八年级数学勾股定理的应用
八年级数学下册《勾股定理的应用》教学设计一等奖3篇

1、八年级数学下册《勾股定理的应用》教学设计一等奖在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。
一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
初二数学勾股定理应用题解析

初二数学勾股定理应用题解析勾股定理,即平面几何中的重要定理之一,用于解决直角三角形的边长和角度相关问题。
在初二数学中,学生们通常学习到勾股定理的概念和用法。
本文将对勾股定理在初二数学中的应用题进行解析,并介绍解题思路与步骤。
一、题目一解析:题目描述:有一个直角三角形,已知一条直角边的长度为3cm,斜边的长度为5cm,求另一条直角边的长度。
解析:根据勾股定理,在直角三角形中,直角边的平方和等于斜边的平方。
设直角边长度为a,斜边长度为c,则可以得到方程a^2 + b^2 = c^2。
根据题目已知条件,可以列出方程3^2 + b^2 = 5^2。
解方程得到b^2 = 5^2 - 3^2 = 25 - 9 = 16,即b = 4。
所以另一条直角边的长度为4cm。
二、题目二解析:题目描述:一个直角三角形的两条直角边分别为6cm和8cm,求斜边的长度。
解析:同样根据勾股定理,设直角边的长度分别为a和b,斜边的长度为c,可以得到方程a^2 + b^2 = c^2。
根据题目已知条件,可以列出方程6^2 + 8^2 = c^2。
计算得到c^2 = 36 + 64 = 100,即c = 10。
所以斜边的长度为10cm。
三、题目三解析:题目描述:一个直角三角形的两条直角边分别为4cm和12cm,求斜边的长度。
解析:同样根据勾股定理,设直角边的长度分别为a和b,斜边的长度为c,可以得到方程a^2 + b^2 = c^2。
根据题目已知条件,可以列出方程4^2 + 12^2 = c^2。
计算得到c^2 = 16 + 144 = 160,即c = √160。
化简得到c = 4√10。
所以斜边的长度为4√10 cm。
四、题目四解析:题目描述:一个直角三角形的两条直角边分别为5cm和x cm,斜边的长度为13cm,求x的值。
解析:同样根据勾股定理,设直角边的长度分别为a和b,斜边的长度为c,可以得到方程a^2 + b^2 = c^2。
八年级勾股定理应用题及解析

八年级勾股定理应用题及解析哎呀,今天咱们来聊聊勾股定理,顺便解决点应用题。
你知道吧,勾股定理就像数学界的小明星,很多地方都能看到它的身影。
想象一下,你正在公园里玩飞盘,飞盘飞得可高可远,结果掉在了一个大树上。
这时候,你得想办法去把它拿下来。
这个大树离你有点远,你站在树下,向上看,心里琢磨:我得爬多高,才能把飞盘给捞回来呢?这就牵扯到我们今天的主角——勾股定理了。
勾股定理告诉我们,直角三角形的两个直角边的平方和,等于斜边的平方。
简单点说,假设你的飞盘掉在了离你10米远的地方,而树高5米。
咱们就可以把这情景看作一个直角三角形:一个边是5米(树高),另一个边是10米(你和树的距离),然后我们来求斜边。
这个斜边,就是你从地面到飞盘的那条斜线。
公式一用,5的平方加10的平方等于斜边的平方,换算一下,结果就是25加100等于125。
好嘛,斜边的平方是125,咱们再开个方根,得出斜边大约是11.18米。
天哪,这个高度可真不低,真得好好想想怎么才能上去。
不过说到这里,你可能会问了,勾股定理除了在树下捡飞盘,还能用在哪呢?哎,这可多了去了!比如说,你想测量一个建筑物的高度,但又不想爬上去。
你站在离建筑物10米远的地方,仰头一看,嘿,这建筑物就像一座高耸的山峰。
假设你仰望的角度是60度,咱们又可以用勾股定理来推算了。
先把视线延伸成一个直角三角形,这个三角形的底边就是你和建筑物之间的距离,另外一边就是建筑物的高度,而斜边就是你视线的长度。
用一些简单的三角函数,咱们就能算出建筑物的高度,轻松搞定。
