用导数极限法解一类求参数取值范围的高考题
高考数学利用导数解不等式及参数的取值范围问题

一、单选题: 1.定义在(0,+∞)上的函数f(x )满足xf′(x)=1+x ,且f(1)=2,不等式f(x)≥(a+1)x +1有解,则正实数a 的取值范围是( )A .(0,e]B .(0,e) C.⎝ ⎛⎦⎥⎤0,1e D.⎝⎛⎭⎪⎫0,1e 2.若函数f(x )=12cos 2x -2a(sin x +cos x)+(4a -3)x 在⎣⎢⎡⎦⎥⎤0,π2上单调递增,则实数a 的取值范围为( )A .a≥32B.32<a <3 C .a≥1 D .1<a <33.已知函数f(x)=⎩⎨⎧ x 2-3x +2,x≤1ln x ,x >1,g(x)=f(x)-ax +a ,若g(x)恰有1个零点,则a 的取值范围是( )A .[-1,0]∪[1,+∞)B .(-∞,-1]∪[0,1]C .[-1,1]D .(-∞,-1]∪[1,+∞)4.设函数f(x)=ae x -2sin x ,x∈[0,π]有且仅有一个零点,则实数a 的值为( )A.24πeB.24π-eC.22πeD.22π-e 二、多选题:5.已知函数g(x)=x x e x e 22)1(-,若实数m 满足g(log 5m)-g(m 51log )≤2g(2),则( )A .g(x)是奇函数B .g(x)是(0,+∞)上的增函数C .实数m 的取值范围为(0,25]D .实数m 的取值范围为[5,25]三、填空题:6.已知函数f(x)=-ln x 在[1,+∞)上单调递减,则实数a 的取值范围为( ).A.a<1B.a≤2C.a<2D.a≤37.已知定义在R上的函数f(x)满足f(2)=1,且对任意的x∈R,都有f´(x)<,则不等式f(log2x)>31log2的解集为.四、解答题:8.已知函数f(x)=ln x+2x.(1)求函数f(x)在[1,+∞)上的值域;(2)若∀x∈[1,+∞),ln x(ln x+4)≤2ax+4恒成立,求实数a的取值范围.9.已知函数f(x)=x2-(a-2)x-a ln x(a∈R).(1)求函数y=f(x)的单调区间;(2)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.10.已知函数f(x)=e x(1+a ln x),其中a>0,设f′(x)为f(x)的导函数.(1)设g(x)=e-x f′(x),若g(x)≥2恒成立,求a的取值范围;(2)设函数f(x)的零点为x0,函数f′(x)的极小值点为x1,当a>2时,求证:x0>x1.11.已知函数f(x)=x ln x-a2x2+(a-1)x,其导函数f′(x)的最大值为0.(1)求实数a的值;(2)若f(x1)+f(x2)=-1(x1≠x2),证明:x1+x2>2.12.已知函数f(x)=12x2-ax+(a-1)ln x.(1)讨论函数f(x)的单调性;(2)若对任意的x1,x2∈(0,+∞),x1>x2,恒有f(x1)-f(x2)>x2-x1,求实数a的取值范围.课后作业题参考答案:1C 2A 3A 4B 5ABC 6.B 7.{x|0<x<4}8.[解](1)易知f′(x)=-1-ln xx2<0(x≥1),∴f(x)在[1,+∞)上单调递减,f(x)max=f(1)=2.∵x ≥1时,f (x )>0,∴f (x )在[1,+∞)上的值域为(0,2].(2)令g (x )=ln x (ln x +4)-2ax -4,x ∈[1,+∞),则g ′(x )=2⎝ ⎛⎭⎪⎫ln x +2x -a , ①若a ≤0,则由(1)可知,g ′(x )>0,g (x )在[1,+∞)上单调递增, ∵g (e)=1-2a e >0,与题设矛盾,∴a ≤0不符合要求.②若a ≥2,则由(1)可知,g ′(x )≤0,g (x )在[1,+∞)上单调递减. ∴g (x )≤g (1)=-2a -4<0,∴a ≥2符合要求.③若0<a <2,则∃x 0∈(1,+∞),使得ln x 0+2x 0=a ,则g (x )在[1,x 0)上单调递增,在(x 0,+∞)上单调递减,∴g (x )max =g (x 0)=ln x 0(ln x 0+4)-2ax 0-4.∵ln x 0=ax 0-2,∴g (x )max =(ax 0-2)(ax 0+2)-2ax 0-4=(ax 0+2)(ax 0-4).由题意知g (x )max ≤0,即(ax 0+2)(ax 0-4)≤0,-2≤ax 0≤4,即-2≤ln x 0+2≤4⇒1<x 0≤e 2.∵a =ln x 0+2x 0,且由(1)可知f (x )=ln x +2x 在(1,+∞)上单调递减,∴4e 2≤a <2.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫4e 2,+∞. 9.[解] (1)函数f (x )的定义域是(0,+∞),f ′(x )=2x -(a -2)-a x=(x +1)(2x -a )x, 当a ≤0时,f ′(x )>0对任意x ∈(0,+∞)恒成立,所以,函数f (x )在区间(0,+∞)单调递增;当a >0时,由f ′(x )>0得x >a 2,由f ′(x )<0,得0<x <a 2,所以,函数在区间⎝ ⎛⎭⎪⎫a 2,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫0,a 2上单调递减. (2)证明:当a =1时,f (x )=x 2+x -ln x ,要证明f (x )+e x >x 2+x +2,只需证明e x -ln x -2>0,设g (x )=e x -ln x -2,则问题转化为证明对任意的x >0,g (x )>0,令g ′(x )=e x -1x =0,得e x =1x ,容易知道该方程有唯一解,不妨设为x 0,则x 0满足e x 0=1x 0, 当x 变化时,g ′(x )和g (x )变化情况如下表 g (x )min =g (x 0)=e x 0-ln x 0-2=1x 0+x 0-2,因为x 0>0,且x 0≠1,所以g (x )min >21-2=0,因此不等式得证.10[解] (1)由题设知,f ′(x )=e x ⎝ ⎛⎭⎪⎫1+a x +a ln x (x >0), g (x )=e -xf ′(x )=1+a x +a ln x ,g ′(x )=a (x -1)x 2(x >0). 当x ∈(0,1)时,g ′(x )<0,g (x )在区间(0,1)上单调递减,当x ∈(1,+∞)时, g ′(x )>0,g (x )在区间(1,+∞)上单调递增, 故g (x )在x =1处取得最小值,且g (1)=1+a .由于g (x )≥2恒成立,所以1+a ≥2,得a ≥1,即a 的取值范围为[1,+∞).(2)证明:设h (x )=f ′(x )=e x ⎝ ⎛⎭⎪⎫1+a x +a ln x , 则h ′(x )=e x ⎝ ⎛⎭⎪⎫1+2a x -a x 2+a ln x . 设H (x )=1+2a x -a x 2+a ln x (x >0),则H ′(x )=-2a x 2+2a x 3+a x =a (x 2-2x +2)x 3>0,故H (x )在(0,+∞)上单调递增,因为a >2,所以H (1)=a +1>0,H ⎝ ⎛⎭⎪⎫12=1-a ln 2<0, 故存在x 2∈⎝ ⎛⎭⎪⎫12,1,使得H (x 2)=0, 则h (x )在区间(0,x 2)上单调递减,在区间(x 2,+∞)上单调递增, 故x 2是h (x )的极小值点,因此x 2=x 1.由(1)可知,当a =1时,ln x +1x ≥1.因此h (x )≥h (x 1)=e x 1⎝ ⎛⎭⎪⎫1+a x 1+a ln x 1>e x 1(1+a )>0, 即f (x )在(0,+∞)上单调递增.由于H (x 1)=0,即1+2a x 1-a x 21+a ln x 1=0,即1+a ln x 1=a x 21-2a x 1, 所以f (x 1)=e x 1(1+a ln x 1)=a e x 11-2x 1x 21<0=f (x 0). 又f (x )在(0,+∞)上单调递增,所以x 1<x 0.11.[解] (1)由题意,函数f (x )的定义域为(0,+∞),其导函数f ′(x )=ln x -a (x -1),记h (x )=f ′(x ),则h ′(x )=1-ax x . 