定积分的几个简单应用

合集下载

定积分在几何和物理中的应用

定积分在几何和物理中的应用

定积分在几何和物理中的应用定积分是高等数学中非常重要的一个概念,它可以用于计算曲线、曲面的面积或体积,还可以应用到物理学、工程学中。

在本文中,我们将着重探讨定积分在几何和物理中的应用。

一、计算面积我们首先来看一个简单的例子,如果我们想要计算一个曲线所围成的面积,我们需要怎么做呢?假设曲线为y=f(x),我们可以将这条曲线分成若干个无限小的小矩形,每个小矩形的宽度为Δx,高度为函数值f(x),则该小矩形的面积为f(x)Δx。

我们将所有小矩形的面积相加,得到所求的曲线面积S:S=∫a^b f(x) dx其中a和b分别是曲线的起点和终点。

这里的∫符号代表积分符号,具体的计算方法不在本文中详细说明。

二、计算体积在物理学中,我们经常需要计算物体的体积,定积分也可以帮助我们实现这一目的。

比如我们需要计算一个旋转曲线所围成的立体体积,我们可以依然使用之前的方法将其分解成无限小的小圆柱体积,每个小圆柱的体积可以表示为:V=π[f(x)]^2dx我们将所有小圆柱的体积相加,得到所求的立体体积V:V=∫a^b π[f(x)]^2dx三、计算重心和质心在物理学中,重心和质心是非常重要的概念。

对于一个平面图形或者一个立体体形,它的重心和质心分别表示为:重心:(∫xdS)/(∫dS)质心:(∫xdm)/(∫dm)这里的dS和dm分别表示面元和质量元,x则表示距离中心的距离。

我们可以通过对图形进行分割并使用定积分来计算重心和质心。

四、积分在物理学中的应用定积分在物理学中的应用非常广泛,比如我们可以使用它来计算弹性势能、动能、功、功率等物理量。

举一个简单的例子,假设质量为m的物体从高度为h处自由落下,当它下落到高度为y 时,它的速度为v,我们可以使用动能和势能的转化关系求出v,设重力加速度为g,则它下落过程中失去的重力势能为mgh-mgy,同时增加的动能为(1/2)mv^2,因此:mgh-mgy=(1/2)mv^2v=sqrt(2g(h-y))我们可以使用定积分来求解物体在过程中的运动状态,以及计算其他物理量的值。

