29)4.7.4、液相负荷上限线 (29)4.7.5、液泛线 (29)5.热量衡算 (32)5.1塔顶换热器的热量衡算 (33)5.2塔底的热量计算 (33)5.3、热泵的选型 (36)5.4、塔底料液和热蒸气预热进料液 (36)5.5、水蒸汽加热进料液 (37)三、辅助设备的计算及选型 (38)(一)、管径的选择 (38)1、加料管的管径 (38)2、塔顶蒸汽管的管径 (38)3、回流管管径 (38)4、料液排出管径 (39)(二)、泵的选型 (39)1、原料液进入精馏塔时的泵的选型 (39)2、塔顶液体回流所用泵的型号 (39)(三)、储罐选择 (40)1、原料储槽 (40)2、塔底产品储槽 (40)3、塔顶产品储槽 (40)四、费用的计算 (41)(一)设备费用的计算 (41)1、换热器费用的计算 (41)2、精馏塔的费用计算 (42)泵的费用 (42)储槽费用 (42)输送管道费用 (43)分液槽费用 (44)(二)操作费用的计算 (44)1、热蒸汽的费用 (44)2、冷却水的费用 (44)3、泵所用的电费 (44)4、总费用 (44)参考文献 (45)主要符号说明 (46)对本设计的评述 (49)一、概述塔设备是最常采用的精馏装置,无论是填料塔还是板式塔都在化工生产过程中得到了广泛的应用,在此我们作板式塔的设计以熟悉单元操作设备的设计流程和应注意的事项是非常必要的。

化工原理王志魁第五版习题解答:第六章 蒸馏

化工原理王志魁第五版习题解答:第六章  蒸馏

第六章蒸馏相平衡【6-3】甲醇(A)-丙醇(B)物系的汽液平衡服从拉乌尔定律。

试求:(1)温度80℃t =、液相组成.05x =(摩尔分数)时的汽相平衡组成与总压;(2)试求总压为.10133kPa 、液相组成.04x =(摩尔分数)时的汽液相平衡温度与汽相组成;(3)液相组成.06x =、汽相组成.084y =时的平衡温度与总压。

组成均为摩尔分数。

用Antoine 方程计算饱和蒸气压(kPa)甲醇.lg ..15749971973623886A p t =-+ 丙醇.lg .137514674414193B p t =-+式中t 为温度,℃。

解(1) 80℃t =时,..1811,5093A B p kPa p kPa==BA Bp p x p p -=-总压()() ....18115093055093116A B B p p p x p kPa=-+=-⨯+=汽相组成 (181105)0781116A p x y p ⨯=== (2)已知..10133,04,求、p kPa x x y==.10133p kPa =时,甲醇沸点为64.7℃,丙醇沸点为97.2℃,所求汽液相平衡温度必在64.7℃与97.2℃之间。

假设75℃t =计算.1511,41A B p kPa p kPa == 液相组成....1013341054804151141B A Bp p x p p --===>--计算的x 值大于已知的x 值,故所假设的温度t 偏小,重新假设大一点的t 进行计算。

将3次假设的t 与计算的x 值列于下表,并在习题6-3附图1上绘成一条曲线,可知.04x =时的平衡温度.795℃t =。

习题6-3附表计算次数第一次第二次第三次假设/t ℃758085x0.5480.3870.252习题6-3附图1.795℃t =时,.1779A p kPa= 汽相组成.. ..177904=070210133A p x y p ⨯==(3)已知..06,084,求,x y t p==计算().(.) .().(.)1084106351061084AB p y x x y p --===-- 待求的温度t ,就是/.35A B p p =时的温度,用试差法计算。