当a ≤0时,h ′(x )=1-ax x >0恒成立,所以h (x )在(0,+∞)上单调递增,且h (1)=0,所以任意x ∈(1,+∞),h (x )=f ′(x )>0,故a ≤0不成立.当a >0时,若x ∈⎝ ⎛⎭⎪⎫0,1a ,则h ′(x )=1-ax x >0; 若x ∈⎝ ⎛⎭⎪⎫1a ,+∞,则h ′(x )=1-ax x <0. 所以h (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 所以h (x )max =h ⎝ ⎛⎭⎪⎫1a =-ln a +a -1. 令g (a )=-ln a +a -1,则g ′(a )=1-1a =a -1a .当0<a<1时,g′(a)<0;当a>1时,g′(a)>0.所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增.所以g(a)≥g(1)=0,故a=1.(2)证明:当a=1时,f(x)=x ln x-12x2,则f′(x)=1+ln x-x.由(1)知f′(x)=1+ln x-x≤0恒成立,所以f(x)=x ln x-12x2在(0,+∞)上单调递减,且f(1)=-12,f(x1)+f(x2)=-1=2f(1).不妨设0<x1<x2,则0<x1<1<x2,欲证x1+x2>2,只需证x2>2-x1.因为f(x)在(0,+∞)上单调递减,所以只需证f(x2)<f(2-x1),又f(x1)+f(x2)=-1,所以只需证-1-f(x1)<f(2-x1),即f(2-x1)+f(x1)>-1.令f(x)=f(x)+f(2-x)(其中x∈(0,1)),则F(1)=-1.所以欲证f(2-x1)+f(x1)>-1,只需证f(x)>F(1),x∈(0,1),f′(x)=f′(x)-f′(2-x)=1+ln x-x-[1+ln(2-x)-2+x],整理得f′(x)=ln x-ln(2-x)+2(1-x),x∈(0,1),令m(x)=f′(x),则m′(x)=2(1-x)2x(2-x)>0,x∈(0,1),所以f′(x)=ln x-ln(2-x)+2(1-x)在区间(0,1)上单调递增,所以任意x∈(0,1),f′(x)=ln x-ln(2-x)+2(1-x)<0,所以函数f(x)=f(x)+f(2-x)在区间(0,1)上单调递减,所以F(x)>F(1),x∈(0,1),故x1+x2>2.12.[解](1)f′(x)=x-a+a-1x=x2-ax+a-1x=1x(x-1)[x-(a-1)],①若a>2,由f′(x)>0,得0<x<1或x>a-1,由f′(x)<0,得1<x<a-1,则f(x)在(0,1),(a-1,+∞)上单调递增,在(1,a-1)上单调递减;②若a =2,则f ′(x )≥0,f (x )在(0,+∞)上单调递增;③若1<a <2,由f ′(x )>0,得0<x <a -1或x >1,由f ′(x )<0,得a -1<x <1,则f (x )在(0,a -1),(1,+∞)上单调递增,在(a -1,1)上单调递减; ④若a ≤1,由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1, 则f (x )在(1,+∞)上单调递增,在(0,1)上单调递减.综上,若a >2,f (x )在(0,1),(a -1,+∞)上单调递增,在(1,a -1)上单调递减; 若a =2, f (x )在(0,+∞)上单调递增;若1<a <2,f (x )在(0,a -1),(1,+∞)上单调递增,在(a -1,1)上单调递减; 若a ≤1, f (x )在(1,+∞)上单调递增,在(0,1)上单调递减.(2)f (x 1)-f (x 2)>x 2-x 1⇔f (x 1)+x 1>f (x 2)+x 2,令F (x )=f (x )+x =12x 2-ax +(a -1)ln x +x ,对任意的x 1,x 2∈(0,+∞),x 1>x 2,恒有f (x 1)-f (x 2)>x 2-x 1等价于函数f (x )在(0,+∞)上是增函数.f ′(x )=x -a +1+a -1x =1x [x 2-(a -1)x +a -1],令g (x )=x 2-(a -1)x +a -1,当a -1<0,即a <1时,x =a -12<0,故要使f ′(x )≥0在(0,+∞)上恒成立,需g (0)≥0,即a -1≥0,a ≥1,无解.当a -1≥0,即a ≥1时,x =a -12≥0,故要使f ′(x )≥0在(0,+∞)上恒成立,需g ⎝ ⎛⎭⎪⎫a -12≥0,即⎝ ⎛⎭⎪⎫a -122-(a -1)·a -12+a -1≥0, 化简得(a -1)(a -5)≤0,解得1≤a ≤5.综上,实数a 的取值范围是[1,5].。
利用导数求参数范围举例

利用导数求参数范围举例例1.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f (1) 求a、b的值及函数)(x f 的单调区间.(2) 若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. 解:(1)2,21-=-=b a 2122)2(]2,1[)(,2)2(,21)1(23)1(,2722)32(132023,23)().2(222'>-<+>+=-+=+=-+-=+=-=-==----=c c c ,c c f x f c f c f cf c f x x x x x x x f 或解得从而上的最大值为在所以且或得由例2.已知函数1,13)(23=-=-+=x x x bx ax x f 在处取得极值 (1) 求函数)(x f 的解析式.(2) 若过点)2)(,1(-≠m m A 可作曲线y=)(x f 的三条切线,求实数m 的取值范围. 解:(1)求得x x x f 3)(3-=(2)设切点为33)(),3,(2'0300-=-x x f x x x M 因为200'20300020300200302066)(332)(,0332)1)(33(3),1)(33(x x x g m x x x g x A m x x x x m x x M x x m y -=++-=**=++---=----=-则设有三个不同的实数根的方程所以关于可作曲线的三条切线因为过点即所以又切线过点所以切线方程为)2,3(230)1(0)0(1,0)(,)1,0(,),1(),0,()(100)(00000000'---<<-⎩⎨⎧<>*==+∞-∞===的取值范围是所求的实数解得条件是有三个不同实根的充要的方程所以关于的极值点为故函数上单调递减在上单调递增在所以或得由m m g g x x x x g x g x x x g 例3.已知,)(2c x x f +=且)1()]([2+=x f x f f 。
专题05 利用函数极值求参(取值范围)(教师版含解析)-2022年高考数学导数压轴题专项突破

专题05 利用函数极值求参(取值范围)一、单选题1.已知函数()321132f x x x cx d =-++有极值,则c 的取值范围为( )A .14c <B .14c ≤C .14c ≥D .14c >【解析】由题意得()2f x x x c '=-+,若函数()f x 有极值,则140c ∆=->,解得14c <,故选:A . 2.若函数328()2()43f x x ax a x =++++有极大值和极小值,则a 的取值范围是( )A .()2,8-B .17,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .()(),28,-∞-+∞ D .()(),22,-∞-+∞【解析】216()3223f x x ax a '=+++,根据题意知方程21632203x ax a +++=有两个不等实根,于是得216412(2)03a a ∆=-+>,整理得26160a a -->,解得8a >或2a <-, 所以a 的取值范围是()(),28,-∞-+∞.故选:C3.