再比如,假设你在海滩上玩,看到远处有个帆船。
想测量它离你的距离,却又不想游过去。
你在海滩上找个高地,打算用望远镜观察。
这时候,你只需要知道高地的高度和你与帆船之间的距离,就能用勾股定理来算出帆船到高地的直线距离。
真是方便得让人惊讶。
数学不仅仅是那些冰冷的公式,更是一种解决问题的思维方式,生活中的点点滴滴都可以用上。
别忘了,勾股定理在我们的日常生活中无处不在。
八年级数学下册【勾股定理】4种简单应用

八年级数学下册【勾股定理】4种简单应用一、勾股定理在网格中的应用例1、已知正方形的边长为1,(1)如图a,可以计算出正方形的对角线长为根号2.①分别求出图(b),(c),(d)中对角线的长_.②九个小正方形排成一排,对角线的长度(用含n的式子表示)为_.分析:借助于网格,构造直角三角形,直接利用勾股定理.二、勾般定理在最短距离中的应用例2、如图,已知C是SB的中点,圆锥的母线长为10cm,侧面展开图是一个半圆,A处有一只蜗牛想吃到C处的食物,它只能沿圆锥曲面爬行.请你求出蜗牛爬行的最短路程.分析在求解几何图形两点间最短距离的问题时,将几何体表面展开,求展开图中两点之间的距离,展开过程中必须要弄清楚所要求的是哪两点之间的距离,以及它们在展开图中的相应位置.点评在求立体几何图形的问题时,一般是通过平面展开图,将其转化成平面图形问题,然后求解.三、勾股定理在生活中的应用例3、如图,学校有一块长方形花园,有较少数同学为了避开拐角走“捷径”,在校园内走出了一条“路”.请同学们算一算,其实这些同学仅仅少走多少步路,却踩伤了花草.(假设1步为0.5m)点评:走“捷径”问题为出发点是常遇到情况,在考查勾股定理的同时,融入了环保教育:少走几步路,就可以留下一片期待的绿色.四、勾股定理在实际生活中的应用例4 小华想知道自家门前小河的宽度,于是按以下办法测出了如下数据:小华在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°,小华沿河岸向前走30m 选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小华计算小河的宽度.点评:此题考查直角三角形的应用,解答本题的关键在于画出示意图,将问题转化为解直角三角形的问题.。
人教版数学八年级下册17.1.2《勾股定理的应用》教案

3.数学抽象:理解勾股定理的数学表达,提高学生的数学抽象思维能力。
4.问题解决:培养学生遇到问题时能主动运用所学知识进行解决的能力,提高数学问题解决技巧。
5.数据分析:通过实际案例分析,使学生能够从数据中提炼信息,培养数据分析素养。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,小组讨论的环节也让我有所启发。学生们在讨论中表现出了很高的热情,能够积极发表自己的观点,但有时候讨论的主题偏离了课程内容。为了使讨论更加有效,我应该在设置讨论主题时更加明确,同时在讨论过程中加强对学生的引导,确保讨论的方向与课程目标相符。
还有一个值得注意的问题是,在课堂总结环节,部分学生提出了疑问,但我没有足够的时间一一解答。我意识到在以后的教学中,需要合理安时间,预留出更多的时间来解答学生的疑问,确保他们对所学知识的掌握。
最后,针对本节课的教学,我认为在以下几个方面进行改进:
1.增加课堂互动,让学生多参与,提高他们的学习兴趣和积极性。
2.加强对学生的个别辅导,关注他们的学习进度,及时发现并解决问题。
3.丰富教学手段,利用多媒体、实物等资源,使抽象的概念更加直观易懂。
4.注重培养学生的动手操作能力,让他们在实际操作中感受数学的魅力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
八年级数学上册教学课件《勾股定理的应用》

解:如图所示 在Rt△ABC中,利用勾股定理可得, AB 2=AC2+BC2 =20 2+102 =500
10
10
10
所以AB2=500.
