双因素试验的方差分析(精)

合集下载

双因素试验的方差分析

双因素试验的方差分析

i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ


50 63 52

47 54 42

47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。

双因素试验的方差分析

双因素试验的方差分析
2
2
j 1

误差平方和: S
E


i 1
( x ijk X
ij
)
j 1 k 1
③计算自由度

SA的自由度:r-1 SB的自由度:s-1 SA×B的自由度: (r-1)(s-1) Se的自由度:rs(t -1)

ST的自由度:rst-1
(4) F检验
FA
S A /( r 1) S E /( rs ( t 1))
r
j 1 k 1

因素A的效应平方和: 因素B的效应平方和: A,B交互效应平方和:
S A B t
i 1 r
S A st ( X
S B rt ( X
j 1
i
X)
2
i 1 s
j
X )
2

r
s
(X
s
ij
X
t
i
X j X )
X 2 1 1 , X 2 1 2 , ..., X 2 1 t
A2 … Ar
x 221 , x 222 , ..., x 22 t
… … …



X rs 1 , X rs 2 , ..., X rst
X r 11 , X r 12 , ..., X r 1 t X r 2 1 , X r 2 2 , ..., X r 2 t
总和
ST
rs-1
(3)双因素无重复试验方差分析表 双因素无重复试验方差分析表 方差 来源 因素A
平方 和
SA
自由度
r- 1
均方
SA SA r 1

双因素试验的方差分析

双因素试验的方差分析

双因素试验的方差分析(一)摘要:实际问题中往往要同时考虑两个因素对试验指标的影响,此时即使用双因素方差分析。

主要方法为建立合适的假设,并对分析已有数据的各部分方差平方和、自由度、均方,求得F 比后利用检验方法判断原假设是否成立。

双因素试验的方差分析可分为无重复试验和等重复试验两部分讨论,无重复试验只需检验两个因素对实验结果有无显著影响,等重复试验还要考虑两个因素的交互作用对实验结果有无显著影响。

(二)关键词:双因素 方差分析 EXCEL 应用(三)引言:在科学试验和生产实践中,影响一事物的因素往往是很多的。

每一因素的改变都有可能影响产品的数量和质量。

有些因素影响较大,有些较小,为了优化生产过程,通过进行试验找出对产品质量有显著影响的那些因素。

根据试验结果进行分析,鉴别各个有关因素对实验结果影响的有效方法即为方差分析。

本文双因素方差分析同时考虑两个因素的影响,涉及因素间的交互作用,在实际生产实践中较为实用。

(四)算法原理:双因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A 和因素B 的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A 和因素B 的结合会产生出一种新的效应。

(一)双因素等重复试验的方差分析设有两个因素A ,B 作用于试验的指标。

因素A 有r 个水平,,...,,21r A A A 因素B 有s 个水平.,...,21s B B B 现对因素A,B 的水平的没对组合(j i B A ,),i=1,2,...r,j=1,2,...,s 都作(t ≥2)次试验(称为等重复试验),得到如下表的结果。

因 素A 因素B1B 2B......s B 1AtX X X 11112111...,,,tX X X 12122121...,,,...... sts s X X X 12111...,,,2A t X X X 21212211...,,,t X X X 22222221...,,,...... st s s X X X 22212...,,,........................s Atr r r X X X 11211...,,,tr r r X X X 22221...,,,...... rstrs rs X X X ...,,,21并设),(~2σμij ijk N X ,r i ,...,2,1=;s j ,...,2,1=;t k ,...,2,1=,各ijk X 独立。