若函数3211()232f x x ax bx c =+++在(0,1)上取得极大值,在(1,2)上取得极小值,则11b a --的取值范围是( ) A .11,32⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .10,3⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭【解析】2()2f x x ax b '=++,函数()f x 在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,2()20f x x ax b ∴'=++=在(0,1)和(1,2)内各有一个根,(0)0f '>,f '(1)0<,f '(2)0>,即021020b a b a b >⎧⎪++<⎨⎪++>⎩,在aOb 坐标系中画出其表示的区域是ABC ,11b a --表示区域内的点(,)P a b 与点(1,1)M 连线的斜率,联立0210b a b =⎧⎨++=⎩,解得01b a =⎧⎨=-⎩,即()1,0B -,同理()()2,0,3,0A C --,结合图象知直线MC 的斜率最小,为0MC k =,直线MB 的斜率最大,为12MB k =, 所以11b a --的取值范围1(0,)2,故选:D .4.已知函数()322f x x ax bx a =+++在1x =处有极值10,则a b +=( )A .7-B .0C .7-或0D .15-或6【解析】由函数()322f x x ax bx a =+++有()232f x x ax b '=++.函数()f x 在1x =处有极小值10.所以()()10110f f ⎧=⎪⎨='⎪⎩,即()()213+201110f a b f a b a ⎧=+=⎪⎨=+++='⎪⎩,解得: 411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩, 当411a b =⎧⎨=-⎩时,()()()238111311f x x x x x '=+-=-+, 令()0f x '>得1x >或113x <-,()0f x '<得1113x -<<, 所以函数()f x 在113,⎛⎫-∞- ⎪⎝⎭上单调递增,在11,13⎛⎫- ⎪⎝⎭上单调递减,在1+,上单调递增.显然满足函数()f x 在1x =处有极小值10.当33a b =-⎧⎨=⎩时,()()22363310f x x x x '=-+=-≥, 所以函数()f x 在R 上单调递增,不满足函数()f x 在1x =处有极小值10. 所以411=7a b +=--,故选:A5.若函数32()1(0)f x x mx m =-++≠在区间(0,2)上的极大值为最大值,则m 的取值范围是( ) A .(0,3)B .(3,0)-C .(,3)-∞-D .(3,)+∞【解析】由题得2()32f x x mx -'=+,令()0f x '=,得23x m=或0x =(舍去), 若0m <,则当02x <<时,()0f x '<,与题设矛盾;若0m >,则当203x m <<时,()0f x '>,当223m x <<时,()0f x '<,故23x m =为函数的极大值点, 因为()f x 在区间(0,2)内的极大值为最大值,所以2(0,2)3m ∈,即2023m<<, 所以03m <<.故选:A.6.已知函数()2e xf x ax =-(a ∈R )有三个不同的零点,则实数a 的取值范围是( )A .e ,4⎛⎫+∞ ⎪⎝⎭B .e ,2⎛⎫+∞ ⎪⎝⎭C .2e ,4⎛⎫+∞ ⎪⎝⎭D .2e ,2⎛⎫+∞ ⎪⎝⎭【解析】令2()0xf x e ax =-=,显然0x ≠,所以2e xa x=,令()2e xg x x =(0x ≠),则问题转化为“若y a =图象与()y g x =图象有三个交点,求a 的取值范围”.()()32e x x g x x-'=,令()0g x '=,解得2x =,∴当0x <或2x >时,()0g x '>,()g x 在(,0)-∞,(2,)+∞单调递增,当02x <<时,()0g x '<,()g x 在(0,2)单调递减,()g x 在2x =处取极小值()2e 24g =,作出()y g x =的简图,由图可知,要使直线y a =与曲线()2ex g x x=有三个交点,则2e 4a >,故实数a 的取值范围是2e ,4⎛⎫+∞ ⎪⎝⎭.故选:C.7.已知函数3211()(,,)32f x x bx cx d b c d R =+++∈有两个极值点12,(0,1)x x ∈,则22(1)c b +-的取值范围是( ) A .(0,1)B .10,2⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,16⎛⎫ ⎪⎝⎭【解析】已知函数3211()(,,)32f x x bx cx d b c d R =+++∈,则()2f x x bx c '=++, ()f x 的两个极值点分别是12,(0,1)x x ∈,()()22001100242012f c f c b b b b f c b ⎧=>⎪=++>⎪⎪⎛⎫∴⎨-=-+< ⎪''⎪⎝⎭⎪⎪<-<⎩',即:2010420c b c b c b >⎧⎪++>⎪⎨>⎪⎪-<<⎩,以上不等式对应的平面区域如图所示,三个顶点坐标为()2,1A -,()1,0B -,()0,0O ,则()221c b k +-=,表示以()0,1-为中心的双曲线,由选项可知0k >,双曲线的实轴在c 轴上,所以双曲线经过A ,B ,O 三点取得最值, 经过A 点时,0k =,经过B 点时,0k =,经过O 点时,1k =, 因为A ,B ,O 三点不在可行域内,所以()0,1k ∈,故选:A .8.若函数32()312(0)f x x ax x a =-+>存在两个极值点1x ,2x ,则()()12f x f x +的取值范围是( ) A .(,16]-∞B .(,16)-∞C .(16,)+∞D .[16,)+∞【解析】由32()312(0)f x x ax x a =-+>,则2()3612f x x ax '=-+, 因为函数()f x 存在两个极值点1x ,2x ,所以23643120a ∆=-⨯⨯>,即2a > ,12122,4x x a x x +=⋅=,()()()123232111222312312f x f x x ax x x ax x +-+-++=()()()()221211*********3212x x x x x x x a x x x x x ⎡⎤=--+-⋅++⎣⋅++⎦()()()()1212121212221233212a x x x x x x x x x x x x ⎡⎤⎡⎤=---+⎣⎦⎣⎦++⋅+⋅+()()22241234824a a a a a =---+ 3424a a =-+设()3g 424a a a =-+,则()g a '()221224122a a =-+=--当2a >时,()g a '0<,则()g a 在()2,+∞上单调递减.所以()()g g 216a <=,所以()()12f x f x +的取值范围是(,16)-∞,故选:B二、多选题9.已知函数2()2ln f x ax x x =-+存在极值点,则实数a 的值可以是( ) A .0B .e -C .12D .1e【解析】函数2()2ln f x ax x x =-+的定义域为()0,∞+,且()122'=-+f x ax x, 由题意可知,函数()y f x =在定义域()0,∞+上存在极值点, 得()1220'=-+=f x ax x在()0,∞+有两个解, 由()0f x '=可得2112=-a x x ,令10t x =>,则212=-a t t ,则实数a 的取值范围为函数212=-y t t 在()0,∞+上的值域且满足0∆>,对于二次函数()()2211121222=--=--+y t t t ,当0t >时,()21111222=--+≤y t , 对于二次方程212=-a t t ,即2102-+=t t a ,120∆=->a ,解得12a <.因此,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.故选:ABD.10.已知函数321()23f x x x =+-在区间(2,3)a a -+上存在最小值,则整数a 可以取( )A .2-B .1-C .0D .1【解析】()()222f x x x x x '=+=+,()0f x '=时,2x =-或0x =,当2x <-或0x >时,()0f x '>,当20x -<<时,()0f x '<,所以函数的单调递增区间是(),2-∞-和()0,∞+,函数的单调递减区间是()2,0-, 所以函数的极大值点是2-,极小值点是0,且()02f =-,那么当321223x x +-=-,解得:0x =或3x =- ,所以函数在区间()2,3a a -+上存在最小值, 则32030a a -≤-<⎧⎨+>⎩,解得:12a -≤<.