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?
D
A. B. C. D.
2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300 m,公园到医院的距离为400 m,若公园到超市的距离为500 m,则公园在医院的 ( )A.北偏东75°的方向上 B.北偏东65°的方向上C.北偏东55°的方向上 D.无法确定
B
3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.
解:因为出发2小时,A组行了12×2=24(km), B组行了9×2=18(km), 又因为A,B两组相距30km, 且有242+182=302, 所以A,B两组行进的方向成直角.
以小组为单位,研究蚂蚁在圆柱体的A点沿侧面爬行到B点的问题.
讨论 1.蚂蚁怎样沿圆柱体侧面从A点爬行到B点? 2.有最短路径吗?若有,哪条最短?你是怎样找到的?
B
A
我要从A点沿侧面爬行到B点,怎么爬呢?大家快帮我想想呀!
利用勾股定理解答最短路径问题
想一想 蚂蚁走哪一条路线最近?
在Rt△ABC中,AC===5,在△ACD中,AC2+CD2=52+122=169=AD2,所以△ACD是直角三角形,且∠ACD=90°.所以S四边形ABCD=SRt△ABC+SRt△ACD=6+30=36.
勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

专题05勾股定理的应用十种最常考类型(解析版)类型一大树折断问题【典例1】(2023春•德庆县期末)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地面上,此处离树底部8m处.【思路引领】首先设树顶端落在离树底部x米处,根据勾股定理可得62+x2=(16﹣6)2,再解即可.【解答】解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.【总结提升】此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.【变式训练】1.(2023•南宁模拟)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55【思路引领】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【总结提升】此题主要考查了勾股定理的应用,正确应用勾股定理得出方程是解题的关键.类型二水杯中的筷子问题及类似问题【典例2】(2023春•陕州区期中)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13【思路引领】如图,过A作AB⊥BC于B,根据勾股定理即可得到结论.【解答】解:如图,过A作AB⊥BC于B,∵下底面半径是5,高是12,∴AB=12,BC=5,∴AC=B2+B2=122+52=13,∴a的长度的取值范围是12≤a≤13,故选A.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息,正确理解题意是解题的关键.【变式训练】1.(2023春•盐山县期末)如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【思路引领】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.(2022秋•安阳县期末)从前有一个人拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43,竖着比城门高23,另一个人告诉他沿着城门的两对角斜着拿竿,这个人一试,不多不少刚好进去了,则竹竿的长度为103.【思路引领】设竹竿的长为x米,根据门框的边长的平方和等于竹竿的长的平方列方程,解一元二次方程即可.【解答】解:设竹竿的长为x米,由题意得:(−43)2+(−23)2=2,解得:1=103,2=23(舍去),故答案为:103.【总结提升】本题考查一元二次方程的应用;得到门框的边长和竹竿长的等量关系是解决本题的关键.类型三梯子滑动问题【典例3】(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【思路引领】首先设BO=x米,则DO=(x+2)米,利用勾股定理可列出方程,再解可得BO长,然后再利用勾股定理计算出AB长.【解答】解:由题意得:AC=BD=2米,∵AO=8米,∴CO=6米,设BO=x米,则DO=(x+2)米,由题意得:62+(x+2)2=82+x2,解得:x=6,AB=82+62=10(米),故选:A.【总结提升】此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.【变式训练】1.(2023秋•新泰市期中)如图,一架梯子若靠墙直立时比窗户的下沿高1m.若斜靠在墙上,当梯子的下端离墙5m时,梯子的上端恰好与窗户的下沿对齐.则梯子的长度为()A.13m B.12m C.15m D.172【思路引领】设梯子的长度为x m,根据勾股定理列方程即可得到结论.【解答】解:设梯子的长度为x m,根据勾股定理得,52+(x﹣1)2=x2,解得x=13,答:梯子的长度为13m,故选:A.