甲醇 乙醇 水 汽液平衡

甲醇 乙醇 水 汽液平衡

This article was downloaded by: [Dalhousie University]On: 15 January 2013, At: 07:11Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UKPhysics and Chemistry of Liquids: AnInternational JournalPublication details, including instructions for authors andsubscription information:/loi/gpch20Phase equilibria of binary mixturescontaining methyl acetate, water,methanol or ethanol at 101.3 k PaV.H. Álvarez a , S. Mattedi b , M. Iglesias c , R. Gonzalez-Olmos c &J.M. Resa da Chemical Engineering School, State University of Campinas, P.O.Box 6066, Campinas-SP 13081-970, Brazilb Chemical Engineering Department, Polytechnic School, FederalUniversity of Bahia, Rua Aristides Novis, 2 Federação, 40210-630Salvador-BA, Brazilc PF&PT Research T eam, Department of Chemical Engineering,T echnical High School of Engineering, University of Santiago deCompostela, Rúa Lope Gómez de Marzoa, 15782 Santiago deCompostela, Españad Departamento de Ingeniería Química, Universidad del PaísVasco, Apartado 450, 01006 Vitoria, EspañaVersion of record first published: 27 Jan 2011.PLEASE SCROLL DOWN FOR ARTICLEsources. The publisher shall not be liable for any loss, actions, claims, proceedings,demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013Physics and Chemistry of Liquids Vol.49,No.1,January 2011,52–71Phase equilibria of binary mixtures containing methyl acetate,water,methanol or ethanol at 101.3kPaV.H.Alvarez a ,S.Mattedi b *,M.Iglesias c ,R.Gonzalez-Olmos c and J.M.Resa d aChemical Engineering School,State University of Campinas,P.O.Box 6066,Campinas-SP 13081-970,Brazil;b Chemical Engineering Department,Polytechnic School,Federal University of Bahia,Rua Aristides Novis,2Federac ¸a ˜o,40210-630Salvador-BA,Brazil;cPF&PT Research Team,Department of Chemical Engineering,Technical High School of Engineering,University of Santiago de Compostela,Ru´a Lope Go ´mez de Marzoa,15782Santiago de Compostela,Espan ˜a;dDepartamento de Ingenierı´aQuı´m ica,Universidad del Paı´s Vasco,Apartado 450,01006Vitoria,Espan ˜a(Received 3April 2009;final version received 1May 2009)Isobaric vapor–liquid equilibria data at 101.3kPa were reported for the binary mixtures (methyl acetate þ(water or methanol or ethanol),methanol þ(water or ethanol)and (ethanol þwater)).The experimental data were tested for thermodynamic consistency by means of the Wisniak method and were demonstrated to be consistent.The experimental data were correlated using Wilson,NRTL and UNIQUAC models for the activity coefficients and predicted using the UNIFAC and PSRK equation of state for testing theirs capability.The results show that the obtained data for the studied binary systems are more reliable than other published data.Keywords:phase equilibria;associating binary mixture;correlation,modelling errors1.IntroductionThermodynamic measurements and phase equilibria of ethanol,water and the different flavour components (alcohols,aldehydes and acetates,so-called congeners)in distillated alcoholic beverages are of practical interest to the food industry since industrial procedures applied are closely related to their temperature and pressure dependence in order to obtain a high quality final product.In the last few years,published studies have highlighted a clear need for accurate information about these types of mixtures,in order to develop and optimise industrial techniques.Despite the considerable effort invested in the field of thermodynamic properties,a great scarcity of data is observed in the available literature for mixtures of components present in commercial distillated alcoholic beverages.Such properties are strongly dependent on hydrogen bond potency of hydroxyl or polar groups,chain length,isomeric structures and molecular package.After decades of study,there is still much room for improvement in our ability to understand the behavior of these systems and add accurate data to the available literature.Simulation and optimisation are not used in*Corresponding author.Email:silvana@ufba.brISSN 0031–9104print/ISSN 1029–0451online ß2011Taylor &FrancisDOI:10.1080/00319100903012403D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013the right manner in this matter,with an overestimation of equipment size or high energy-consuming conditions being usually applied due to inaccurate calculations.The difficulties of simulation in these types of processes,as well as possible errors derived from that,have been commented upon previously [1].As a continuation of previous work related to alcoholic beverages [2–4],this work is part of a research project whose objective is to measure thermodynamic properties and vapour–liquid equilibrium (VLE)data for different systems involved in most distillation processes to benefit subsequent studies of modelling and simulation.In this work,the VLE at 101.3kPa was determined for binary systems:methyl acetate þwater,methyl acetate þmethanol,methyl acetate þethanol,methanol þwater,methanol þethanol and ethanol þwater.These mixtures also have some special characteristics.The concentration of the solute in the vapor phase is small and shows molecular association.Thermodynamic consistency was achieved to validate the new experimental data.In this way,data obtained have lower deviations when compared with previously published data;thereby,the information of available literature was improvement.The –’approximation was used to fit the experimental data and obtain the UNIFAC Dortmund model [5],which was used for VLE prediction.Also,the predictive Soave–Redlich–Kwong (PSRK)model proposed by Holderbaum and Gmehling [6]was used in the ’–’approximation.2.Experimental sectionAll chemicals were Lichrosolv quality (Merck Farma y Quımica S.A.).The pure components were recently acquired and kept in an inert argon atmosphere after the bottles were opened.The materials were degassed ultrasonically and dried over molecular sieves Type 4A or 3A,1/16in.Chromatographic (GLC)analysis gave purities of 0.998for methyl acetate,methanol and ethanol,with maximum water contents of 6.8Â10À3, 1.5Â10À2and 2.2Â10À2mass%(Metrohm 737KF coulometer),respectively.Water was millipore quality with organic total mass 55ppb and resistivity of 18.2M cm.The densities and refractive indices at 298.15K,as well as normal boiling points,were within recommended values and are shown in Table 1.Table 1.Observed physical properties of pure compounds and literature