换热器热力计算表

合集下载

热管换热器计算

热管换热器计算

热管换热器计算(2009-02-20 22:50:45)转载标签:热管换热器计算德天热管亚洲热管网热管换热器计算可用热平衡方程式进行计算,对于常温下使用的通风系统中的热管换热器的换热后温度,回收的冷热量也可用下列公式计算,由于公式采用的是显热计算,但实际热回收过程也发生潜热回收,因此计算值较实测值偏小,其发生的潜热回收可作为余量或保险系数考虑。

本文选自【亚洲热管网】热管换热器的计算:1. 热管换热器的效率定义η=t1-t2/t1- t3 (1-1)式t1、t2——新风的进、出口温度(℃)t3——排风的入口温度(℃)2.热管换热器的设计计算一般已知热管换热器的新风和排风的入口温度t1和t3,取新风量L x 与排风量L P相等。

即L x = L P,新风和排风的出口温度按下列公式计算:t2=t1-η(t1-t3) (1-2)t4=t3+η(t1-t3) (1-3)t4——排风出口温度(℃)回收的热量Q (kW), 负值时为冷量:Q(kW)= L xρX C x(t2-t1)/3600 (1-4)式中L x——新风量(m3/h )ρx——新风的密度(kg/m3)(一般取1.2 kg/m3)C x——新风的比热容,一般可取1.01kJ/ (kg ·℃)。

3.选用热管换热器时,应注意:1)换热器既可以垂直也可以水平安装,可以几个并联,也可以几个串联;当水平安装时,低温侧上倾5℃~7℃。

2)表面风速宜采用1.5 m/s~3.5m/s。

3)当出风温度低于露点温度或热气流的含湿量较大时,应设计冷凝水排除装置。

4)冷却端为湿工况时,加热端的效率η值应增加,即回收的热量增加。

但仍可按上述公式计算(增加的热量作为安全因素)。

需要确定冷却端(热气流)的终参数时,可按下式确定处理后的焓值,并按处理后的相对湿度为90%左右考虑。

h2=h1- 36Q/ L×ρ (1-5)式中h1, h2——热气流处理前、后的焓值(kJ/kg);Q ——按冷气流计算出的回收热量(W);L ——热气流的风量(m3/h );ρ——热气流的密度(kg/m3)。

汽水换热器计算书

汽水换热器计算书

第 4 页
1.613982209 90609.5275
雷诺数 Re 摩擦系数λ
0.018236564 5.506
流体流经的直 管段 L 管程流体直管段 流阻 △p1 流体回弯处 压降 △p2 管程分程数 串联的壳程数 Np NS
m △P1=λ *L*ρ *u^2/ (2*d) △P2=3*ρ * u^2/2
kcal/h ℃ 663.397 175.40
9.疏水焓值 11.被加热水量Gt
t/h
376.97 860
130.00 126.62 87.12 120 Δ T1= Δ T1-Δ T2 Δ Tm过= = 79.12 设计工况 48.78 120 ℃ Δ T3= Δ T2= 48.78 88.28 88.28 Δ T2= ℃ 10 35.94346694 10 80 126.616458 87.11611944
3.饱和蒸汽温度 t1'' ℃ 4.蒸汽焓值 kj/kg
90.000 860 Q=CGt(t2-t1)= 43000000 177.687 175.40 90 90.184
5.饱和蒸汽焓值 6.饱和水的焓值
6.进水温度 t1 7.出水温度 t2 8.疏水温度 t1'
kj/kg
kj/kg ℃ ℃ ℃ kj/kg
ln (Δ T1/Δ T2) Δ T3-Δ T2 Δ Tm凝= ln (Δ T3/Δ T2) Δ T3-Δ T4
Δ Tm过冷=
369195261.xls
第 2 页
=
66.59
= ln (Δ T3/Δ T4)
35.94
过热段总传热量Q1 过热段传热系数K1 过热段传热面积F1 F过热=Q/(K*Δ Tm)= 冷凝段总传热量Q2 冷凝段传热系数K2 冷凝段传热面积F2 F凝=Q/(K*Δ Tm)= 过冷段总传热量Q3 过冷段传热系数K3 过冷段传热面积F3 F过冷=Q/(K*Δ Tm)= 总计算面积 F 加上10%的裕量F 实取的面积 实取的面积裕量