【总结提升】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.2.(2023秋•北京期末)如图,小巷左右两侧是竖直的墙,已知小巷的宽度CE是2.2米.一架梯子AB斜靠在左墙时,梯子顶端A与地面点C距离是2.4米.如果保持梯子底端B位置不动,将梯子斜靠在右墙时,梯子顶端D与地面点E距离是2米.求此时梯子底端B到右墙角点E的距离是多少米.【思路引领】设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,在Rt△ABC和Rt △DBE中,根据勾股定理列出方程,解方程即可.【解答】解:设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,由题意可知,AC=2.4米,DE=2米,AB=DB,在Rt△ABC和Rt△DBE中,由勾股定理得:AB2=BC2+AC2,DB2=BE2+DE2,∴BC2+AC2=BE2+DE2,即(2.2﹣x)2+2.42=x2+4,解得:x=1.5,答:此时梯子底端B到右墙角点E的距离是1.5米.【总结提升】本题考查了勾股定理的应用,根据勾股定理列出方程是解题的关键.3.(2023秋•宝丰县期末)如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 3.2米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;(3)当他在丙房间时,测得MA=2.8米,且∠MPA=75°,∠NPB=45°.①求∠MPN的度数;②求丙房间的宽AB.【思路引领】(1)根据勾股定理即可得到结论;(2)证明△AMP≌△BPN,从而得到MA=PB=2.4米,PA=NB=0.7米,即可求出AB=PA+PB;(3)①根据平角的定义即可求出∠MPN=60°;②根据PM=PN以及∠MPN的度数可得到△PMN为等边三角形.利用相应的三角函数表示出MN,MP的长,可得到房间宽AB和AM长相等.【解答】解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM=B2+B2=1.62+1.22=2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM +∠BPN =90°,∵∠APM +∠AMP =90°,∴∠AMP =∠BPN .在△AMP 与△BPN 中,∠B =∠B ∠B =∠B =90°B =B,∴△AMP ≌△BPN ,∴MA =PB =2.4,∵PA =B2−B 2=0.7,∴AB =PA +PB =0.7+2.4=3.1;(3)①∠MPN =180°﹣∠APM ﹣∠BPN =60°;②过N 点作MA 垂线,垂足点D ,连接NM .设AB =x ,且AB =ND =x .∵梯子的倾斜角∠BPN 为45°,∴△BNP 为等腰直角三角形,△PNM 为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND =15°.∵∠APM =75°,∴∠AMP =15°.∴∠DNM =∠AMP ,∵△PNM 为等边三角形,∴NM =PM .∴△AMP ≌△DNM (AAS ),∴AM =DN ,∴AB =DN =AM =2.8米,即丙房间的宽AB 是2.8米.【总结提升】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM=PN以及∠MPN的度数得到△PMN为等边三角形是解题的关键.类型四立体图形中的最短距离问题【典例4】(2021春•饶平县期末)如图,长方体的底面边长均为3cm,高为5cm,如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要13cm.【思路引领】把立体图形转化为平面图形解决即可.【解答】解:将长方体展开,连接AB,根据两点之间线段最短,AB=52+122=13cm;故答案为:13【总结提升】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.【变式训练】1.(2023秋•沙坪坝区期中)如图,圆柱形容器中,高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为20cm.(容器厚度忽略不计)【思路引领】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,∴A′D=16cm,BD=12cm,∴在直角△A′DB中,A′B=162+122=20(cm).故答案为:20.【总结提升】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.(2022春•桦甸市期末)如图,是一块长,宽,高分别为6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的外表面,到长方体的另一个顶点B处吃食物,则它需要爬行的最短路径长是85cm.【思路引领】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.