data (densities ( ),refractive indices (n D )at 298.15K,and normal boiling points (T b )).Mw (kg kmol À1)(kg m À3)n DT b (K)Obs.Lit.Obs.Lit.Obs.Lit.Methyl acetate 74.080a 0.926740.9273b 1.35850 1.3589b 329.82330.4a 0.9279c 1.3614c 330.09d Water 18.015a 0.99700.99705c 1.33250 1.33250c 373.15373.15a Methanol 32.042a 0.786650.78664b 1.32645 1.32652b 337.86337.7a 0.78664c 1.32652c 337.85d Ethanol46.069a0.785020.78509b 1.359221.35941b 352.07351.4a 0.78504c1.35941c351.44dNote:a See [7];b See [8];c See [9];d See [10].Physics and Chemistry of Liquids 53D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013The system used to measure VLE data was a dynamic recirculating apparatusdescribed previously [11,12].The equilibrium temperature was measured with a digital platinum 100resistance thermometer with an accuracy of Æ0.1K.For the pressure measurement,a digital manometer regulator (Divatronic DT1model),manufactured by Leybold with an accuracy of Æ0.1kPa,was used.Both vapour and liquid phase compositions for the systems were determined by measurements of physical properties (density and refractive index)and application of mathematical correlations,published earlier by the authors [13–16].The accuracy of the composition measurements on each phase was estimated as better than Æ0.001in molar fraction for each mixture.The VLE experimental data at 101.3kPa of the studied binary systems are compiled in Table 2.Table 2.Observed vapour-liquid equilibrium data for different binary systems.x 1y 1T (K)1 2 1 2 s 1 s 2Methyl acetate (1)þwater (2)0.0020.14095.6423.732 1.0090.9790.9910.9350.9930.0050.29590.3923.206 1.2260.9780.9920.9410.9940.0140.57777.8121.348 2.0150.9770.9950.9550.9960.0220.68271.2719.808 2.6560.9770.9970.9610.9970.0290.73966.9018.413 3.2160.9770.9990.9650.9970.0420.79461.9016.207 4.0320.977 1.0010.9690.9980.7120.83557.45 1.158 4.9640.978 1.0030.9720.9980.8000.86156.99 1.080 5.0790.978 1.0040.9730.9980.8730.89456.67 1.041 5.1640.979 1.0060.9730.9980.8730.89556.67 1.041 5.1640.979 1.0060.9730.9980.9300.93356.54 1.024 5.2070.981 1.0080.9730.9980.9910.98956.621.0205.2030.983 1.0110.9730.998Methyl acetate (1)þmethanol (2)0.0090.02764.00 2.417 1.0090.9750.9830.9670.9830.0540.14561.90 2.259 1.0960.9750.9830.9690.9840.0740.18661.14 2.194 1.1300.9750.9830.9690.9840.1030.24060.12 2.101 1.1770.9740.9830.9700.9850.1040.24260.09 2.097 1.1780.9740.9830.9700.9850.1210.26959.58 2.048 1.2030.9740.9830.9710.9850.1230.27259.52 2.042 1.2060.9740.9830.9710.9850.1450.30658.88 1.978 1.2380.9740.9840.9710.9860.1480.30958.82 1.971 1.2410.9740.9840.9710.9860.1650.33258.39 1.924 1.2630.9750.9840.9720.9860.1990.37357.63 1.834 1.3040.9750.9850.9720.9860.2160.39157.30 1.794 1.3220.9750.9850.9720.9860.2660.43856.45 1.680 1.3700.9750.9860.9730.9870.2950.46256.05 1.621 1.3930.9760.9860.9730.9870.3270.48655.65 1.558 1.4170.9760.9870.9730.9870.3540.50555.36 1.509 1.4350.9760.9880.9740.9870.3710.51655.19 1.480 1.4460.9760.9880.9740.9870.4190.54554.80 1.406 1.4710.9770.9890.9740.9870.4400.55754.65 1.375 1.4800.9770.9890.9740.9870.4850.58254.37 1.3151.4990.9780.9900.9740.988(Continued )54V.H.A´lvarez et al.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013Table 2.Continued.x 1y 1T (K) 1 2 1 2 s 1 s 20.5190.59954.21 1.274 1.5100.9780.9900.9740.9880.5370.60954.13 1.254 1.5160.9780.9910.9750.9880.6320.65853.87 1.164 1.5350.9790.9930.9750.9880.6360.66053.86 1.160 1.5360.9790.9930.9750.9880.6730.68053.83 1.132 1.5390.9800.9930.9750.9880.6960.69353.83 1.116 1.5400.9800.9940.9750.9880.7190.70753.84 1.102 1.5400.9810.9950.9750.9880.7420.72153.87 1.089 1.5390.9810.9950.9750.9880.7950.75754.02 1.063 1.5320.9830.9970.9750.9880.8850.83754.65 1.035 1.4980.986 1.0010.9740.9870.9240.88155.12 1.030 1.4730.988 1.0030.9740.9870.9810.96556.191.029 1.4160.992 1.0080.9730.987Methyl acetate (1)þethanol (2)0.0110.05076.972.541 1.0110.9790.9790.9560.9800.0390.16574.47 2.420 1.1160.9780.9780.9580.9810.0890.31070.97 2.231 1.2870.9790.9790.9610.9830.1210.37869.19 2.121 1.3850.9790.9800.9630.9840.1740.46566.77 1.955 1.5350.9800.9810.9650.9850.2570.55864.02 1.734 1.7290.9820.9830.9670.9870.2670.56663.75 1.711 1.7490.9820.9830.9670.9870.2920.58763.11 1.653 1.7990.9820.9840.9680.9870.3160.60562.58 1.604 1.8420.9830.9840.9680.9870.3250.61162.39 1.585 1.8580.9830.9840.9680.9870.3360.61962.17 1.563 1.8760.9830.9850.9690.9870.3690.63961.55 1.502 1.9280.9840.9850.9690.9880.3740.64261.46 1.493 1.9360.9840.9850.9690.9880.4370.67660.48 1.392 2.0240.9850.9870.9700.9880.5340.72259.28 1.266 2.1380.9860.9880.9710.9890.5510.73059.10 1.248 2.1560.9860.9890.9710.9890.5760.74058.85 1.223 2.1810.9870.9890.9710.9890.6360.76758.30 1.169 2.2380.9880.9900.9720.9890.6370.76758.29 1.168 2.2390.9880.9900.9720.9890.6610.77858.09 1.150 2.2600.9880.9910.9720.9890.6920.79257.84 1.128 2.2870.9890.9910.9720.9890.6990.79657.79 1.124 2.2920.9890.9920.9720.9890.7520.82157.42 1.094 2.3340.9900.9930.9720.9890.7600.82557.37 1.089 2.3400.9900.9930.9720.9890.7650.82857.34 1.087 2.3430.9910.9930.9720.9890.7680.83057.32 1.085 2.3450.9910.9930.9720.9890.8080.85157.09 1.069 2.3730.9920.9940.9720.9900.8160.85657.04 1.066 2.3790.9920.9950.9730.9900.8610.88456.84 1.052 2.4040.9930.9960.9730.9900.8620.88456.83 1.052 2.4050.9930.9960.9730.9900.8820.89856.75 1.047 2.4160.9940.9970.9730.9900.9240.93056.64 1.040 2.4330.9960.9990.9730.990Methanol (1)þwater (2)0.00010.00199.65 2.425 1.0130.9860.9920.9560.9920.0010.00999.46 2.384 1.0190.9860.9920.9560.9920.0100.07597.79 2.313 1.0820.9850.9920.9580.9920.0640.32190.812.0171.4000.9850.9930.9640.994(Continued )Physics and Chemistry of Liquids55D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013Table 2.Continued.x 1y 1T (K) 1 2 1 2 s 1 s 20.1030.42587.38 1.8511.5960.9850.9940.9670.9940.2170.59681.04 1.5162.0520.9860.9960.9720.9950.3060.67277.93 1.355 2.3310.9870.9970.9740.9960.3160.67977.62 1.340 2.3610.9870.9980.9750.9960.3830.72275.80 1.256 2.5470.9880.9990.9760.9960.4430.75774.35 1.198 2.7080.988 1.0000.9770.9960.4440.75774.32 1.197 2.7120.988 1.0000.9770.9960.5320.80272.44 1.133 2.9390.989 1.0010.9780.9970.6320.84770.52 1.0843.1950.990 1.0020.9790.9970.6760.86769.73 1.068 3.3070.991 1.0030.9800.9970.6890.87269.49 1.064 3.3430.991 1.0030.9800.9970.6960.87569.37 1.062 3.3600.991 1.0030.9800.9970.7680.90668.12 1.044 3.5520.992 1.0040.9810.9970.7700.90668.11 1.043 3.5530.992 1.0040.9810.9970.8270.93067.16 1.034 3.7080.992 1.0050.9810.9970.8960.95866.05 1.026 