故选:BCD 11.若函数322()21f x x x a x =++-有两个极值点则a 的值可以为( ) A .0 B .1C .2D .3【解析】322()21f x x x a x =++-,22()34f x x x a '∴=++,因为函数322()21f x x x a x =++-有两个极值点,则22()34f x x x a '=++与x 轴有两个交点,即224430a ∆=-⨯⨯>解得232333a -<<,故满足条件的有AB ,故选:AB 12.已知函数f (x )=ax 2﹣x +ln x 有两个不同的极值点x 1,x 2,若不等式()()()12122f x f x x x t +<++恒成立,则t 的取值可能是( ) A .112ln2-- B .112ln2-+ C .113ln 2--D .113ln 2-+【解析】2121()21ax x f x ax x x-+'=-+=,0x >,由题意得1x ,2x 为2210ax x -+=的两不等正根,所以10102180a aa ⎧>⎪⎪⎪>⎨⎪∆=->⎪⎪⎩,解得108a <<,22121211122212()()2()2()f x f x x x ax x lnx ax x lnx x x +-+=-++-+-+22121212()3()()a x x x x ln x x =+-++, 212121212[()2]3()()a x x x x x x ln x x =+--++5ln214a a=---, 令h (a )5ln214a a =---,108a <<, 则()254'04a h a a -=>,h (a)在1(0,)8上单调递增,h (a )1()2ln2118h <=-, 因为1212()()2()f x f x x x t +<++恒成立,所以1212()()2()t f x f x x x >+-+恒成立, 所以2ln211t -.故选:BD . 三、填空题13.若函数2()(3)ln f x x a x x =+++在区间(1,2)上存在唯一的极值点,则实数a 的取值范围为________.【解析】212(3)1()2(3)x a x f x x a x x+++'=+++=,函数()f x 在区间(1,2)上存在唯一的极值点,则2()2(3)10g x x a x =+++=在区间(1,2)上有一个解, ∴(1)(2)(6)(215)0g g a a =++<,解得1562a -<<-. 14.已知函数2()2ln xe f x k x kx x =+-,若2x =是函数()f x 的唯一极值点,则实数k 的取值范围是____.【解析】由题意,()f x 定义域为()0,∞+,322()0x x xe e kf x k x x'-=+-=有唯一的实数根2x =,即方程()()220x x e kx --=有唯一的实数根2x =,所以20xe kx -=无变号零点,即2xe k x=无变号零点.设2()xe g x x =,则()32()x e x g x x-'=, ()0,2x ∈时,()0g x '<,()g x 为减函数;()2,x ∈+∞时,()0g x '>,()g x 为增函数;所以2e ()(2)4g x g ≥=;所以k 的取值范围为:2,4e ⎛⎤-∞ ⎥⎝⎦.15.已知函数1()2x x f x ax e+=-有两个极值点,则实数a 的取值范围是________. 【解析】函数1()2x x f x ax e +=-,则()2xxf x a e '=+,因为函数()f x 有两个极值点,则()0f x '=有两个不同的实数根,即2xx a e -=有两个不同的实数根,令()x xg x e =,所以函数()y g x =与2y a =-的图像有两个不同的交点,因为1()xx g x e '-=, 则当1x <时,()0g x '>,则()g x 单调递增,当1x >时,()0g x '<,则()g x 单调递减, 所以当1x =时,()g x 取得最大值1(1)g e=,作出函数()g x 的图像如图所示, 由图像可知,102a e <-<,解得102a e -<<,所以实数a 的取值范围是1,02e ⎛⎫- ⎪⎝⎭. 故答案为:1,02e ⎛⎫- ⎪⎝⎭.16.若函数432111()(1)1432f x x m x mx =-+++在0x =和1x =时取极小值,则实数m 的取值范围是______ 【解析】432111()(1)1432f x x m x mx =-+++,()()32()(1)1f x x m x mx x x x m '=-++=-- 当0m =时,0x =时不是取得极小值,不合题意;当0m <时,()()(),0,0,x m f x f x '∈>单调递增,()()()0,1,0,x f x f x '∈<单调递减,0x =时不是取得极小值,不合题意;当1m =时,1x =时不是取得极小值,不合题意;当1m 时,()()()0,1,0,x f x f x '∈>单调递增,()()()1,,0,x m f x f x '∈<单调递减,1x =时不是取得极小值,不合题意;当()0,1m ∈时,()()(),0,0,x f x f x '∈-∞<单调递减,()()()0,,0,x m f x f x '∈>单调递增,()()(),1,0,x m f x f x '∈<单调递减, ()()()1,,0,x f x f x '∈+∞>单调递增,函数432111()(1)1432f x x m x mx =-+++在0x =和1x =时取极小值,符合题意. 所以实数m 的取值范围是0,1. 四、解答题17.已知1x =-,2x =是函数32()13x f x ax bx =-+++的两个极值点.(1)求()f x 的解析式;(2)记()()g x f x m =-,[24]x ∈-,,若函数()g x 有三个零点,求m 的取值范围. 【解析】(1)因为32()13x f x ax bx =-+++,所以2()2f x x ax b '=-++根据极值点定义,方程()0f x '=的两个根即为1x =-,2x =,2()2f x x ax b '=-++,代入1x =-,2x =,可得120440a b a b --+=⎧⎨-++=⎩,解之可得,122a b ⎧=⎪⎨⎪=⎩, 故有3211()2132f x x x x =-+++;(2)根据题意,3211()2132g x x x x m =-+++-,[2x ∈-,4],根据题意,可得方程32112132m x x x =-+++在区间[2-,4]内有三个实数根, 即函数3211()2132f x x x x =-+++与直线y m =在区间[2-,4]内有三个交点, 又因为2()2f x x x '=-++,则令()0f x '>,解得12x -<<;令()0f x '<,解得2x >或1x <-, 所以函数()f x 在[)2,1--,(]2,4上单调递减,在(1,2)-上单调递增; 又因为1(1)6f -=-, ()1323f =,5(2)3f -=, ()1343f =-, 函数图象如下所示:若使函数3211()2132f x x x x =-+++与直线y m =有三个交点,则需使1563m-<,即15,63m ⎛⎤∈- ⎥⎝⎦. 18.已知a 为实数,4x =时函数()2ln 12f x a x x x =+-的1个极值点.(1)求实数a 的值;(2)若直线y b =与函数()y f x =的图象有三个交点,求b 的取值范围.