【解答】解:第一种情况:把我们所看到的左面和上面组成一个平面,则这个长方形的长和宽分别是9和4,则所走的最短线段是AB=92+42=97(cm).第二种情况:把我们看到的前面与上面组成一个长方形,则这个长方形的长和宽分别是7和6,所以走的最短线段是AB=72+62=85(cm).第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10和3,所以走的最短线段是AB=102+32=109(cm).∴它需要爬行的最短路径是85cm.故答案为:85cm.【总结提升】本题主要考查的是平面展开﹣最短路径问题,解决此题的关键是明确线段最短这一知识点,然后把长方体的一些面展开到一个平面内,求出最短的线段.3.(荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm【思路引领】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=22dm,∴这圈金属丝的周长最小为2AC=42dm.故选:A.【总结提升】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.类型五选址满足条件问题【典例5】(2023春•永善县期中)如图,河CD的同侧有A、B两个村,且AB=213km,A、B两村到河的距离分别为AC=2km,BD=6km.现要在河边CD上建一水厂分别向A、B两村输送自来水,铺设水管的工程费每千米需2000元.请你在河岸CD上选择水厂位置0,使铺设水管的费用最省,并求出铺设水管的总费用w(元).【思路引领】作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,分别利用勾股定理求出AF和A'B的长即可.【解答】解:如图所示,作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,此时AO+BO最小,∵AC=2km,BD=6km,∴BF=4km,DE=2km,∵AB=213km,∴AF=(213)2−42=6(km),在Rt△BA'E中,由勾股定理得:A'B=′2+B2=62+(6+2)2=10(km),∴AO+BO=10(km),∴铺设水管的总费用W=10×2000=20000(元).【总结提升】本题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解题的关键.【变式训练】1.(2023春•红塔区期中)如图,在笔直的铁路上A,B两点相距20km,C、D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求AE=13.3km.【思路引领】设AE=x km,即可得到EB=(20﹣x)km,结合DA⊥AB于点A,CB⊥AB于B根据勾股定理列式求解即可得到答案.【解答】解:设AE=x km,则EB=(20﹣x)km,∵DA⊥AB,CB⊥AB,DA=8km,CB=14km,∴DE2=x2+82=x2+64,DE2=(20﹣x)2+142=x2﹣40x+596,∵C、D两村到E站的距离相等,∴x2﹣40x+596=x2+64,解得:x=13.3,故答案为:13.3.【总结提升】本题考查勾股定理的应用,解题的关键是根据相等列等式求解.类型六航海问题【典例6】(2023春•黄陂区期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一小时后分别位于点Q,R处,且相距20海里.如果知道“远航”号沿北偏东50°方向航行,你能判断“海天”号沿哪个方向航行吗?请说明理由.【思路引领】利用勾股定理逆定理以及方向角得出答案.【解答】解:由题意可得:RP=12海里,PQ=16海里,QR=20海里,∵162+122=202,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东50°方向航行,∴∠RPN=40°,∴“海天”号沿北偏西40°方向航行.【总结提升】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.【变式训练】1.(2023秋•泰山区期末)如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时30分,我国反走私A艇发现正东方有一走私艇C以8海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是20海里,A、B两艇的距离是12海里;反走私艇B测得距离C艇16海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?【思路引领】由勾股定理的逆定理得△ABC为直角三角形,且∠ABC=90°,再由三角形面积求出BE=485海里,然后由勾股定理得CE=645海里,即可解决问题.【解答】解:由题意可知,∠BEC=90°,∵AB2+BC2=122+162=202=AC2,∴△ABC为直角三角形,且∠ABC=90°,∵MN⊥AC,∴走私艇C进入我国领海的最短距离是CE,=12AB•BC=12AC•BE,∵S△ABC∴BE=B⋅B B=12×1620485(海里),∴CE=B2−B2==645(海里),∴645÷8=85(小时)=96分,∴9时30分+96分=11时6分.答:走私艇C最早在11时6分进入我国领海.