3.8980.993 1.0060.9820.9970.9140.96665.75 1.025 3.9520.993 1.0070.9820.9970.9330.97365.46 1.0244.0040.993 1.0070.9820.9970.9370.97565.40 1.024 4.0150.993 1.0070.9820.9970.9720.98964.86 1.023 4.1150.994 1.0080.9830.9970.9770.99164.78 1.023 4.1300.994 1.0080.9830.9970.9770.99164.771.023 4.1320.994 1.0080.9830.997Methanol (1)þethanol (2)0.0180.03477.71 1.152 1.0060.9850.9790.9750.9790.0960.16776.08 1.139 1.0730.9860.9790.9760.9800.1710.27774.65 1.127 1.1360.9870.9790.9770.9810.1790.28974.49 1.126 1.1430.9870.9790.9770.9810.1820.29374.44 1.125 1.1450.9870.9790.9770.9810.2460.37673.31 1.115 1.1990.9880.9800.9780.9820.2750.41172.83 1.110 1.2230.9890.9800.9780.9820.2870.42672.62 1.108 1.2340.9890.9800.9780.9820.2940.43472.51 1.107 1.2390.9890.9800.9780.9820.3120.45572.22 1.104 1.2540.9900.9810.9780.9820.3260.46972.01 1.102 1.2650.9900.9810.9780.9830.4000.54770.90 1.090 1.3250.9910.9820.9790.9830.4230.56970.57 1.087 1.3440.9920.9820.9790.9830.4420.58770.31 1.084 1.3590.9920.9830.9790.9830.4590.60270.09 1.081 1.3710.9930.9830.9800.9840.5340.66769.12 1.070 1.4290.9950.9840.9800.9840.5690.69668.69 1.065 1.4560.9950.9850.9800.9840.5800.70568.56 1.063 1.4640.9960.9850.9800.9840.5980.71968.35 1.061 1.4780.9960.9850.9810.9850.5990.72068.34 1.060 1.4780.9960.9850.9810.9850.6820.78267.42 1.050 1.5390.9980.9870.9810.9850.7260.81366.98 1.044 1.5690.9990.9880.9810.9850.7610.83866.63 1.041 1.593 1.0000.9890.9820.9850.7630.83966.61 1.041 1.595 1.0000.9890.9820.9850.8760.91665.57 1.032 1.671 1.0040.9910.9820.9860.9410.95965.041.030 1.712 1.0060.9930.9820.986Ethanol (1)þwater (2)0.0150.17095.99 5.8380.9740.9810.9910.9650.9930.0320.27692.695.1331.0990.9800.9920.9680.993(Continued )56V.H.A´lvarez et al.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 20133.Data treatment3.1.VLE consistency dataPhase equilibrium data should be tested in order to assure and guarantee an acceptable quality and reliability of VLE data.Available literature offers different procedures to test the thermodynamic consistency of a set of data for isothermal or isobaric condition.The thermodynamic consistency of the measured VLE data have been tested with the Wisniak method [17]to reject possible inconsistent equilibrium points from the experimental determined collection.According to this test,two experimental points (a)and (b)are thermodynamically consistent when:D 5D maxð1ÞTable 2.Continued.x 1y 1T (K) 1 2 1 2 s 1 s 20.0460.33690.68 4.624 1.1860.9800.9920.9690.9940.0680.39888.50 3.978 1.2880.9800.9920.9710.9940.0790.42087.72 3.717 1.3280.9800.9920.9720.9940.1190.47385.80 2.991 1.4300.9790.9930.9730.9950.1630.50884.54 2.454 1.5030.9790.9930.9740.9950.1900.52483.99 2.215 1.5360.9790.9940.9750.9950.2060.53283.72 2.094 1.5530.9790.9940.9750.9950.2320.54483.33 1.933 1.5770.9790.9940.9750.9950.2360.54683.27 1.908 1.5810.9790.9940.9750.9950.2390.54783.23 1.896 1.5840.9790.9940.9750.9950.2810.56582.70 1.698 1.6180.9790.9940.9760.9950.2860.56782.64 1.675 1.6220.9790.9940.9760.9950.2910.56982.59 1.658 1.6250.9790.9940.9760.9950.3030.57482.45 1.614 1.6340.9790.9950.9760.9950.3440.59082.01 1.486 1.6630.9790.9950.9760.9950.3670.59981.79 1.427 1.6780.9790.9950.9760.9950.3800.60581.66 1.396 1.6870.9790.9950.9760.9950.3920.61081.55 1.371 1.6950.9790.9950.9760.9950.3970.61281.50 1.360 1.6980.9790.9950.9770.9950.4100.61781.38 1.336 1.7070.9790.9950.9770.9950.4120.61881.36 1.332 1.7080.9790.9950.9770.9950.4810.64880.76 1.224 1.7510.9800.9960.9770.9950.5270.66980.40 1.171 1.7770.9800.9960.9770.9950.6170.71579.77 1.094 1.8250.9800.9980.9780.9960.6880.75479.36 1.053 1.8570.9810.9990.9780.9960.7220.77579.19 1.037 1.8710.9810.9990.9780.9960.7570.79779.04 1.023 1.8840.982 1.0000.9780.9960.8510.86278.770.997 1.9090.983 1.0020.9780.9960.8980.89978.720.988 1.9150.984 1.0030.9780.9960.9080.90878.720.987 1.9160.984 1.0040.9780.9960.9310.92878.730.984 1.9160.984 1.0040.9780.9960.9440.94178.750.983 1.9160.985 1.0050.9780.9960.9470.94378.750.983 1.9160.985 1.0050.9780.9960.9670.96378.790.9821.9140.9851.0060.9780.996x 1,Liquid-phase mole fraction;y 1,vapour-phase mole fraction;T ,boiling temperature; 1and2,activity coefficients; 1and 2,fugacity coefficients; s 1and s2,fugacity coefficients at saturation at 101.3kPaPhysics and Chemistry of Liquids57D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013where D max is the maximum deviation with a value of 3,D is the local deviation,which is expressed as:D ¼100L ÀW L þW,ð2Þwhere L and W are each side temperature function integrals on liquid compositionfor the Wisniak test [13].The correlations for heat of vapourisation (J kmol À1)and density liquid (kmol m À3)used are:D vap H ¼A 1ÀT r ðÞðB þCT r þDT 2r Þð3Þ ¼AB 1þð1ÀT =C ÞDðÞ,ð4Þwhere,T is the temperature in K,T r is the reduced temperature and the constants A ,B ,C and D are shown in Table 3.The physical properties used were taken from Diadem Public v1.2[10],and the activity coefficients were calculated as shown in the next section.Table 4shows the values for the integrals L and W calculated for the thermodynamic consistent test and the values for the deviation D .Also,this table shows that the condition D 5D max satisfies all systems.Therefore,the thermo-dynamic consistency of the binary VLE data reported in this work is confirmed.Table 3.Coefficients for heat of vapourisation and density liquid,Equations (3)and (4).Compound D T (K)A B C D Ethanol 159–514a557890000.3124500159–514b 1.62880.274695140.23178Methanol 175–512a 504510000.3359400175–512b 2.32670.27073512.50.24713Methyl acetate 175–506a 449200000.368500175–506b 1.130.2593506.550.2764Water273–647a 520530000.31990À0.2120.25795300–380b,c5.77830.3124462.25450.05977aInterval for heat vapourisation,b interval for liquid density,c calculated from [14].Table 4.Results of the thermodynamic consistency test;L,W and D are variables defined in Equation (2).System (1)þ(2)L W D Methyl acetate þwater 19.8420.30 1.15Methyl acetate þmethanol 5.10 5.00 1.05Methyl acetate þethanol 6.59 6.81 1.61Methanol þwater 7.527.560.30Methanol þethanol 1.48 1.470.18Ethanol þwater7.217.260.3758V.H.A´lvarez et al.