【解析】(1)∵函数()2ln 12f x a x x x =+-,∴()212af x x x=+-', ∵4x =是函数()2ln 12f x a x x x =+-的一个极值点,∴()40f '=,得81204a+-=,得16a =; (2)当16a =时,()216ln 12f x x x x =+-,()()()22416212x x f x x x x--'=+-=, 当()0f x '>时,可得4x >或者02x <<;当()0f x '<时,可得24x <<;∴函数()f x 的单调增区间为:()4,+∞,()0,2;函数()f x 的单调减区间为:()2,4;直线y b =与函数()y f x =的图象有且仅有3个交点,()432ln 232f =-,()216ln 220f =-, 由(2)知()f x 在2x =时取极大值,在4x =时取极小值,画出()f x 的图象:直线y b =与函数()y f x =的图象有且仅有3个交点, ∴直线y b =必须在直线32ln 232y和直线16ln 220y =-之间,∴()()42f b f <<,即32ln 23216ln 220b -<<-.19.已知函数()32f x x bx cx =++,()b c R ∈,(1)当1,1b c ==-时,求函数()f x 的单调区间;(2)设1x ,2x 是函数()f x 的两个极值点,当122x x -=时,求()1f 的最小值. 【解析】()1因为32()=+-f x x x x ,2()321,f x x x ∴=+-' 由'()0f x >,得1x <-或13x >,由'()0f x <,得113x -<<,所以函数的单调递增区间为(,1)-∞-和1(,)3+∞,单调递减区间为1(1,)3-()2由()'232f x x bx c =++,知1223b x x +=-,123cx x =,又122x x -=,所以22212121244()()4493b c x x x x x x -=+-=-=,即233b c =-,所以()22131111112()33244b f bc b b =++=+-=+-≥-,所以当32b =-时,94c =-,()22412430b c b c ∆=-=->,()1114f =-,故当32b =-,94c =-时,()1f 的最小值为114-.20.已知函数3218()(21)3()33f x x ax a x a a R =-+-+-∈.(1)若函数()f x 在2x =时取得极值,求实数a 的值;(2)若()0f x ≥对任意[1,)x ∈+∞恒成立,求实数a 的取值范围.【解析】(1)2()=221f x x ax a '-+-,依题意有(2)=0f ',即44210a a -+-=, 解得:32a =,检验:当32a =时,2()=32f x x x '-+,所以()=(1)(2)f x x x '--, 此时函数()f x 在(1,2)单调递减,在(2,)+∞单调递增,满足在2x =时取得极值,综上32a =. (2)依题意()0f x ≥对任意[1,)x ∈+∞恒成立等价转化为min ()0f x ≥在[1,)x ∈+∞恒成立, 因为2()=221f x x ax a '-+-,令'()0f x =得:1221,1x a x =-=,①当211a -≤即1a ≤时,函数'()0f x ≥在[1,)+∞恒成立,则()f x 在[1,)+∞单调递增, 于是min ()(1)220f x f a ==-≥,解得:1a ≤,此时:1a ≤;②当211a ->即1a >时,函数()f x 在[1,21]a -单调递减,在[21,)a -+∞单调递增, 于是min ()(21)(1)220f x f a f a =-<=-<,不合题意,此时:a ∈∅综上所述:实数a 的取值范围是1a ≤.21.已知()()2122x f x ax ax x e =-++-,其中0a >,e 为自然对数的底数. (1)若2a =,求()f x 的单调区间;(2)若()f x 在1x =处取得极小值,求实数a 的取值范围.【解析】(1)当2a =时,()()22x f x x ax x e =-++-,()()()()22212x x x f x x e x e x e '=-+++-=--.令()0f x '=,可得1ln 2x =或21x =.由()0f x '>可得ln 2x <或1x >,由()0f x '<可得ln 21x <<.所以()f x 的单调递增区间为(),ln 2-∞,()1,+∞,单调递减区间为()ln 2,1.(2)()()()()21x x x f x ax a e x e x a e '=-+++-=--.令()0f x '=,可得1ln x a =或21x =.①若ln 1a <,即0a e <<时,当ln 1a x <<时,()0f x '<;当1x >时,()0f x '>,此时()f x 在1x =处取得极小值.②若ln 1a >时,即a e >时,当1x <时,()0f x '>;当1ln x a <<时,()0f x '<,此时()f x 在1x =处取得极大值.③当ln 1a =时,即a e =时,()0f x '≥恒成立,此时()f x 无极值.综上所述,实数a 的取值范围为()0,e .22.已知函数()()3232612f x ax a x x =-+++. (1)试讨论函数()f x 的单调区间;(2)当1a =时,求函数()f x 的极值;(3)若函数()f x 在1x =处取得极大值,求实数a 的取值范围.【解析】(1)()()()()23326321f x ax a x ax x '=-++=--,当0a =时,()()61f x x '=--,在(,1)-∞上,()0f x '>,()f x 单调递增,在(1,)+∞上,()0f x '<,()f x 单调递减,当0a ≠时,若0a >, ①21a <时,即2a >时,在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上()0f x '>,()f x 单调递增, 在2,1a ⎛⎫ ⎪⎝⎭上()0f x '<,()f x 单调递减, ②21a 时,即2a =时,在(,)-∞+∞上()0f x '≥,()f x 单调递增, ③21>a 时,即02a <<时,在2(,1),,a ⎛⎫-∞+∞ ⎪⎝⎭上()0f x '>,()f x 单调递增, 在21,a ⎛⎫ ⎪⎝⎭上()0f x '<,()f x 单调递减, 若0a <,21a <时,即0a <时,在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上()0f x '<,()f x 单调递减, 在2,1a ⎛⎫ ⎪⎝⎭上()0f x '>,()f x 单调递增. 综上所述,当0a =时,()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,当2a >时,()f x 在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上单调递增,在2,1a ⎛⎫ ⎪⎝⎭上()f x 单调递减, 当2a =时,()f x 在(,)-∞+∞上()f x 单调递增,当02a <<时,()f x 在2(,1),,a ⎛⎫-∞+∞ ⎪⎝⎭上()f x 单调递增,在21,a ⎛⎫ ⎪⎝⎭上单调递减, 当0a <时,()f x 在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上单调递减,在2,1a ⎛⎫ ⎪⎝⎭上()f x 单调递增. (2)当1a =时,329()612f x x x x =-++, ()()()223963323(21)f x x x x x x x '=-+=-+=--,在(,1),(2,)-∞+∞上,()0f x '>,()f x 单调递增,在()1,2上,()0f x '<,()f x 单调递减,所以()()712f x f ==极大值,()()23f x f ==极小值. (3)由题意可知,函数()f x 在1x =处取得极大值,当0a =时,()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减, 所以1x =处取得极大值,符合题意,当2a >时,()f x 在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上单调递增,在2,1a ⎛⎫ ⎪⎝⎭上()f x 单调递减, 所以1x =处取得极小值,不符合题意;当2a =时,()f x 在(,)-∞+∞上()f x 单调递增,没有极值,不合题意,当02a <<时,()f x 在2(,1),,a ⎛⎫-∞+∞ ⎪⎝⎭上()f x 单调递增,在21,a ⎛⎫ ⎪⎝⎭上单调递减, 所以1x =处取得极大值,符合题意,当0a <时,()f x 在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上单调递减,在2,1a ⎛⎫ ⎪⎝⎭上()f x 单调递增. 所以1x =处取得极大值,符合题意,综上所述a 的取值范围为(,2)-∞.。