【总结提升】本题考查了勾股定理的应用、勾股定理的逆定理以及三角形面积等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.类型七受台风或噪声影响问题【典例7】(2022秋•清水县月考)如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?【思路引领】(1)作AC⊥BF,则距点A最近的点即为C点,计算AC的长,若AC>200千米,则不受影响,反之,则受影响.(2)求出A城所受影响的距离DE,又有台风移动的速度,即可求解出其影响的时间.【解答】解:(1)A城市受影响.如图,过点A作AC⊥BF,则距离点C最近的距离为AC,∵AB=300,∠ABC=30°,∴AC=12AB=150<200,所以A城会受到这次台风的影响;(2)如图,∵距台风中心200千米的范围内是受这次台风影响的区域,则AD=AE=200,即DE为A城遭受这次台风的距离,CD=A2−B2=507,∴DE=1007,则t===10小时.故A城遭受这次台风影响的时间10小时.【总结提升】本题主要考查了方向角问题以及解直角三角形的简单运用,能够熟练掌握.【变式训练】1.(2022春•紫云县期末)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.【思路引领】(1)过点A作AH⊥ON于H,利用含30°角的直角三角形的性质可得答案;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,利用勾股定理求出CH的长,再根据等腰三角形的性质可得CD的长,从而求出时间.【解答】解:(1)过点A作AH⊥ON于H,∵∠O=30°,OA=80米,∴AH=12OA=40米,∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,由(1)知AH=40米,∴CH=B2−B2=502−402=30(米),∴CN=2CH=60(米),∴t=60÷5=12(秒),∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.【总结提升】本题主要考查了勾股定理的实际应用,含30°角的直角三角形的性质,等腰三角形的性质,垂线段最短等知识,根据题意,构造出直角三角形是解题的关键.类型八求旗杆(大树)高度问题【典例8】(2023秋•开封期末)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A.14m B.15m C.16m D.17m【思路引领】根据题意画出示意图,设旗杆高度为x m,可得AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x m,过点C作CB⊥AD于B,则AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【总结提升】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.【变式训练】1.(2023春•岳阳楼区期末)小华和小侨合作,用一块含30°的直角三角板,旗杆顶端垂到地面的绳子,测量长度的工具,测量学校旗杆的高度,如图,测得AD=0.5米,绳子部分长CD=6米,则学校旗杆AB的高度为()A.6.5米B.(63+0.5)米C.12.5米D.(65+0.5)米【思路引领】根据含30°角的直角三角形的性质得出2DC=BC,进而利用勾股定理解答即可.【解答】解:由题意知∠ABC=30°,CD⊥AB,∴BC=2CD=12米,A=63米,∵AD=0.5米,∴B=(63+0.5)米,故选:B.【总结提升】本题考查了含30度直角三角形的性质及勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.2.(2023秋•岱岳区期中)学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为214米.【思路引领】在Rt△ABC中,由勾股定理得出关于AB的方程求解即可.【解答】解:如图,由题意可知,BD=2米,BC=5米,AC=AB+BD=(AB+2)米,在Rt△ABC中,由勾股定理得,AB2+BC2=AC2,即AB2+52=(AB+2)2,解得AB=214,∴旗杆的高度为214米.故答案为:214.【总结提升】本题考查了勾股定理的应用,熟记勾股定理是解题的关键.3.(2023秋•秦安县期末)如图,在一棵树的10米高B处,有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树的高度为15米.【思路引领】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【总结提升】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.类型九小鸟飞行距离问题【典例9】(2022秋•嵩县期末)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6B.8C.10D.12【思路引领】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离=82+62=10m.