考研数学定积分的应用

考研数学定积分的应用

考研数学定积分的应用一、引言数学定积分是高等数学中的重要概念之一,它在实际生活中有着广泛的应用。

本文将从几个具体的应用案例入手,探讨考研数学定积分的应用。

二、面积计算数学定积分最基本的应用之一就是计算曲线与坐标轴所围成的面积。

例如,在工程测量中,我们经常需要计算某个区域的面积,如果该区域的边界曲线可以用函数表示,那么可以通过定积分来求解。

通过将曲线分割成无穷多个微小的矩形,计算每个矩形的面积并进行累加,最终得到所需的面积。

三、物体体积计算除了计算面积,数学定积分还可以用于计算物体的体积。

在工程设计中,经常需要计算复杂形状物体的体积,例如水库的容量、建筑物的体积等。

如果物体的截面可以用函数表示,那么可以通过定积分来求解。

同样地,将截面分割成无穷多个微小的面元,计算每个面元的体积并进行累加,最终得到所需的体积。

四、质心计算质心是物体在空间中的重心,对于复杂形状的物体,质心的计算可以通过数学定积分来实现。

首先,将物体分割成无穷多个微小的体积元,计算每个体积元的质量并与其质心坐标乘积,然后进行累加,最后将总质量除以总体积,即可得到质心的坐标。

五、弯曲杆件的弯矩计算在工程力学中,常常需要计算弯曲杆件的弯矩分布,以确定结构的稳定性和安全性。

通过数学定积分,可以将杆件分割成无穷多个微小的弯曲段,计算每个弯曲段的弯矩,并进行累加,最终得到整个杆件的弯矩分布。

六、概率密度函数计算概率密度函数是概率论与数理统计中的重要概念,用于描述随机变量的概率分布。

数学定积分可以用于计算概率密度函数的各种性质,例如求解期望值、方差以及其他统计指标。

通过对概率密度函数进行定积分,可以得到具体的数值,从而进行概率分析和决策。

七、总结本文简要介绍了考研数学定积分的几个应用,包括面积计算、物体体积计算、质心计算、弯曲杆件的弯矩计算以及概率密度函数的计算。

这些应用充分展示了数学定积分在实际生活和工程领域中的重要性和广泛应用。

通过学习和掌握数学定积分的应用技巧,可以更好地理解和应用数学知识,提高问题解决能力。

定积分的几何应用(体积))

定积分的几何应用(体积))

π πa2 (t sin t)2 a sin t d t
注意上下限 !
2 π
π
π
a
2
(t
sin
t)
2
a
sin
t
d
t
0
π a3

(t
sin
t)2
sin
t
dt
0
注: 2 π (t sin t)2 sin t d t 0
2 π (t 2 sin t 2t sin 2 t sin3 t)d t (令 u t π) 0
V 2 1u[4 (u 3)2 ]du 5
令u x3
2 2 (x 3)(4 x2)dx 2
2 2 (3 x)(4 x2 )dx 2
(※)
补充 2. 如果旋转体是由连续曲线 y f ( x)、直 线 x a、 x b(0 a b)及 x轴所围成的曲边梯
形绕 x = m (>b) 旋转一周而成的立体,体积为
2
令u t 2
16 π a3 π (2u sin 2u) sin 4 u d u 0
令v u π
2
π
16 π
a3
2
π 2
(2v
π
sin
2v)
cos4 v
偶函数
d
v
奇函数
例 3 求由曲线 y 4 x2及 y 0所围成的图形 绕直线 x 3旋转构成旋转体的体积.
解(一) 取积分变量为y , y [0,4]
c
o
x
例2. 计算摆线
的一拱与 y=0
所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 .
解: 绕 x 轴旋转而成的体积为
y

定积分在几何学上的应用

定积分在几何学上的应用

成的图形的面积.
解 两曲线的交点
y2 2x y x4
(2 , 2 )(,8 ,4 ).
yx4
y2 2x
选 y为积分变量 y[2,4]
dAy4y2dy
4
A dA18.
2
2
整理ppt
6
如果曲边梯形的曲边为参数方程
x y
(t) (t)
曲边梯形的面积 A t2(t)(t)d.t t1
( 其 中 t 1 和 t 2 对 应 曲 线 起 点 与 终 点 的 参 数 值 )
就得半径为a
的球体的体积
4 3
a3
.
整理ppt
21
2
2
2
例 9 求星形线 x 3 y 3 a 3 (a 0)绕 x轴旋转
构成旋转体的体积.
y
2
2
2
解 y3 a3 x3,
y2
a32
2
x3
3
a
x[a,a]
o
ax
旋 转 体 的 体 积
V
aaa32
2
x3
3
dx
32 a3 105
.
整理ppt
22
25
绕 y 轴 旋 转 的 旋 转 体 体 积 2ayC B xx2(y)
可看作平面图OABC与OBC o xx1(y)
A
2a x
分别绕y轴旋转构成旋转体的体积之差.
Vy
2ax22(y)dt
0
2ax12(y)dt
0
a2(tsit)n 2asitn dt 2 a2(tsit)n 2asitn dt 0
0
整理ppt
28
例 求曲线 y3x21 与 x 轴围成的封闭图形