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 20133.2.Equilibrium equation and activity coefficientsThe activity coefficients ( i )of the components were calculated from the following equation:i ¼y i Èi Px i P o i,ð5Þwere x i and y i are the liquid and vapor mole fractions in equilibrium,Èi is the vaporphase correction factor,P is the total pressure and P o i is the vapour pressure of pure component i .These vapour pressures were calculated from the Antoine equation:log P ¼A i ÀB ii,ð6Þwhere,P is the vapor pressure in mmHg,T is temperature in C and the constants A i.,B i and C i are reported in Table 5.The value constants for the pure compounds were obtained in literature by Riddick et al .[9].The vapour phase correction factor is given by:Èi ¼ i sat i exp ÀV i ðP ÀP o iÞRT !,ð7Þwhere i is the fugacity coefficient of component i in the mixture, sat iis the fugacity coefficient at saturation condition and V i is the molar volume of component i in the liquid phase calculated using the correlation of the liquid density.Fugacity coefficients were calculated with PSRK model,where the expression proposed by Mathias and Copeman [18]is used to evaluate (T )in the PSRK model:ðT Þ¼1þc 1ð1ÀT 0:5r Þþc 2ð1ÀT 0:5r Þ2þc 3ð1ÀT 0:5r Þ3ÂÃ2for T r 51,ð8Þwhere,T r is the reduced temperature and T c is the critical temperature,while c 1,c 2and c 3are empirical parameters.These parameters for the pure compounds were calculated in this work and are shown in Table 5.The physical properties for the pure components used in the PSRK model were taken from [10]and shown in Table 6.The calculated fugacity and activity coefficients are shown in Table 2for all data points.Table 5.Antoine and Mathias and Copeman pound A i a B i a C i a D T (K)b C 1c c 2c C 3cEthanol 8.3221718.10237.52296.9–463.2 1.4125300.287222À1.496099Methanol7.8981474.08229.13292.0–461.3 1.433991À0.7681150.226212Methyl acetate 7.0651157.622219.724277.1–462.7 1.069537À0.759819 1.492479Water8.0121695.167230.41276.6–590.91.093544À0.6730560.699288aSee [19];b see [18];c calculated in this work.Physics and Chemistry of Liquids59D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 20133.3.Modelling –Correlation modelThe VLE data were correlated in the –’approximation,where the PSRK equation of state was used to evaluate the fugacity coefficients,as the thermodynamic model in a bubble-point calculation.The description of the models applied here (Wilson,NRTL,and UNIQUAC)is freely available in the literature [7]and hence it is not discussed here.In the ’approximation,the Wilson,NRTL and UNIQUAC models were used instead of the UNIFAC model to calculate the excess Gibbs energy in the PSRK model.Theoretically,the range for the parameters A ij (Wilson,NRTL and UNIQUAC)is defined as (À104,104)J mol À1.Since this is a very wide range based on physical considerations,it is extremely likely that it will contain the globally optimal parameter values.Renon and Prausnitz [18]explain that the range for ij with theoretical bases can have values from 0.2to 0.55.To evaluate these parameters,the regression was performed using a genetic algorithm code,implemented and fully explained in the study by Alvarez et al .[19],with the minimisation of the overall objective function (Q ).Q ¼X N j ¼1½y exp 1jÀy cal 1j = y2þX N j ¼1½T cal ÀT exp = T ÀÁ2,ð9Þwhere y is the accuracy in the vapour mole fraction (10À3), T is the accuracy in the temperature (10À1),N is the number of data sets,y i is the molar fraction of the component i and the superscript ‘exp’and ‘cal’are the experimental and calculated values,respectively.The fitting parameters of these models and deviations are shown Table 7,the relative percent deviations in temperature and vapour phase compositions are calculated by Valderrama and Alvarez [20]:D T j j %¼100N XN i ¼1T cali ÀT exp i T expi ð10ÞD y %¼100N X N i ¼1y cal i Ày exp i y exp i,ð11Þwhere N is the number of data sets,T is the temperature,y i is the vapour molarfraction of the component i and the superscript ‘exp’and ‘cal’are the experimental and calculated values,respectively.Also,this table shows that all models present similar deviations in temperature and concentration in vapour phase,with a slightly better performance of the UNIQUAC model.The modelling of VLE data areTable 6.Physical properties for components:T c,critical temperature;P c,critical pressure;!,acentric factor;and uniquac parameters r and q .Compound T c (K)P c (bar)!r q Ethanol 514.061.50.644 2.11 1.97Methanol512.581.00.566 1.43 1.43Methyl acetate 506.647.50.331 2.80 2.58Water647.1221.20.3450.921.4D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013presented in T Àx 1Ày 1diagrams shown in Figures 1–6.In Figure 7,comparisons between models desviations using Equation (11)are shown for all binary systems,it is easy to observe that UNIQUAC model has a good agreement between experimental and calculated composition vapor phase.Table 7.Correlation parameters for activity coefficients and average deviation for the studied systems.ModelA 12(KJ mol À1)A 21(KJ mol À1)j D T j %(K)j D y 1j %j D y 2j %Methyl acetate (1)þwater (2)Wilson3249.1878660.5650.27 2.9512.96NRTL ( 12¼0.415)3276.9667494.2400.050.73 2.36UNIQUAC c 2216.998959.0940.100.42 1.46UNIFAC ––0.060.75 2.08PSRK––0.39 3.25 6.52Methyl acetate (1)þmethanol (2)Wilson À75.0113815.6350.020.190.47NRTL ( 12¼0.534)1927.7051181.4910.020.190.50UNIQUAC c 2922.085À594.6130.020.220.43UNIFAC ––0.020.310.52PSRK ––0.16 2.63 1.86Methyl acetate (1)þethanol (2)Wilson 467.4572721.9650.020.230.95NRTL ( 12¼0.550)1772.0651504.5650.020.25 1.00UNIQUAC c1667.680À178.6690.030.36 1.03UNIFAC ––0.060.61 1.30PSRK ––0.23 1.93 2.24Methanol (1)þwater (2)Wilson 173.8432373.1030.040.54 3.87NRTL ( 12¼0.550)75.5062425.8120.04 1.01 3.08UNIQUAC c À1289.7642072.2820.050.35 2.12UNIFAC ––0.080.45 1.39PSRK ––0.070.530.77Methanol (1)þethanol (2)Wilson À309.2071565.2990.030.230.66NRTL ( 12¼0.200)4229.869À2822.0700.020.260.60UNIQUACc1412.023À763.4080.030.230.64UNIFAC ––0.020.380.97PSRK ––0.020.440.71Ethanol (1)+water (2)Wilson2083.97763953.53670.250.39 1.16NRTL ( 12¼0.550)734.705007.820.180.92 1.46UNIQUAC c À495.04021988.10910.210.75 1.58UNIFAC ––0.220.330.82PSRK ––0.09 1.84 2.46Mean Wilson 0.100.76 3.34NRTL0.060.56 1.50UNIQUAC 0.070.39 1.21UNIFAC 0.080.47 1.18PSRK0.161.772.43D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013Figure 1.T Àx 1Ày 1diagram for methyl acetate (1)þwater (2)at 101.3kPa:(.)experimentalliquid phase;( )experimental vapour phase;(—)UNIQUAC correlation;(---)UNIFACprediction.Figure 2.T Àx 1Ày 1diagram for methyl acetate (1)þmethanol (2)at 101.3kPa:(.)experimental liquid phase;( )experimental vapour phase;(—)UNIQUAC correlation;(---)UNIFAC prediction.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013。