油和空气换热器设计计算

油和空气换热器设计计算
通过上述热力计算及阻力计算可以看出:已初步设计的油-空气换热器,其换热 能力为实际能力的 83.1/45=1.85 倍,而阻力为风机全压的 224.3/1350=16.6%,完全可 以满足要求.
3
2
K2=1/[0.555/(1382×0.08168)+0.555/(2×45×1×π) ×ln(0.032/0.026)+1/(78.18/0.8)]=46.92 W/(m.℃),因此
Q=46.92×0.555×(238-184.8)=1.385KW. 2.空气阻力计算 根据换热器肋片管排列及数据,由横掠错列肋片管阻力公式: Δhhx=ζhx·ρ·w2/2, Pa;式中ζhx=ζj·z2 为横向冲刷管束阻力系数; 而ζj=Cz·Cs·Ref 为每排管子阻力系数. 其中,Cz 为管排数修正系数;当 Cz≥6 时, Cz=1; Ref=wk·B/νf 为错列肋片管束空气雷诺数;又 B=n·{d2(Sf-δ)+[D·δ+(D2-d2)/2] ·[π(D2-d2)/4]1/2}/(L1·d·δ) 为圆形肋片管定型尺寸,m.其中, L1=n·δ=96×0.0012=0.1152m 为肋片占管子部分长,m; β=H2/(πd·L)=0.555/(0.032×1×π)=5.52 为肋片系数(总表面积与光管表面积之 比).则 B=96×{0.0322×(0.01-0.0012)+[0.062×0.0012+(0.0622-0.0322)/2] ·
Pry=12.87;
根据图给定条件:肋片外径 D=0.062m,肋片厚δ=0.0012m,肋片管长 L=1m,每 1m
长管肋片数 n=96;肋片与管壁胀接时的传热系数λ=45 W/(m.℃).
由传热公式,每 1m 长管传热量:Q=K2H2(t1-t2),kW, 式中 H2=H2”+H2’为每 1m 长管总外表面积,㎡; H2”=2nπ[(rj2-r2)+rj·δ]为肋片表面积,㎡; H2’=nπd(Sf-δ)为每 1m 长管肋间管表面积㎡; 其中,rj=r+hj 为假想环肋外半径,m; 而 hj=h+δ/2=0.015+0.0012/2=0.0156m 为肋片假想高度,m.则 rj=0.032/2+0.0156=0.0316m; H2”=2×96×π[(0.03162-0.0162)+0.0316×0.0012]=0.47 ㎡; H2’=96×π×0.032×(0.01-0.0012)=0.085 ㎡; H2=0.47+0.085=0.555 ㎡. H1=dn·Lπ=0.026×1×π=0.08168 ㎡为每 1m 长管内表面积,㎡. 又η=( H2’+ H2”·η1)/H2 为肋片总效率; 而η1 为肋片效率, η1 的数值由 [α2/(λ·δ)]1/2·hj=[78.18/(45×0.0012)]1/2×0.0156=0.5936 与 rj/r=0.0316/0.016=1.975 查图求出: η1=0.765;那么 η=( 0.085+ 0.47×0.765)/0.555=0.8;

汽水管壳式换热器热力计算

汽水管壳式换热器热力计算

kcal/h kcal/m2.h. ℃
94800.8 3500
0.6
kcal/h kcal/m2.h. ℃
17078.7 1200
0.55
1.94
2.14
m2
7.40
280.7554059
三.水侧计算
水流量
t/h
12
水进口温度 t1

80
1847008866.xls
(= 928.9 w/m2. ℃) (= 4063.9 w/m2. ℃) (= 1393.3 w/m2. ℃)
用户:
热力计算书 不锈钢管 1、2号机
MPa(a) ℃ ℃
kcal/kg kcal/kg 源自cal/kg kcal/kg ℃ ℃ ℃
t/h
0.003 120
134.000
705.002 663.397 177.687 90.184
80 90 90.000 12
kcal/h
Q=CGt(t2-t1)=