故选:C.【总结提升】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.【变式训练】1.(2023秋•青羊区期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C 点(B,C两点处于同一水平面)的距离AC=25米.(1)求出BC的长度;(2)若小鸟竖直下降到达D点(D点在线段AB上),此时小鸟到地面C点的距离与下降的距离相同,求小鸟下降的距离.【思路引领】(1)在直角三角形中运用勾股定理即可求解;(2)在Rt△BDC中,根据勾股定理即可求解.【解答】解:(1)由题意知∠B=90°,∵AB=20米,AC=25米.∴BC=252−202=15米,(2)设AD=x,则CD=x,BD=20﹣x,在Rt△BDC中,DC2=BD2+BC2,∴x2=(20﹣x)2+152,解得x=1258,∴小鸟下降的距离为1258米.【总结提升】本题考查勾股定理,熟练掌握勾股定理是解题关键.类型十利用勾股定理表示无理数【典例10】(2022春•武昌区期末)平面直角坐标系中,点P(﹣4,2)到坐标原点的距离是()A.2B.4C.23D.25【思路引领】利用勾股定理计算可得结论.【解答】解:由题意得,点P到坐标原点的距离为:42+22=20=25.故选:D.【总结提升】本题考查了勾股定理,掌握勾股定理的内容是解决本题的关键.【变式训练】1.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【思路引领】由勾股定理求出AB的长,进而得到AC的长,再求出OC的长,得出点C的坐标,即可解决问题.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB=B2+B2=12+22=5,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=5,∴OC=AC+OA=5+1,∵交x轴正半轴于点C,∴点C的坐标为(5+1,0).故答案为:5+1.【总结提升】本题考查了勾股定理以及坐标与图形性质等知识,熟练掌握勾股定理是解题的关键.2.(2022秋•芗城区月考)用尺规作图在数轴上作出表示实数=10的点P(保留作图痕迹,不写作法).【思路引领】过表示1的点A作数轴的垂线AB,在垂线上截取AB=3,连接OB,以O为圆心,OB为半径作弧交数轴于P,则P即为所求的点.【解答】解:如图:点P表示的数即为10.【总结提升】此题主要考查了勾股定理以及作图,关键是掌握10是两直角边长分别为1和3的直角三角形的斜边长.3.(2023•长阳县一模)如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C,D均为格点,以A为圆心,AB长为半径作弧,交网格线CD于点E,则C,E两点间的距离为()A.3B.3−3C.3+12D.3−12【思路引领】如图:连接AE,则AE=2、AD=1,由勾股定理可求出DE,然后运用线段的和差即可解答.【解答】解:如图:连接AE,则AE=2,AD=1,∴DE=B2−A2=22−12=3,∴CE=CD﹣DE=3−3.故选B.【总结提升】本题主要考查了勾股定理的应用以及线段的和差,根据题意运用勾股定理求得DE是解答本题的关键.4.(2022秋•埇桥区期中)如图,网格中每个小正方形的边长均为1,点A、B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.3−1B.3−5C.5D.22【思路引领】连接AD,则AD=AB=3,在Rt△AED中,利用勾股定理求出DE即可得出答案.【解答】解:连接AD,由题意知:AD=AB=3,在Rt△AED中,由勾股定理得:ED=A2−B2=32−22=5,∴CD=CE﹣DE=3−5,故选:B.【总结提升】本题主要考查了勾股定理,求出DE的长是解题的关键.。
人教版八年级下册数学《勾股定理》说课复习(第2课时勾股定理的应用)

CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
= (DE+CE)·( DE- BE)
=BD·
CD.
10km
藏宝点B的距离是________.
课程讲授
构造直角三角形解决实际问题
例4
一辆装满货物的卡车,其外形高2.5米,宽1.6米,要
开进厂门形状如图所示的某工厂,问这辆卡车能否通过该
工厂的厂门?说明理由.
解:在Rt△OCD中,∠CDO=90°,由
C
A
O
勾股定理,得
CD= OC 2 OD 2 1 0.82 0.6(米).
CH=0.6+2.3=2.9(米)>2.5(米).
D
B
2.3米
2
答:卡车能通过厂门.
M
2米
H
N
课程讲授
2
构造直角三角形解决实际问题
练一练:
(中考·安顺)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,
一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行( B )
A.8米
B.10米
C.12米
练一练:
如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB
一样长.已知滑梯的高度 CE=3m, CD=1m,试求滑道AC的长.