计算题(蒸馏)

计算题(蒸馏)

计算题(蒸馏)计算题(蒸馏)进料状态与最⼩回流⽐1、精馏塔采⽤全凝器,⽤以分离苯和甲苯组成的理想溶液,进料状态为汽液共存,两相组成如下:x F=0.5077,y F=0.7201。

(1) 若塔顶产品组成x D=0.99,塔底产品的组成为x W=0.02,问最⼩回流⽐为多少?塔底产品的纯度如何保证?(2) 进料室的压强和温度如何确定。

(3) 该进料两组份的相对挥发度为多少?(R min=1.271,通过选择合适的回流⽐来保证;α=2.49).2、常压连续操作的精馏塔来分离苯和甲苯混和液,已知进料中含苯0.6(摩尔分数),进料状态是汽液各占⼀半(摩尔数),从塔顶全凝器取出馏出液的组成为含苯0.98(摩尔分数),已知苯—甲苯系统在常压下的相对挥发度为2.5。

试求:(1)进料的汽液相组成;(2)最⼩回流⽐。

(液相0.49;汽相0.71;R min=1.227)3、最⼩回流⽐与理论板数⽤⼀连续精馏塔分离苯—甲苯混合液,原料中含苯0.4,要求塔顶馏出液中含苯0.97,釜液中含苯0.02(以上均为摩尔分数),R=4。

求下⾯两种进料状况下最⼩回流⽐R min。

及所需理论板数:(1)原料液温度为25℃;(2)原料为汽液混合物,汽液⽐为3 :4。

已知苯—甲苯系统在常压下的相对挥发度为2.5。

(R min=1.257,N T=10,第5块加料;R min =2.06,N T=11,第6块加料)4、物料恒算:1kmol/s的饱和汽态的氨—⽔混合物进⼈⼀个精馏段和提馏段各有1块理论塔板的精馏塔分离,进料中氨的组成为0.001(摩尔分数)。

塔顶回流为饱和液体,回流量为1.3kmol/s,塔底再沸器产⽣的汽相量为0.6kmol/s。

若操作范围内氨—⽔溶液的汽液平衡关系可表⽰为y=1.26x,求塔顶、塔底的产品组成。

(x D=1.402?10-3,x W=8.267?10-4)5、操作线⽅程⼀连续精馏塔分离⼆元理想混合溶液,已知精馏段某层塔板的⽓、液相组成分别为0.83和0.70,相邻上层塔板的液相组成为0.77,⽽相邻下层塔板的⽓相组成为0.78(以上均为轻组分A的摩尔分数,下同)。

甲醇-水填料精馏塔的课程设计

甲醇-水填料精馏塔的课程设计

摘要:填料塔为连续接触式的气液传质设备,与板式塔相比,不仅结构简单,而且具有生产能力大,分离填料材质的选择,可处理腐蚀性的材料,尤其对于压强降较低的真空精馏操作,填料塔更显示出优越性。

本文以甲醇-水的混合液为研究对象,因甲醇-水系统在常压下相对挥发度相差较大,较易分离,所以此设计采用常压精馏。

根据物料性质、操作条件等因素选择填料塔,此设计采用泡点进料、塔底再沸器和塔顶回流的方式,将甲醇—水进行分离的填料精馏塔。

通过甲醇—水的相关数据,对全塔进行了物料衡算和热料衡算,得出精馏产品的流量、组成和进料流量、组成之间的关系,进而得到精馏塔的理论板数。

分析了进料、塔顶、塔底、提馏段、精馏段的流量及其物性参数。

对精馏段和提留段的塔径及填料层高度进行了计算,以确定塔的结构尺寸。

对塔内管径、液体分布器、筒体壁厚进行了选型计算,从而得到分离甲醇—水混合物液的填料精馏塔。

关键词:填料塔;流量;回流比;理论板数;工艺尺寸第一章:设计任务书 (1)一、设计题目 (1)二、操作条件 (1)三、填料类型 (1)四、设计内容 (2)第二章:工艺设计计算 (2)一、设计方案的确定 (2)二、精馏塔的物料衡算 (3)三、理论塔板数的确定 (3)四、精馏塔的工艺条件及有关物性数据的计算 (8)五、精馏塔塔体工艺尺寸的计算 (10)六、填料层压降的计算 (13)七、筒体壁厚的计算 (14)八、管径的计算 (14)九、液体分布器简要设计 (16)第三章:结论 (18)一、设计感想 (18)二、全章主要主要符号说明 (19)三、参考资料: (20)第一章:设计任务书一、设计题目在抗生素类药物生产过程中,需要用甲醇溶媒洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。