定积分的几何应用例题

定积分的几何应用例题

定积分的几何应用例题定积分,又称定积分法,是一种求取特定函数积分的方法,它是集概率论、统计学和运筹学于一体,是微分几何学中的重要内容。

它在微分几何中一般用来求取曲面积、表面积、空间积分、距离长度等。

下面将介绍几个典型的定积分的几何应用例题,以便读者更好的理解定积分的几何应用。

例题一:求抛物线y=x2的截面积,其中抛物线两端上的y值分别为a和b。

答:这里的抛物线的截面积S=∫a b x2dx。

因此,将原积分变形可得S=(1/3)∫a b (x3+a3-b3)dx,于是,将积分变量替换,此时,S=(1/3)[(b3-a3)/2]。

例题二:求圆柱体的体积,其中圆柱体的底面半径为a,高度为h。

答:首先,将圆柱体拆成无穷多个小圆柱体,那么,圆柱体的体积V=∫0 hπa2dh。

将原积分变形可得V=πa2∫0 hdh=(πa2h2)/2,可见,圆柱体的体积大小取决于高度h和底面半径a的平方乘积。

例题三:求圆锥的表面积,其中圆锥的底面半径为a,高度为h,底面圆心角为2α。

答:此时,圆锥的表面积S=∫0 hΠa2sindαdh,将原积分变形可得S=Πa2∫0 hsindαdh=(2Πahcosα)/2,可以得出,圆锥的表面积大小取决于高度h、底面半径a以及底面圆心角2α因此,定积分在几何学中具有重要意义,可以求出各类几何体的表面积、体积等,解决实际问题。

上面提供了典型的定积分的几何应用例题,可以让读者对定积分的几何应用有一个深入的理解。

定积分的计算方法广泛,不仅可以采用数值积分法,还可以采用把积分分解为若干小段然后求和的方法。

同时,它还可以利用积分变量的变换,把定积分变为求解较为容易的积分,可以较好地解决实际问题。

总之,定积分是一门极其重要的数学科学,在几何学和实际问题中都有重要的应用,使用正确的计算方法,可以较好地解决实际问题。

定积分的应用体积

定积分的应用体积

定积分的应用体积
定积分是数学中的一种基本概念,用于计算曲线下的面积或曲线围成的体积。

其中,定积分的应用体积主要有以下几种情况:
1. 计算曲线围成的体积:假设有一个曲线,其方程为y=f(x),要求曲线围成的体积,可以使用定积分来计算。

具体来说,曲线围成的体积可以表示为:
V =∫[a,b] f(x)dx
其中,a和b是曲线的两个端点,f(x)是曲线的方程。

通过对曲线围成的体积进行积分,可以得到曲线围成的体积。

2. 计算旋转体的体积:旋转体是指通过将一个平面曲线围绕一个轴旋转而得到的立体。

如果已知旋转体的旋转轴和曲线方程,可以使用定积分来计算旋转体的体积。

具体来说,旋转体的体积可以表示为:
V = ∫[a,b] r2 d A
其中,a和b是旋转轴上的两个点,r是曲线在该点处的半径,d A是曲线在该点处的微小面积。

通过对旋转体的体积进行积分,可以得到旋转体的体积。

3. 计算曲线下的面积:假设有一个曲线,其方程为y=f(x),要求曲线下的面积,可以使用定积分来计算。

具体来说,曲线下的面积可以表示为:
A = ∫[a,b] f(x)dx
通过对曲线下的面积进行积分,可以得到曲线下的面积。

定积分在物理学、工程学、经济学等领域中有着广泛的应用。

它可以用于计算曲线下的面积、曲线围成的体积以及曲线在一定区间内的累积量等问题。

1.7定积分的几何应用

1.7定积分的几何应用

2
2
围成图形的面积.
解:作出y2=x,y=x2的图象如图所示:
解方程组 x 0 x 1 y x 或 2 y 0 y 1 y x
y
y
y xx
2
B
2
即两曲线的交点为(0,0),(1,1)
S = S曲 边 梯 形 OABC - S曲 边 梯 形 OABD
B(1,- 1). ∴围成图形 (阴影部分 )面积为
S=
-2
1
(- x2- x+ 2)dx 9 = . 2
1 3 1 2 = (- x - x + 2x) 3 2
9 答案: (1) 2
例 2 计算由曲线 y 围成的图形的面积.
2x
,直线 y
x 4 以及
y 2x
x 轴所
解:
两曲线的交点
2
|0 8
8
X型求解法
40 3
x 1 2 y
2
16 2 8
1 2
3
2