论文—双因素试验的方差分析

论文—双因素试验的方差分析

X ijk ~ N (ij , 2 ) ( ij 和 2 未 知 ), 记 X ijk i = ijk , 即 有
ijk X ij ijk ~ N (0, 2 ), 故 X ijk ijk 可视为随机误差. 从而得到如下数学模型
X ijk ij ijk, ijk ~ N(0, 2), 各 ijk 相互独立, i 1, , r; j 1, , s; k 1, , t;
1 st
1 rt
X
j 1 k 1
r t
s
t
ijk
,i=1,2, ,r,
X
j =
X
i 1 k 1
类似地,引入记号: , i , j , i , j , 易见

i 1
r
i 0 ,

j 1
s
j
0.
为水平 B j 的效应. 这样可以将
仍称 为总平均,称 i 为水平 A i 的效应,称 成
ij
j
ij
表示
= + i + j +
ij
( i 1, , r; j 1, , s ) ,
(3)
与无重复试验的情况类似,此类问题的检验方法也是建立在偏差平方和的分解上的。 2. 偏差平方和及其分解 引入记号: X =
1 rst
X
i 1 j 1 k 1
r
s
t
ijk

X
ij =
1 X ijk ,i=1,2, ,r,j=1,2, ,s, t k 1

t
X
i =
试 验 结 因 素 果 A 因 素 B

3-2双因素方差分析

3-2双因素方差分析
反映因素A的水平间的差异引起的波动。
s
因子B的偏差平方和 SB r(x j x)2 j 1
反映了因素B的水平间的差异引起的波动。
rs
误差平方和 Se
(xij xi x j x)2
i1 j1
反映了随机误差引起的波动。
在H01,H02为真时
1
2
St
~
2 (rs
均方 44.88 3.53 2.19
36.0
35.5
34.3
36.1
35.8
32.8
28.5
29.4
F 值 显著性
20.49
**
1.61
查表得临界值F0.05(4,12)=3.26,F0.01(3,12)=5.95。由于 FB<F0.05(4,12),故认为地块不同对收获量无显著影响。 由于FA>F0.01(3,12),故认为品种不同对收获量影响极显著。
F比
FA

Se
SA /(s
/(r 1) 1)(r 1)
FB

Se
SB /(s
/(s 1) 1)(r 1)
对给定的显著性水平,当
FA>F(r-1, (s-1)(r-1))时拒绝H01, FB>F(s-1, (s-1)(r-1))时拒绝H02 .
例3 将土质基本相同的一块耕地分成均等的五个地块,每块又 分成均等的四个小区。有四个品种的小麦,在每一地块内随机分 种在四个区上,每小区的播种量相同,测得收获量如下表(单位: 公斤),试以显著性水平α1=0.05,α2=0.01考察品种和地块对收获 量的影响是否显著。
地块
品种
B1
B2
B3
B4
B5

双因素重复试验方差分析

双因素重复试验方差分析

Se W R
ST W P S I R QA QB P
双因素重复试验方差分析表 误差来源 因素 A 因素 B 平方和
S A QA P S B QB P
自由度
均方
S MS A A r 1
F值
显著性
r 1
s 1
MS A FA MS E
FB MS B MSe
(3)
S A /(r 1) 从而有FA ~ F (r 1, rs(l 1)) Se /(rs(l 1)) S 2 当H 02成立时, B ~ ( s 1).且S B与Se相互独立 2

S B /( s 1) 从而有FB ~ F ( s 1, rs(l 1)) Se /(rs(l 1)) SI (4) 当H 03成立时, 2 ~ 2 ((r 1)( s 1)).且S I 与Se相互独立
燃料(A)
A2 A3 A4
双因素重复试验的方差分析
设有两个因素 A和 B, 因素 A有 r个不同的 水平 A1 , A2 , , Ar , 因素B 有s 个不同的水平 B1 ,
B2 , , Bs , 这样共有 r s 个不同的水平搭配
对每个搭配 Ai B j , 作 l 次独立重复试验,
共获得 n r s l 个观察值, 列表如下:
i 1 j 1 k 1 r s l i 1 s
r
S B ( X j X ) rl ( X j X ) 2
2 i 1 j 1 k 1 j 1
S I ( X ij X i X j X ) 2
i 1 j 1 k 1 s
第k次试验的结果列表如下:
B1 A1 A2 Ar