利用导数求参数取值的一道高考题剖析

解题篇经典题突破方法高考数学2018年9月十摩錢理化y u用导数求參数取值的一道高考题剖桁■河南省信阳高级中学郭宏彬利用导数研究含参函数的性质(单调性、零点、极值、最值等),以及利用含参函数的性质求参数的取值范围是近几年高考的热点。
通过判断导数的正负确定函数的增减,寻找与函数的极值、最值、零点个数等的对应关系是解题的关键。
本文通过对2018年的一道高考题进行一题多解、一题多变的详细剖析,希望对同学们的学习能有所帮助。
一、题目及分析例题(2018年全国卷n理21)已知函数/(X)=e-a x2。
(I)若a=1,证明:当 x>0 时,/1;(n)若/(x)在(〇,+…)上只有一个零^点,•求a。
分析:I)常规思路是求导,无法求解时为:当不等式问题用代数法求解困难或不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图像的上下关系问题,数形结合求解。
题型5-----利用函数的图像求函数的交点问题例5已知函数^=/(x)的周期为2,当 x e[—1,1]时,/(:r)=x£,那么函数 ^ =/(x)的图像与函数|g x |的图像的交点共有()。
八10个B9个C.8个D.1个解析:在同一坐标系中作出函数^ =/(x)与函数^=|l g x|的图像,如图6所示,yk-1 〇\^12 3 4 5 6^7 8 9 10 %图6分析图像可知,共有10个交点。
故选八。
二次求导,利用导数求解问题时注意导函数的正负对应着导函数的增减,导函数的增减对应着二阶导函数的正负。
一般导函数的正负无法判断时可以利用二阶导数求导函数的增减情况及最大(小)值,进而比较导函数值的正负情况,最后确定原函数的增减情况。
(n)确定原函数的增减情况,再结合极值利用零点存在定理和零点唯一存在定理讨论函数的零点个数。
二、一题多解(工)方法一:当《 =1时,/(:^) = ^ —工2,/’()=e— 2〇〇,令 /”〇 =e — 2=0,得:r=ln2,即 x>l n2 时 /'()为增函数,x<In2时/ (x)为减函数,所以x =l n2时,/( j:)m in=2— 21n2>0,所以原函数为R上 的增函数,即当x>0时,/&)>/(0)=1。
例说高考题中的利用导数求参数范围

例说高考题中的利用导数求参数范围导数,作为解决与高次函数有关问题的一种工具,有着无可比拟的优越性。
一 与二次函数的性质、单调性、不等式等相联系 求解策略:利用“要使a x f >)(成立,只需使函数的最小值a x f >min)(恒成立即可;要使a x f <)(成立,只需使函数的最大值a x f <max)(恒成立即可”.这也是近两年高考考查和应用最多的一种.例1(05湖北理)已知向量a =(2x ,1+x ),a =(x -1,t ),若b a x f ∙=)(在区间(-1,1)上是增函数,求t 的取值范围.解析:由向量的数量积定义,)(x f =2x (x -1)+(1+x )t =3x-+2x +tx +t∴)(x f '=23x -+x 2+t .若)(x f 在区间(-1,1)上是增函数,则有)(x f '≥0⇔t ≥23x -x 2在 (-1,1)上恒成立.若令)(x g =23x -x 2=-3(31-x )2-31在区间[-1,1]上,max)(x g =)1(-g =5,故在区间(-1,1)上使t ≥)(x g 恒成立,只需t ≥)1(-g 即可,即t ≥5.即t 的取值范围是[5,∞).点评:本题除了用导数反映单调性,还借助了二次函数的性质求出最值,且要注意边界值的取舍。
例2使不等式4x -22x >a -2对任意的实数x 都成立,求实数a 的取值范围. 解析:注意到不等式的次数较高,应想到构造函数,求导.令)(x f =4x -22x ,则如果原不等式对任意的实数x 都成立等价于m in)(x f >a -2.又)(x f '=34x -x 4=42x (1-x ),令)(x f '=0,解得,x =0或x =1.)(x f '的符号及)(x f 的单调性如下:因为)(x f 在R 上的极值只有一个,故此极小值即为最小值,即m in)(x f =)1(f = -1,∴m in)(x f = -1>a -2,即a >3.点评:本题是利用导数求得函数的最值,进而求出参数范围的。
高考数学:导数压轴题——根据极值求参数题型方法

高考数学:导数压轴题——根据极值求参数题型方法
1.已知函数的极值求参数时,通常利用函数的导数在极值点处的取值等于零来建立关于参数的方程.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.
2.已知函数的最值求参数,一般先求出最值(含参数),再根据最值列方程或不等式(组)求解.
经典例题
设f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f '(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.
思路分析
(1)先求出g(x)=f '(x)的解析式,然后求函数的导数g'(x),再利用函数单调性和导数之间的关系即可求g(x)的单调区间;
(2)分别讨论a的取值范围,根据函数极值的定义,进行验证即可得出结论.。
利用导数解决含参的问题(word版含答案和详细解析)

利用导数解决含参的问题(word版含答案和详细解析)高考理科复专题练利用导数解决含参的问题考纲要求:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
命题规律:利用导数探求参数的范围问题每年必考,有时出现在大题,有时出现在小题中,变化比较多。
不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理。
这也是2018年考试的热点问题。
高考题讲解及变式:利用单调性求参数的范围例1.【2016全国1卷(文)】若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()。
A。
[-1,1]B。
(-1,1)C。
(-∞,-1]∪[1,+∞)D。
(-∞,-1)∪(1,+∞)答案】C解析】因为f(x)在(-∞,+∞)上单调递增,所以f'(x)>0.将f(x)代入f'(x)得f'(x)=1-2sinx+acosx。
要使f'(x)>0,即要使1-2sinx+acosx>0.因为-1≤sinx≤1,所以1-2sinx≥-1.所以acosx>-1,即a>-1/cosx。
因为cosx=1时,a不等于-1;cosx=-1时,a不等于1.所以a∈(-∞,-1]∪[1,+∞),选C。
变式1.【2018XXX高三实验班第一次月考(理)】若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是_______。
答案】k≥1或k≤-1解析】在区间(1,+∞)上,f'(x)=k-1/x。
2020版高考数学一轮复习高考大题专项一突破1利用导数求极值、最值、参数范围理北师大版