[( 4 y )
y ]d y
4
(4 y
44
1 2 1
2
y
2
2
1 6
x 4 y
y ) |0
1 6
3
4
4
40 3
Y型求解法
练习 1(例 2 变式题) : 计算由曲线 y 2 x 和直线 y x 4 所围成的图形的面积
2π 4 A. B. 5 3 3 π C. D. 2 2 解析:选 B.由图象可知二次函数的表达式为 f(x)= 1- x2,∴ S= 1 3 1 1 4 1 2 = (1- )-(- 1+ )= . -1 (1- x )dx= (x-3x ) 3 3 3

第五章 定积分的几何应用

第五章 定积分的几何应用



) ( r r
d
例 5
求双纽线 a cos 2 所围平面图形
2 2
的面积.
解 由对称性知总面 积=4倍第一象限 部分面积
A 4A1
y x
2 a 2 cos 2
A 40
4
1 2 a cos 2d a 2 . 2
例 6 求心形线r a(1 cos )所围平面图形的 面积 (a 0).
小结
求在直角坐标系下、参数方程形式 下、极坐标系下平面图形的面积. 求旋转体的体积
(注意恰当的选择积分变量有助于简化 积分运算)
思考题
1. 设 曲 线 y f ( x ) 过 原 点 及 点( 2,3) , 且 f ( x ) 为单调函数,并具有连续导数,今在曲线 上任取一点作两坐标轴的平行线,其中一条平 行线与 x 轴和曲线 y f ( x ) 围成的面积是另一 条平行线与 y 轴和曲线 y f ( x ) 围成的面积的 两倍,求曲线方程.
练习题答案 32 一、1、1; 2、 ; 3、2; 3 1 1 4、y ; 5、 e 2 ; 6、 . e 2 3 7 2 二、1、 ln 2 ; 2、 ; 3、 a ; 2 6 5 3 2 2 4、3a ; 5、 ; 6、 a . 2 4 9 e 8 2 三、 . 四、 . 五、 a . 4 2 3
其上相应的窄条左、右曲边分别为 1 2 x y ,x y4 2 4 1 2 A ( y 4 y )dy 18 2 2
由此可见在面积计算中应根据平面区域的具体 特征恰当地选择积分变量找出相应的面积微元可使 计算简化
上述问题的一般情况是
d
y
x ( y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的几个简单应用
一、定积分在经济生活中的应用
在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决.
例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余.
解 由p 50=,q p 15.065-=,得10000=q ,于是
dq q )5015.065(10000
0--⎰
10000023
)
1.015(q q -=
50000=,
所求消费者剩余为50000元.
例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量.
解 所求的总产量为
⎰⎰+='=10
5105)1240()(dt t dt t Q Q 1052)
640(t t +=650=(件). 二、用定积分求极限
例1 求极限 ∑=∞→n k n n k 123
lim .
解 n
n n n n n n n k n k 12111123
+++=∑= )21(1n n n n n +++=
. 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取⎥⎦
⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有
∑=∞→n k n n k 12
3lim ⎥⎦⎤⎢⎣⎡+++=∞→)21(1lim n n n n n n 3210==⎰dx x . 例2 求极限 2213lim k n n k n k n -∑
=∞→. 解 212213)(11n k n
k n k n n k n k n k -⋅=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取⎥⎦
⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有
2213lim k n n k n k n -∑=∞→3
1)1(311102321
02=⎥⎦⎤⎢⎣⎡--=-=⎰x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明.
例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证:
⎰⎰
+≥b a
b a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x x
a x a ⎰⎰+-=)(2)()(ϕ, 显然0)(=a ϕ,且
)(2
)(21)()(x f x a dt t f x xf x x a ⎰+--='ϕ )(2
))((21)(2x f a a x f x f x ---=ξ [])()(2
ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ϕ,从而)(x ϕ在闭区间[]b a ,上单调增加,所以
0)()(=≥a x ϕϕ,
取b x =得
⎰⎰+≥b a b
a dx x f
b a dx x xf )(2
)(. 定积分在许多领域中有着重要应用,它是解决一些几何学问题、物理学问题和经济学问题的重要工具.这一章主要介绍了定积分在不同学科中的应用问题.。

相关文档
最新文档