为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶媒进行精馏得到含水量≤0.3%(质量分数)的甲醇溶媒。

设计要求废甲醇溶媒的处理量为4t/h,塔底废水中甲醇含量≤0.5%(质量分数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ropt 1.01670 1.01772 1.02178 1.02687 1.03195 1.03703 1.04212 R/Rmin 1.000 1.001 1.005 1.01 1.015 1.02 1.025年总费用1344560.33 1329387.811318482.11314831.5% 2.37% 1.22% 0.39% 0.07% 0.06% 0.08% 0.11% ropt 1.04720 1.05228 1.05533 1.05737 1.06754 1.07770 1.08787 R/Rmin 1.03 1.035 1.038 1.04 1.05 1.06 1.07年总费用% 0.25% 0.36% 0.42% 0.46% 0.77% 1.05% 1.41% ropt 1.09804 1.10820 1.11837 1.22004 1.32171 1.42338 1.52505 R/Rmin 1.08 1.09 1.1 1.2 1.3 1.4 1.5年总费用% 1.73% 2.06% 2.67% 6.57% 10.67% 14.94% 19.25% ropt 1.62672 1.72839 1.83006 1.93173 2.0334 0 0R/Rmin 1.6 1.7 1.8 1.9 2 0 0年总费用1557936.51607201.2% 36.56% 41.37% 46.48% 51.27% 56.16% 31.05% 35.19%附录二甲醇—水汽液平衡数据(摩尔组成)t x y t x y100.00 0.00 0.000 75.30 0.40 0.729 96.40 0.02 0.134 73.10 0.50 0.779 93.50 0.04 0.234 71.20 0.60 0.825 91.20 0.06 0.304 69.30 0.70 0.870 89.30 0.08 0.365 67.60 0.80 0.915 87.70 0.10 0.418 66.00 0.90 0.958 84.40 0.15 0.517 65.00 0.95 0.979 81.70 0.20 0.579 64.50 1.00 1.000 78.00 0.30 0.665附录一甲醇—水系统的主要物理性质附录三优化设计程序源代码优化程序'定义全局变量Dim J1#, J2#, J3#, J4#, JJ#Dim N#, R#, Ropt#Dim lilunbanshu#, jinliaoweizhi%, tajing#, chukouwendu#, chuanremianji#, zongtagao#, tiliuduanbanshu#, jinliuduanbanshu#Dim XF#, F#, q#, XD#, D#, td#, rD#, po#, u#, Rmin#, t1#, Cw#, Cp#, SI#, HETP#Dim Co#, HA#, f1#, f2#, a#, b#, FL#, θ#, ρ#, bo#, Fc#'优化所需参数Public Sub Form_Load()XF = 0.3151: F = 402.34: q = 1XD = 0.982: D = 128.97: td = 64.93: rD = 35373.48: po = 101.3u = 5.4464: Rmin = 1.0167t1 = 20: Cw = 0.0002: Cp = 4.1875: Co = 0.03: cpa = 15674.4HETP = 0.462: HA = 6f1 = 1: f2 = 6.5: a = 487: b = 0.72: SI = 3.73FL = 6.22: θ= 7200: ρ= 7860: bo = 0.005: Fc = 0.125Text1.Text = 402.34Text2.Text = 0.3151Text3.Text = 128.97Text4.Text = 0.982Text5.Text = 35373.48Text6.Text = 64.93Text7.Text = 1Text8.Text = 1.0167Text9.Text = 7200Text10.Text = 3.73Text11.Text = 0.125Text12.Text = 6.22Text13.Text = 0.005Text14.Text = 7860Text15.Text = 5.4464Text16.Text = 0.462Text17.Text = 6Text18.Text = 15674.4Text19.Text = 0.0002Text20.Text = 4.1875Text21.Text = 20Text22.Text = 2000Text23.Text = 1Text24.Text = 6.5Text25.Text = 487Text26.Text = 0.72Text27.Text = 0.03Text28.Text = 1.01Text29.Text = 2Text30.Text = 0.0001Text31.Text = " "Text32.Text = " "Text33.Text = " "Text34.Text = " "Text35.Text = " "Text36.Text = " "Text37.Text = " "Text38.Text = " "Text39.Text = " "Text40.Text = " "Text41.Text = " "Text42.Text = " "Text43.Text = " "Text44.Text = " "Text45.Text = " "Text46.Text = " "Text47.Text = " "End Sub'主程序Private Sub Command1_Click() '菲波拿契法求RoptDim Aa#, Bb#, W#(1 To 50), i%, K%, N#, M%, R1#, R2#, ε# Dim JJ1#, JJ2#Aa = 1.01 * Rmin: Bb = 2 * Rmin '搜索区间[Aa,Bb]W(1) = 1: W(2) = 2: W(3) = 3: i = 1: ε= 0.0001Do While W(i + 2) <= ((Bb - Aa) / ε)i = i + 1W(i + 2) = W(i) + W(i + 1)LoopR1 = Aa + (Bb - Aa) * W(i) / W(i + 2): JJ1 = j(R1)N = i + 2: K = 1: M = 0Do While K <> N - 1If M = 0 ThenR2 = Aa + (Bb - Aa) * W(N - K) / W(N - K + 1)JJ2 = j(R2)ElseR1 = Aa + (Bb - Aa) * W(N - K - 1) / W(N - K + 1)JJ1 = j(R1)End IfIf JJ1 < JJ2 ThenBb = R2: R2 = R1: JJ2 = JJ1: M = 1ElseAa = R1: R1 = R2: JJ1 = JJ2: M = 0End IfK = K + 1LoopR = (Aa + Bb) / 2Ropt = RJJ = j(R)Text31.Text = RoptText32.Text = RminText45.Text = Ropt / RminText33.Text = lilunbanshuText34.Text = zongtagaoText40.Text = J1Text41.Text = J2Text42.Text = J3Text43.Text = J4Text44.Text = JJText37.Text = tajingText38.Text = chukouwenduText39.Text = chuanremianjiText46.Text = Ropt * DText47.Text = (Ropt + 1) * DText35.Text = tiliuduanbanshu * HETPText36.Text = jinliuduanbanshu * HETPEnd Sub'J函数Public Function j(R#) As DoubleCall jjj1(R#, J1#)Call jjj2(R#, J2#)Call jjj3(R#, J3#)Call jjj4(R#, J4#)j = J1 + J2 + J3 + J4End Function'求J1Public Sub jjj1(R#, J1#)Dim DT#, H#, Ws#, CH#Call tabanshu(R#, N#)DT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)H = N * HETP + HAWs = 3.14 * DT * (H + 0.8116 * DT) * bo * ρ'ρ为碳钢的密度CH = FL * Exp(6.95 + 0.1808 * Log(Ws) + 0.02468 * (Log(Ws)) ^ 2 + 0.0158 * H / DT)J1 = SI * (Fc + 0.06) * CHtajing = DTzongtagao = HEnd Sub'求J2Public Sub jjj2(R#, J2#)Dim xx1#, xx0#, CD#, ff#, df#, t2#, AD#, KD#KD = 2000: xx1 = 70Do '牛顿迭代法求冷却水最佳出口温度t2xx0 = xx1CD = 1.3 * SI * a * b * f1 * f2 * Fc * ((R + 1) * D * rD / (td - t1)) ^ (b - 1) / KD ^ bff = -Cw * θ/ Cp + CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (1 - b) * (xx0 - 1 - Log(xx0))df = CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (2 - b) * ((b - 1) * (xx0 - 1 - Log(xx0)) ^ 2 / (xx0 - 1) ^ 2 + Log(xx0))xx1 = xx0 - ff / dfLoop Until Abs(xx1 - xx0) < 0.000001t2 = td - (td - t1) / xx1 't2optchukouwendu = t2AD = (R + 1) * D * rD * Log((td - t1) / (td - t2)) / KD / (t2 - t1) '传热面积chuanremianji = ADJ2 = Cw * θ* (R + 1) * D * rD / Cp / (t2 - t1) + 1.3 * SI * Fc * f1 * f2 * a * AD ^ bEnd Sub'求J3Public Sub jjj3(R#, J3#)Dim Z#, Cz#Cz = 0.03Z = ((R + 1) * D - (1 - q) * F) * 18J3 = Z * Cz * θEnd Sub'求J4Public Sub jjj4(R#, J4#)Dim ho#, cpa!, HETP!cpa = 15674.4: HETP = 0.462Call tabanshu(R#, N#)ho = N * HETPDT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)J4 = 3.14 / 4 * DT ^ 2 * ho * cpa * FcEnd Sub'塔板数的计算Public Sub tabanshu(R#, N#)Dim ye#, XW#Dim X!(100), Y!(100), xx!(100), i%, n1#td = 64.93: F = 402.34: XD = 0.982: XF = 0.3151: ηd = 0.999: D = 128.97: Rmin = 1.0167V = (R + 1) * D: W = F + V - D: XW = (F * XF - D * XD) / Wi = 1: Y(1) = 0.982: X(1) = 0.9702DoIf X(i) > XF ThenY(i + 1) = R * X(i) / (R + 1) + XD / (R + 1)n1 = i + 1 + (X(i) - XF) / (X(i) - X(i + 1))ElseY(i + 1) = W * (X(i) - XW) / VIf X(i) < XW Then Exit DoEnd Ifi = i + 1xx(i) = (Y(i) / (3.3874 * (1 - Y(i)))) ^ (1 / 0.7977)X(i) = xx(i) / (1 + xx(i))LoopN = i - 1 + (X(i - 1) - XW) / (X(i - 1) - X(i))lilunbanshu = Ntiliuduanbanshu = n1jinliuduanbanshu = N - n1End Sub调整ROPT程序:'定义全局变量Dim J1#, J2#, J3#, J4#, JJ#Dim N#, R#, Ropt#Dim lilunbanshu#, jinliaoweizhi%, tajing#, chukouwendu#, chuanremianji#, zongtagao#, tiliuduanbanshu#, jinliuduanbanshu#Dim XF#, F#, q#, XD#, D#, td#, rD#, po#, u#, Rmin#, t1#, Cw#, Cp#, SI#, HETP#Dim Co#, HA#, f1#, f2#, a#, b#, FL#, θ#, ρ#, bo#, Fc#'优化所需参数Public Sub Form_Load()XF = 0.3151: F = 402.34: q = 1XD = 0.982: D = 128.97: td = 64.93: rD = 35373.48: po = 101.3u = 5.4464: Rmin = 1.0167t1 = 20: Cw = 0.0002: Cp = 4.1875: Co = 0.03: cpa = 15674.4HETP = 0.462: HA = 6f1 = 1: f2 = 6.5: a = 487: b = 0.72: SI = 3.73FL = 6.22: θ= 7200: ρ= 7860: bo = 0.005: Fc = 0.125Text1.Text = 402.34 Text2.Text = 0.3151 Text3.Text = 128.97 Text4.Text = 0.982 Text5.Text = 35373.48 Text6.Text = 64.93 Text7.Text = 1Text8.Text = 1.0167 Text9.Text = 7200 Text10.Text = 3.73 Text11.Text = 0.125 Text12.Text = 6.22 Text13.Text = 0.005 Text14.Text = 7860 Text15.Text = 5.4464 Text16.Text = 0.462 Text17.Text = 6Text18.Text = 15674.4 Text19.Text = 0.0002 Text20.Text = 4.1875 Text21.Text = 20 Text22.Text = 2000 Text23.Text = 1Text24.Text = 6.5 Text25.Text = 487 Text26.Text = 0.72 Text27.Text = 0.03 Text28.Text = 1.01 Text29.Text = 2Text30.Text = 0.0001 Text31.Text = " " Text32.Text = " " Text33.Text = " " Text34.Text = " " Text35.Text = " " Text36.Text = " " Text37.Text = " " Text38.Text = " " Text39.Text = " " Text40.Text = " " Text41.Text = " " Text42.Text = " " Text43.Text = " " Text44.Text = " "Text45.Text = " "Text46.Text = " "Text47.Text = " "End Sub'主程序Private Sub Command1_Click() '菲波拿契法求Ropt R = Text31.TextRopt = RJJ = j(R)Text32.Text = RminText45.Text = Ropt / RminText33.Text = lilunbanshuText34.Text = zongtagaoText40.Text = J1Text41.Text = J2Text42.Text = J3Text43.Text = J4Text44.Text = JJText37.Text = tajingText38.Text = chukouwenduText39.Text = chuanremianjiText46.Text = Ropt * DText47.Text = (Ropt + 1) * DText35.Text = tiliuduanbanshu * HETPText36.Text = jinliuduanbanshu * HETPEnd Sub'J函数Public Function j(R#) As DoubleCall jjj1(R#, J1#)Call jjj2(R#, J2#)Call jjj3(R#, J3#)Call jjj4(R#, J4#)j = J1 + J2 + J3 + J4End Function'求J1Public Sub jjj1(R#, J1#)Dim DT#, H#, Ws#, CH#Call tabanshu(R#, N#)DT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)If DT < 1 ThenDT = Int(DT * 10 + 1) / 10ElseDT = Int(DT * 5 + 1) * 0.2End IfH = N * HETP + HAWs = 3.14 * DT * (H + 0.8116 * DT) * bo * ρ'ρ为碳钢的密度CH = FL * Exp(6.95 + 0.1808 * Log(Ws) + 0.02468 * (Log(Ws)) ^ 2 + 0.0158 * H / DT)J1 = SI * (Fc + 0.06) * CHtajing = DTzongtagao = HEnd Sub'求J2Public Sub jjj2(R#, J2#)Dim xx1#, xx0#, CD#, ff#, df#, t2#, AD#, KD#KD = 2000: xx1 = 70Do '牛顿迭代法求冷却水最佳出口温度t2xx0 = xx1CD = 1.3 * SI * a * b * f1 * f2 * Fc * ((R + 1) * D * rD / (td - t1)) ^ (b - 1) / KD ^ bff = -Cw * θ/ Cp + CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (1 - b) * (xx0 - 1 - Log(xx0))df = CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (2 - b) * ((b - 1) * (xx0 - 1 - Log(xx0)) ^ 2 / (xx0 - 1) ^ 2 + Log(xx0))xx1 = xx0 - ff / dfLoop Until Abs(xx1 - xx0) < 0.000001t2 = td - (td - t1) / xx1 't2optchukouwendu = t2AD = (R + 1) * D * rD * Log((td - t1) / (td - t2)) / KD / (t2 - t1) '传热面积chuanremianji = ADJ2 = Cw * θ* (R + 1) * D * rD / Cp / (t2 - t1) + 1.3 * SI * Fc * f1 * f2 * a * AD ^ bEnd Sub'求J3Public Sub jjj3(R#, J3#)Dim Z#, Cz#Cz = 0.03Z = ((R + 1) * D - (1 - q) * F) * 18J3 = Z * Cz * θEnd Sub'求J4Public Sub jjj4(R#, J4#)Dim ho#, cpa!, HETP!cpa = 15674.4: HETP = 0.462Call tabanshu(R#, N#)ho = N * HETPDT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)J4 = 3.14 / 4 * DT ^ 2 * ho * cpa * FcEnd Sub'塔板数的计算Public Sub tabanshu(R#, N#)Dim ye#, XW#Dim X!