突破1 利用导数求极值、最值、参数范围1.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.2.(2018山东潍坊一模,21)已知函数f(x)=a ln x+x2.(1)若a=-2,判断f(x)在(1,+∞)上的单调性;(2)求函数f(x)在[1,e]上的最小值.3.(2018山东师大附中一模,21)已知函数f(x)=(x-a)e x(a∈R).(1)当a=2时,求函数f(x)在x=0处的切线方程;(2)求f(x)在区间[1,2]上的最小值.4.(2018辽宁抚顺3月模拟,21改编)已知函数f(x)=ax-2ln x(a∈R).若f(x)+x3>0对任意x∈(1,+∞)恒成立,求a的取值范围.5.设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.6.(2018江西南昌一模,21改编)已知函数f(x)=e x-a ln x-e(a∈R),其中e为自然对数的底数.若当x ∈[1,+∞)时,f(x)≥0恒成立,求a的取值范围.参考答案高考大题专项练参考答案高考大题专项一函数与导数突破1 利用导数求极值、最值、参数范围1.解 (1)由题意知f'(x)=(x-k+1)e x.令f'(x)=0,得x=k-1.当x∈(-∞,k-1)时,f'(x)<0,当x∈(k-1,+∞)时,f'(x)>0.所以f(x)的递减区间是(-∞,k-1),递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上递减,在[k-1,1]上递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.2.解 (1)当a=-2时,f'(x)=2x-2x =2(x2-1)x,由于x∈(1,+∞),故f'(x)>0,∴f (x )在(1,+∞)递增.(2)f'(x )=2x+x x =2x 2+xx,当a ≥0时f'(x )≥0,f (x )在[1,e]上递增,∴f min (x )=f (1)=1.当a<0时,由f'(x )=0解得x=±√-x2(负值舍去),设x 0=√-x2.若√-x2≤1,即a ≥-2,也就是-2≤a<0时,x ∈[1,e],f'(x )>0,f (x )递增,∴f min (x )=f (1)=1. 若1<√-x 2<e,即-2e 2<a<-2时,x ∈[1,x 0],f'(x )≤0,f (x )递减,x ∈[x 0,e],f'(x )≥0,f (x )递增. 故f min (x )=f (x 0)=-x2+a ln √-x 2=x2[ln (-x2)-1].若√-x2≥e,即a ≤-2e 2时,x ∈[1,e],f'(x )<0,f (x )递减.∴f min (x )=f (e)=e 2+a.综上所述:当a ≥-2时,f (x )的最小值为1;当-2e 2<a<-2时,f (x )的最小值为x 2[ln (-x2)-1];当a ≤-2e 2时,f (x )的最小值为e 2+a. 3.解 (1)设切线的斜率为k.因为a=2,所以f (x )=(x-2)e x,f'(x )=e x(x-1).所以f (0)=-2,k=f'(0)=e 0(0-1)=-1. 所以所求的切线方程为y=-x-2,即x+y+2=0.(2)由题意得f'(x )=e x (x-a+1),令f'(x )=0,可得x=a-1.①若a-1≤1,则a ≤2,当x ∈[1,2]时,f'(x )≥0,则f (x )在[1,2]上递增.所以f (x )min =f (1)=(1-a )e .②若a-1≥2,则a ≥3,当x ∈[1,2]时,f'(x )≤0,则f (x )在[1,2]上递减.所以f (x )min =f (2)=(2-a )e 2.③若1<a-1<2,则2<a<3,所以f'(x ),f (x )随x 的变化情况如下表:x(1,a-1)a-1(a-1,2)f'(x)- 0 +f (x ) 递减极小值 递增所以f (x )的递减区间为[1,a-1],递增区间为[a-1,2].所以f (x )在[1,2]上的最小值为f (a-1)=-e a-1. 综上所述:当a ≤2时,f (x )min =f (1)=(1-a )e; 当a ≥3时,f (x )min =f (2)=(2-a )e 2;当2<a<3时,f (x )min =f (a-1)=-e a-1. 4.解由题意f (x )+x 3>0,即a>-x 2+2ln xx对任意x ∈(1,+∞)恒成立,记p (x )=-x 2+2ln xx,定义域为(1,+∞),则p'(x )=-2x+2-2ln x x 2=-2x 3+2-2ln xx 2,设q (x )=-2x 3+2-2ln x ,q'(x )=-6x 2-2x , 则当x>1时,q (x )递减, 所以当x>1时,q (x )<q (1)=0, 故p'(x )<0在(1,+∞)上恒成立, 所以函数p (x )=-x 2+2ln xx在(1,+∞)上递减,所以当x>1时,p (x )<p (1)=-1,得a ≥-1,所以a 的取值范围是[-1,+∞). 5.解 (1)由已知得f (0)=2,g (0)=2,f'(0)=4,g'(0)=4.而f'(x )=2x+a ,g'(x )=e x(cx+d+c ), 故b=2,d=2,a=4,d+c=4. 从而a=4,b=2,c=2,d=2.(2)由(1)知,f (x )=x 2+4x+2,g (x )=2e x(x+1).设函数F (x )=kg (x )-f (x )=2k e x(x+1)-x 2-4x-2,则F'(x )=2k e x (x+2)-2x-4=2(x+2)(k e x-1). 由题设可得F (0)≥0,即k ≥1. 令F'(x )=0得x 1=-ln k ,x 2=-2.①若1≤k<e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F'(x )<0; 当x ∈(x 1,+∞)时,F'(x )>0.即F (x )在(-2,x 1)递减,在(x 1,+∞)递增.故F (x )在[-2,+∞)的最小值为F (x 1). 而F (x 1)=2x 1+2-x 12-4x 1-2=-x 1(x 1+2)≥0. 故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k=e 2,则F'(x )=2e 2(x+2)(e x -e -2).从而当x>-2时,F'(x )>0,即F (x )在(-2,+∞)递增.而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k>e 2,则F (-2)=-2k e -2+2=-2e -2(k-e 2)<0.从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2].6.解由f (x )=e x -a ln x-e(a ∈R),得f'(x )=e x -xx ,当a<0时,f'(x )=e x -xx >0,f (x )在x ∈[1,+∞)上递增,f (x )min =f (1)=0(合题意). 当a>0时,f'(x )=e x -x x , 当x ∈[1,+∞)时,y=e x ≥e .①当a ∈(0,e]时,因为x ∈[1,+∞),所以y=x x ≤e,f'(x )=e x -xx ≥0,f (x )在[1,+∞)上递增,f (x )min =f (1)=0(合题意).②当a ∈(e,+∞)时,存在x 0∈[1,+∞),满足f'(x )=e x -xx =0, f (x )在x 0∈[1,x 0)上递减,在(x 0,+∞)上递增,故f (x 0)<f (1)=0.不满足x ∈[1,+∞)时,f (x )≥0恒成立,综上所述,a 的取值范围是(-∞,e].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用导数—极限法解一类求参数取值范围的高考题虽说在现行高中数学教材中没有给出极限的定义(只是在导数的定义中使用了极限符号),但在教材中从多方位多角度的渗透了极限思想:在研究双曲线的渐近线、求2的近似值、二分法求方程近似解、幂指对函数增长速度的快慢、介绍无理数指数幂的意义以及在统计中研究密度曲线等等都渗透了极限思想.在即将出台的高中数学课标及教材中均会给出极限的定义,所以这里先由函数极限的δ-ε定义给出函数极限的保号性的相关结论,再给出该结论在求解函数问题中的应用. 函数极限的δ-ε定义 若存在实数b ,0,0εδ∀>∃>,当0x a δ<-<时,()f x b ε-<,则当x a →时,函数()f x 存在极限,且极限是b ,记作lim ()x af x b →=. 由该定义,还可得函数极限的保号性 (1)①若0)(lim >=→b x f a x ,则{}0)(,,,0>≠+<<-∈∀>∃x f a t a t a t x 且δδδ;②若0)(lim >=+→b x f a x ,则0)(),,(,0>+∈∀>∃x f a a x δδ; ③若0)(lim >=-→b x f a x ,则0)(),,(,0>-∈∀>∃x f a a x δδ. (2)①若0)(lim <=→b x f a x ,则{}0)(,,,0<≠+<<-∈∀>∃x f a t a t a t x 且δδδ; ②若0)(lim <=+→b x f a x ,则0)(),,(,0<+∈∀>∃x f a a x δδ; ③若0)(lim <=-→b x f a x ,则0)(),,(,0<-∈∀>∃x f a a x δδ. 