663.397
134.00
1847008866.xls
120000 177.687 90.184 134.00
90
89.32
80 81.42
30
44.68
52.58
10
Δ T1=
Δ T1-Δ T2 Δ Tm过=
30 ℃ Δ T3= 52.58 ℃
Δ T2= 44.68
Δ T2=
10
=
36.85
设计工况
2.5 41.2 50
1847008866.xls
198.1489155
0.891265597 1 40 40 40
已查
25 2 32

管壳式换热器热力计算

管壳式换热器热力计算

(3)温差修正系数FT 在错流和折流换热器中,温度分布情况相当复杂,可按(2) 中公式计算出逆流的平均温度差,然后乘以修正系数,即 可计算有效平均温差Δtm; Δtm=FTΔtlm
式中 Δtlm——逆流时的对数平均温度差,℃; FT——温差修正系数 (查换热器设计手册中图1-3-6 取得)。
2.对流传热膜系数
(1)算术平均温度差
Δtm1= (Δt1+ Δt2)/2 (2)对数平均温度差
Δtm2= (Δt2- Δt1)/ln (Δt2 / Δt1) 式中 Δtm2——较大的温度差;
Δtm1——较小的温度差。 当Δtm1/ Δtm2<2时,采用算术平均温度差,否则采用对数 平均温度差。在计算平均温度差时,对无相变的对流传热, 逆流的平均温度差大于并流的平均温度差,因而在工业设 计中在工业设计中,在满足工艺条件的情况下,通常选用 逆流。
2.1无相变对流传热的传热膜系数
(1) 管内传热膜系数 流体在管内流动,其流动阻力和传热膜系数与流体在管 内的流动状态有关,流动状态以雷诺数大小来区分。
(1.1)湍流 Re>10000 对于低粘度流体(μi<2μa, μa为常温下水的粘度),可用
αi=0.023λi/ diRei0.8Prin 应用范围:Re>10000,0.7<Pr<120,L/di>60。 当L/di>60时,应将上式乘以[1+(di/L)0.7]进行修正。
奴塞尔特数
Nu=hL/ λ,其中h、L、λ分别为流体的传热系数、特征 长度与导热系数。代表了长度与热边界岑厚度之比,表征 了流体对流换热能力的大小。
1.稳态传热方程
热流体将热量通过某固定面传给冷流体成为传热,稳态传热 的基本方程为:Q=KAΔtm

管壳式换热器传热计算示例终 用于合并

管壳式换热器传热计算示例终 用于合并

Pa;
取导流板阻力系数:
;
导流板压降:
壳程结垢修正系数: 壳程压降:
Pa ;(表 3-12)
管程允许压降:[△P2]=35000 Pa;(见表 3-10) 壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2] △P1<[△P1] 即压降符合要求。
Pa;
(2)结构设计(以下数据根据 BG150-2011)
m2; 选用φ25×2、5 无缝钢管作换热管; 管子外径 d0=0、025 m; 管子内径 di=0、025-2×0、0025=0、02 m; 管子长度取为 l=3 m; 管子总数:
管程流通截面积:
取 720 根 m2
管程流速: 管程雷诺数: 管程传热系数:(式 3-33c)
m/s 湍流
6)结构初步设计: 布管方式见图所示: 管间距 s=0、032m(按 GB151,取 1、25d0); 管束中心排管的管数按 4、3、1、1 所给的公式确定:
结构设计的任务就是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸, 选定材料并进行强度校核。最后绘成图纸,现简要综述如下:
1) 换热器流程设计 采用壳方单程,管方两程的 1-4 型换热器。由于换热器尺寸不太大,可以用一台,未考虑 采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点就是布管紧密。 2)管子与传热面积 采用 25×2、5 的无缝钢管,材质 20 号钢,长 3m,管长与管径都就是换热器的标准管子 尺寸。 管子总数为 352 根,其传热面积为:
3)传热量与水热流量
取定换热器热效率为η=0、98; 设计传热量:
过冷却水流量:
; 4)有效平均温差 逆流平均温差:
根据式(3-20)计算参数 p、R: 参数 P:

管式换热器热力计算

管式换热器热力计算

这只是个模板,你还要自己修改数据,其中有些公式显示不出来。

不明白的问我。

一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。

已知混和气体的流量为227301㎏/h,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口温度为39℃,试设计一台列管式换热器,完成该生产任务。

物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容=3.297kj/kg℃热导率=0.0279w/m粘度循环水在34℃下的物性数据:密度=994.3㎏/m3定压比热容=4.174kj/kg℃热导率=0.624w/m℃粘度二.确定设计方案1.选择换热器的类型两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。

2.管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。

但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。

三.确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。

故壳程混和气体的定性温度为T= =85℃管程流体的定性温度为t= ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。

对混合气体来说,最可靠的无形数据是实测值。

若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。

混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容=3.297kj/kg℃热导率=0.0279w/m粘度=1.5×10-5Pas循环水在34℃下的物性数据:密度=994.3㎏/m3定压比热容=4.174kj/kg℃热导率=0.624w/m℃粘度=0.742×10-3Pas四.估算传热面积1.热流量Q1==227301×3.297×(110-60)=3.75×107kj/h =10416.66kw2.平均传热温差先按照纯逆流计算,得=3.传热面积由于壳程气体的压力较高,故可选取较大的K值。

汽水换热器热力计算(管内水)

汽水换热器热力计算(管内水)

m
0.0015
m
0.035
m
17

0.01635596 m2
100
m3/h
1.69832809 m/s
0.000012
4953.45692
9697.2601 W/(m2℃)
2791.68019
106.25

110.625

0.896A1/(n1dw(tBH-tpj))1/4
7161.86298 W/(m2℃)
Mpa ℃ kg W ℃ ℃
查表
976.5
kg/m3
已知 已知 已知 已知 已知 ZπdN2/4 循环泵 Gw/fη
deWvρ/μ 1.163A3W0.8/de0.2 1230+20tp-0.041tp2 (tBH+0.5(τ1+τ2))/2 (tpz+tpj)/2 (tpz=tBH)
6
m
0.038
蒸汽通过垂直方向的管排数(总管数/最大一横排管 数)
10
1.163A1/((tBH-tpj)L)1/4 5700+56tη-0.09tη2
((tBH-tpj)/(tBH-tpj′))0.25
4663.43362 10793.5898 0.92762853
(αltBH+0.5α2(τ1+τ2))/(α1+α405 W/(m2℃)
选取
15.24 W/(m℃)
1/(1/αl+1/αl+σ/λ1+σ2/λ2)
2403.95374 W/(m2℃)
一般0.58-2.3,铁锈1.16,油一般0.12-0.14
W/(m℃)
0.0005
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换热器热力计算表
序号计算项目符号单位计算公式或图表数值备注原始数据
管程冷却水进口温度t'2℃给定30
出口温度t"2℃给定40
工作压力p2barg给定3
流量G2kg/h
定性温度t2℃0.5*(t'2+t"2)35出入口温差不大
密度ρ2kg/m3查物性表994
比热Cp2kJ/kg℃查物性表 4.187
定压重量比
壳体内径
长径比
弓形折流板弓高
折流板间距
折流板数
壳程换热系数
壳程流通截面
壳程流速
壳程量流速
壳程当量直径
壳程雷诺数
切去弓形面积比例壳程传热因子
管外壁温度
壁温下煤油粘度
粘度修正系数
壳程换热系数
传热系数
水侧污垢系数
煤油侧污垢系数
管壁热阻
总传热热阻
传热系数
传热系数比值
管壁慢度
管外壁热流密度
管外部温度
误差校核
管程压降
壁温下水的粘度
管程粘度修正系数管箱摩擦系数
管子沿程压降
回弯压降
进出口管处质量流速进出口管处压降
管程结垢校正系数管程压降
壳程压降
雷诺数
壳程摩擦系数
管束压降
管嘴处质量流速进出口管压降
导流板阻力系数导流板压降
壳程结垢修正系数壳程压降
管程允许压降
壳程允许压降
压降校核。

相关文档
最新文档