(100), Y!(100), xx!(100), i%, n1#td = 64.93: F = 402.34: XD = 0.982: XF = 0.3151: ηd = 0.999: D = 128.97: Rmin = 1.0167 V = (R + 1) * D: W = F + V - D: XW = (F * XF - D * XD) / Wi = 1: Y(1) = 0.982: X(1) = 0.9702DoIf X(i) > XF ThenY(i + 1) = R * X(i) / (R + 1) + XD / (R + 1)n1 = i + 1 + (X(i) - XF) / (X(i) - X(i + 1))ElseY(i + 1) = W * (X(i) - XW) / VIf X(i) < XW Then Exit DoEnd Ifi = i + 1xx(i) = (Y(i) / (3.3874 * (1 - Y(i)))) ^ (1 / 0.7977) X(i) = xx(i) / (1 + xx(i))LoopN = i - 1 + (X(i - 1) - XW) / (X(i - 1) - X(i))lilunbanshu = Ntiliuduanbanshu = n1jinliuduanbanshu = N - n1End Sub目录1 前言------------------------------------------------------------------------------------------------12 方案论证2.1 精馏塔类型----------------------------------------------------------------------------------1 2.2 精馏压力-------------------------------------------------------------------------------------1 2.3 进料方式-------------------------------------------------------------------------------------1 2.4 填料类型-------------------------------------------------------------------------------------2 2.5 加热方式-------------------------------------------------------------------------------------22.6 塔材料类型----------------------------------------------------------------------------------23 数学模型的建立3.1 精馏塔塔体年投资折旧费及维修费用-------------------------------------------------3 3.2 冷凝器年运转费用-------------------------------------------------------------------------4 3.3 直接蒸汽加热费用-------------------------------------------------------------------------53.4 填料年折旧费-------------------------------------------------- --54 数学模型的求解4.1 数学模型决策变量分析-------------------------------------------------------------------5 4.2 主要工艺参数的求解----------------------------------------------------------------------54.2.1 塔径的计算-----------------------------------------------------------------------------54.2.2 塔板数的计算-------------------------------------------------------------------------64.2.2.1 相平衡关系的表示--------------------------------------------------------------64.2.2.2 N的计算--------------------------------------------------------------------------64.2.3 冷凝器年运转费用的计算------------------ ----------------------- ----------------74.2.3.1 冷却水用量及冷凝器传热面积的计算- -------------------------------------74.2.3.2 冷凝器冷却水最佳出口温度的确定-----------------------------------------74.2.4 直接加热蒸气费用的计算----------------------------------------------------------8 4.3 数学模型的求解------------------------------------------------------- --------------------84.3.1 单变量最优化方法--------------------------------------------- ----------------------84.3.2 优化设计程序框图-------------------------------------------- -----------------------84.3.2.1 函数调用关系--------------------------------------------------------------------95 优化设计计算5.1 数据预处理---------------------------------------------------------------------------------105.1.1 进塔物料的计算----------------------------------------------------------------------105.1.2 塔顶蒸气温度的计算----------------------------------------------------------------105.1.3 等板高度的计算----------------------------------------------------------------------10Ⅰ5.1.4 产品汽化潜热的计算----------------------------------------------------------------115.1.5 最小回流比的确定-------------------------------------------------------------------115.1.6 填料单价的计算----------------------------------------------------------------------115.2. 塔径的计算---------------------------------------------------------------------------------13 5.3 填料层高度的计算-------------------------------------------------------------------------13 5.4 精馏塔塔体年投资折旧费及维修费用的计算-----------------------------------------13 5.5 冷凝器年运转费用的计算----------------------------------------------------------------145.5.1 冷凝器冷却水最佳出口温度的确定----------------------------------------------145.5.2 冷却水用量及冷凝器传热面积的计算-------------------------------------------145.5.3 精馏塔塔体年投资折旧费及维修费用的计算----------------------------------15 5.6 再沸器年运转费用的计算----------------------------------------------------------------15 5.7 填料年折旧费用的计算-------------------------------------------------------------------15 5.8 汽液负荷-------------------------------------------------------------------------------------155.8.1 气相负荷-------------------------------------------------------------------------------155.8.2 液相负荷-------------------------------------------------------------------------------155.9 年总费用与回流比的关系--------------------------------------------------------------156 填料塔水力学性能校核6.1 泛点率校核--------------------------------------------------------------------------------- 17 6.2 径比校核-------------------------------------------------------------------------------------17 6.3 喷淋密度校核-------------------------------------------------------------------------------176.4 填料塔压降----------------------------------------------------------------------------------177 附属设备的设计与选型7.1 塔顶冷凝器--------------------------------------------------------------------------------- 187.1.1 冷凝器传热量-------------------------------------------------------------------------187.1.2 冷凝器传热推动力-------------------------------------------------------------------187.1.3 初估冷凝器传热面积----------------------------------------------------------------197.1.4 冷凝器传热系数的校核-------------------------------------------------------------197.1.5 冷凝器传热面积的校核-------------------------------------------------------------227.1.6 冷凝器壳程、管程流动阻力-------------------------------------------------------22 7.2 接管选型------------------------------------------------------------------------------------ 247.2.1 进料口接管的选型-------------------------------------------------------------------247.2.2 冷却水接管的选型-------------------------------------------------------------------257.2.3 塔顶蒸气接管选型------------------------------------------------------------------ 25Ⅱ7.2.4 塔顶产品接管选型-------------------------------------------------------------------257.2.5 塔底产品接管选型-------------------------------------------------------------------267.2.6 塔顶产品回流接管选型-------------------------------------------------------------267.2.7 塔底加热蒸气接管选型------------------------------------------------------------- 26 7.3 冷却水输送泵7.3.1 塔高的计算---------------------------------------------------------------------------277.3.2 冷却水输送泵选型------------------------------------------------------------------27 7.4 填料支承结构-------------------------------------------------------------------------------28 7.5 液体分布装置-------------------------------------------------------------------------------287.7 液体收集再分布装置----------------------------------------------------------------------298 设计结果汇总------------------------------------------------------------------------------------299 设计心得------------------------------------------------------------------------------------------31 参考文献---------------------------------------------------------------------------------------------- 31 附录一甲醇和水部分物性参数-----------------------------------------------------------------32 附录二甲醇—水汽液平衡数据(摩尔组成)-------------------------------------------------33 附录三优化设计程序源代码--------------------------------------------------------------------34化工原理课程设计学生姓名:黄圣楠学号:081000115专业班级:10级生工(1)班____指导教师:张星___2013年1月24日。

相关文档
最新文档