题1 设函数)1ln()1()(++=x x x f .若对所有的0≥x ,都有ax x f ≥)(成立,求实数a 的取值范围. (答案:]1,(-∞.)题2设函数x x x f --=ee )(,若对所有的0≥x ,都有ax xf ≥)(,求实数a 的取值范围. (答案:]2,(-∞.)题3设函数x x x f cos 2sin )(+=,若对所有的0≥x ,都有ax x f ≤)(,求实数a 的取值范围.(答案:⎪⎭⎫⎢⎣⎡+∞,31.)题4设函数2)1e ()(ax x x f x --=,若当0≥x 时,都有0)(≥x f ,求a 的取值范围.(答案:]1,(-∞.)题5设函数21e )(ax x x f x ---=,若当0≥x 时,0)(≥x f ,求a 的取值范围.(答案:⎥⎦⎤ ⎝⎛∞-21,.) 题1的解 令ax x f x g -=)()(,得0)1l n ()1()(≥-++=ax x x x g 在),0[+∞上恒成立.考虑到0)0(=g ,只需)(x g 在),0[+∞上单调递增.问题转化为:01)1ln()(≥-++='a x x g 在),0[+∞上恒成立.所以1]1)1[ln(min =++≤x a .可见1≤a 满足题设.若1>a ,则01]1)1[ln(lim )(lim 00<-=-++='++→→a a x x g x x . 由函数极限的定义得:存在0>δ,当),0(δ∈x 时,0)(<'x g ,所以)(x g 在),0(δ上单调递减.所以当),0(δ∈x 时,ax x f g x g <=<)(,0)0()(,这与题设矛盾!因此,所求a 的取值范围是]1,(-∞.对于题2、3,也可这样简洁求解.这就是文献[1]给出的解法(实际上,由下文的定理3知,题4、5也可这样求解),本文就把这种解法叫做导数—极限法,下面给出这种解法的一般结论.定理 1 设函数)(x f 满足“当0x x ≥时,函数)(x f 可导,)(x f '的最小值是1a ,且001)(,)(lim 0ax x f a x f x x =='+→”.若0x x ≥∀时都有ax x f ≥)(,则a 的取值范围是],(1a -∞.证明 设ax x f x g -=)()(,得a x f x g -'=')()(.当1a a ≤时,可得“0x x ≥∀时都有a a x f ≥≥'1)(”,所以“0x x ≥∀时都有0)(≥'x g ”,所以0x x ≥∀时都有0)()()(000=-=≥ax x f x g x g ,即ax x f ≥)(.当1a a >时,得0])([lim )(lim 100<-=-'='++→→a a a x f x g x x x x ,所以存在0>δ,当),(00δ+∈x x x 时,0)(<'x g ,)(x g 是减函数,得ax x f x g x g <=<)(0)()(0,,这与题设矛盾!所以a 的取值范围是],(1a -∞.推论 设函数)(x f 满足“当0≥x 时,函数)(x f 可导,)(x f '的最小值是1a ,且0)0(,)(lim 10=='+→f a x f x ”.若0≥∀x 时都有ax x f ≥)(,则a 的取值范围是],(1a -∞.定理 2 设函数)(x f 满足“当0x x ≤时,函数)(x f 可导,)(x f '的最小值是1a ,且001)(,)(lim 0ax x f a x f x x =='-→”.若0x x ≤∀时都有ax x f ≤)(,则a 的取值范围是],(1a -∞.证明 设ax x f x g -=)()(,得a x f x g -'=')()(.当1a a ≤时,可得“0x x ≤∀时都有a a x f ≥≥'1)(”,所以“0x x ≤∀时都有0)(≥'x g ”,所以0x x ≤∀时都有0)()()(000=-=≤ax x f x g x g ,即ax x f ≤)(.当1a a >时,得0])([lim )(lim 100<-=-'='--→→a a a x f x g x x x x ,所以存在0>δ,当),(00x x x δ-∈时,0)(<'x g ,)(x g 是减函数,得ax x f x g x g >=>)(0)()(0,,这与题设矛盾!所以a 的取值范围是],(1a -∞.定理 3 设函数)(x f 满足“当0x x ≥时,函数)(x f 可导,)(x f '的最大值是1a ,且001)(,)(lim 0ax x f a x f x x =='+→”.若0x x ≥∀时都有ax x f ≥)(,则a 的取值范围是)[1∞+,a .证明 在定理1中令)()(x g x f -=可证.定理 4 设函数)(x f 满足“当0x x ≤时,函数)(x f 可导,)(x f '的最大值是1a ,且001)(,)(lim 0ax x f a x f x x =='-→”.若0x x ≤∀时都有ax x f ≥)(,则a 的取值范围是)[1∞+,a .证明 类似于定理2的证明可证.(以下定理6,8的证明均同此.)定理5 设函数)(x f 满足“当0x x ≥时,函数)()(x f x f '、均可导,)(x f ''的最小值是2a ,且0020022)(,)(,)(lim 0ax x f ax x f a x f x x ='==''+→”.若0x x ≥∀时都有2)(ax x f ≥,则a 的取值范围是⎥⎦⎤ ⎝⎛∞-2,2a . 证明 设2)()(ax x f x g -=,得a x f x g x g ax x f x g 2)()())((,2)()(-''=''=''-'='. 当22a a ≤时,可得“0x x ≥∀时都有022)()(2≥-≥-''=''a a a x f x g ”,所以0x x ≥∀时都有02)()()(000=-'='≥'ax x f x g x g ,所以0x x ≥∀时都有0)()()(2000=-=≥ax x f x g x g ,即2)(ax x f ≥. 当22a a >时,得02]2)([lim )(lim 200<-=-''=''++→→a a a x f x g x x x x ,所以存在0>δ,当),0(δ∈x 时,0)(<''x g ,)(x g '是减函数,得0)()(0='<'x g x g ,)(x g 是减函数,所以20)(,0)()(ax x f x g x g <=<,这与题设矛盾!所以a 的取值范围是⎥⎦⎤ ⎝⎛∞-2,2a . 定理6 设函数)(x f 满足“当0x x ≤时,函数)()(x f x f '、均可导,)(x f ''的最小值是2a ,且0020022)(,)(,)(lim 0ax x f ax x f a x f x x ='==''-→”.若0x x ≤∀时都有2)(ax x f ≥,则a 的取值范围是⎥⎦⎤ ⎝⎛∞-2,2a . 定理7 设函数)(x f 满足“当0x x ≥时,函数)()(x f x f '、均可导,)(x f ''的最大值是2a ,且0020022)(,)(,)(lim 0ax x f ax x f a x f x x ='==''+→”.若0x x ≥∀时都有2)(ax x f ≥,则a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,22a . 证明 在定理5中令)()(x g x f -=可证.定理8 设函数)(x f 满足“当0x x ≤时,函数)()(x f x f '、均可导,)(x f ''的最大值是2a ,且0020022)(,)(,)(lim 0ax x f ax x f a x f x x ='==''-→”.若0x x ≤∀时都有2)(ax x f ≤,则a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,22a . 由推论可立得题1,2,4的答案;由定理3可立得题3的答案;由定理5可立得题5的答案.读者还可给出定理5~8的推广.下面由推论给出题4的解答:可得题设即“当0>x 时,都有0)(≥x f ”,也即“当0>x 时,都有ax x ≥-1e ”,还“当0≥x 时,都有ax x ≥-1e ”.再由推论可立得答案为]1,(-∞.。