6-2双因素方差分析

6-2双因素方差分析
– 对地区因素提出的假设为
• H0:m1=m2=m3=m4=m5 (地区对销售量无显著影响) • H1:mj (j =1,2,…,5) 不全相等 (有显著影响)
【例】有4个品牌的彩电在5个地区销售,为分析彩电的品牌( 品牌因素)和销售地区(地区因素)对销售量的影响,对每显著 个品牌在各地区的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响?(=0.05)
5. 误差项平方和: SSE SST SSR SSC SSRC
SST=SSR+SSC+SSRC+SSE
可重复双因素方差分析表
(基本结构)
误差来源 平方和 自由度
(SS)
(df)
均方 (MS)
F值
P值
F 临界值
行因素 列因素 交互作用
误差
SSR SSC SSRC SSE
k-1 MSR FR r-1 MSC FC (k-1)(r-1) MSRC FRC kr(m-1) MSE
replication)
3. 如果除了行因素和列因素对试验数据的单
独影响外,两个因素的搭配还会对结果产 生一种新的影响,这时的双因素方差分析
称为有交互作用的双因素方差分析或可重 复 双 因 素 方 差 分 析 (Two-factor with
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 ▪ 对于因素的每一个水平,其观察值是来自正态分布
不同品牌的彩电在5个地区的销售量数据
品牌因素 地区1
地区因素 地区2 地区3 地区4
品牌1
365
350
343
340
品牌2
345
368
363

双因素试验方差分析

双因素试验方差分析

SS E df E
SST
注意
df E dfT df A f B , SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SS A DA p, SSB DB p
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。 例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。 统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。 我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
X 11 ... X a1
B2
X 12 ... X a2
... Bb
... ... ... X 1b ... X ab
Ti. X ij X i. T b i.
j 1
b
A1 ... Aa
a b i 1 j 1
1 b i ij i 水平Ai对试验结果的效应 a j 1 1 a j ij j 水平Bj对试验结果的效应 b i 1 试验误差 ij X ij ij
特性:

i 1
a
i
0;

j 1
b
j
0; ij ~ N 0,

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 双因素试验的方差分析
实验目的:1掌握单因素实验方差分析的方法与步骤;
2正确分析输出结果中的各参数,并得出正确结论。

试验内容:
某种火箭使用4种燃料,3种推进器进行射程试验。

在每种燃料与每种推进器的组合下火箭各发射两次,射程数据见表3.1。

表3.1 火箭的射程数据
试在水平05.0=α下,检验不同燃料(因素)A 、不同推进器(因素)B 下射程是否有显著差异?交互作用是否显著?
操作步骤:
1.在excel 的工作表中输入如表3.1所示的的样本数据。

2.点击“工具—数据分析—方差分析:可重复双因素方差分析”,在弹出对话框的输入区域,拖动鼠标选择样本值A1:D9;每一样本的行数,输入2;显著性水平α设置为0.05,如图
3.1所示。

图3.1 应用excel“数据分析”功能求双因素等重复方差分析的有关参数3.点击确定,输出参数的窗口如图3.2所示。

图3.2 应用excel“数据分析”功能求双因素等重复方差分析的有关参数结果分析:
图3.2 中仅列示了输出结果中的方差分析表。

“样本”即燃料因子,“列”即推进器因子,“交互”为燃料和推进器因子的交互作用,SS 为平方和;df 是自由度;P-value 为P 值,即所达到的临界显著水平;F crit 是Fα(t-1,N-t)的值。

由方差分析表可知,因子A (燃料)的作用是一般显著的(P-value的值为0.025969<0.05);因子B(推进器)的作用是高度显著的(P-value的值为0.003506<0.01);而交互作用是极其显著的(P-value的值为6.15E-05<<0.01),这说明燃料的作用于与推进器之间有着密切的关系,也即每种推进器都有各自最合自得最佳燃料。

相关文档
最新文档