解:设滑道AC的长度为xm,则AB的长度为xm,
AE的长度为(x-1)m,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]检查油箱滑油量的要求是:().A.发动机停车后立即检查B.需要启动发动机时检查C.等发动机停车后至少5分钟D.发动机完全冷却以后 [单选]职业培训课程的评价主要采用()A、背景评价B、输入评价C、过程评价D、成果评价 [单选]入院率偏倚又可以称为A.奈曼偏倚(Neymanbias)B.检出偏倚(detectionbias)C.混杂偏倚(confoundingbias)D.信息偏倚(informationbias)E.伯克森偏倚(Berkson'sbias) [单选]当我们每个月给工人发放工资时,货币执行的是()。A.交换媒介B.价值标准C.延期支付标准D.储藏手段 [问答题,简答题]说明提高压缩比可以提高发动机热效率和功率的原因。 [填空题]为运输及储存便利,通常将气态的氨气通过()或()得到液氨。液氨又称(),为()色、有()气味的液体。 [单选,A1型题]"虚则补之,实则泻之"属于()A.反治法B.正治法C.治标法D.标本兼顾法E.治本 [单选,A1型题]既能清热燥湿,又能治疗胎热不安的药物是()A.黄连B.黄芩C.黄柏D.龙胆草E.苏梗 [多选]左心室收缩功能评价包括()。A.左房室瓣环位移B.心肌应变C.心室扭转D.收缩同步性评价E.顺应性评价 [单选]下列关于股利理论的表述中,正确的是()。A、股利无关论认为股利分配对公司的股票价格不会产生影响B、税差理论认为,由于股东的股利收益纳税负担会明显高于资本利得纳税负担,企业应采取高现金股利比率的分配政策C、客户效应理论认为,边际税率高的投资者会选择实施高股利支 [单选]患者,男,50岁。自觉两目模糊,视物不清,伴有头痛,眩晕,舌红少苔,脉细弦。治疗应首选()A.升麻B.葛根C.薄荷D.柴胡E.菊花 [单选]中国营养学会制定的"中国居民平衡膳食宝塔"中建议每人每天食用油脂类()A.15gB.25gC.75gD.50gE.100g [名词解释]免疫监视(immunologicsurveillance) [单选,A2型题,A1/A2型题]心理测量的误差主要来源有()A.施测条件B.主试者素质C.应试者动机D.应试者生理状态E.以上都是 [单选]用人单位应当将本单位属于女职工禁忌从事的劳动范围的岗位()告知女职工。A、口头B、书面C、正式 [单选]有关患者隐私权保护的理解错误的是()A.患者既往的疾病史、生活史、婚姻史即其家族疾病史、生活史、情感史属于患者隐私B.披露患者隐私造成严重后果的,由县级以上人民政府卫生行政部门给予警告或者责令暂停6个月以上1年以下执业活动,情节严重的,吊销执业证书C.即使患者已 [单选,A1型题]酒炒能减其毒性的药是()A.槟榔B.甘遂C.瓜蒂D.常山E.延胡索 [单选]巨噬细胞溶酶体酶的测定采用的方法不包括()A.硝酸铅法B.偶氮法C.溶菌酶测定D.NBT还原法E.α-萘醋酸法 [多选]以下说法正确的是()。A.所出为井B.所注为荥C.所溜为输D.所行为经E.所进为合 [单选,A1型题]具有化湿解暑功效的化湿药物是()A.苍术B.佩兰C.豆蔻D.砂仁E.草豆蔻 [单选]违反海上航行通告的当事人对处罚决定不服的,可以自接到处罚决定通知之日起()天内向中华人民共和国海事部门申请复议。A.一周B.10C.15D.30 [单选,A2型题,A1/A2型题]机体调节酸碱平衡的机制不包括().A.血液中的缓冲体系B.细胞内外的离子交换C.肺的呼吸交换D.肾脏的排酸保碱功能E.肝脏的生物转化 [单选]我国目前用抓斗挖槽的最小宽度为()m。A.0.5;B.0.4;C.0.3;D.0.2。 [单选,A2型题,A1/A2型题]眨眼反射可用来检查下列疾病,但除外()A.特发性三叉神经痛B.面神经炎C.延髓受损D.吉兰-巴雷综合征E.视神经炎 [单选]关于流动比率下列说法正确的是()。A.流动比率是衡量企业长期偿债能力的指标之一B.流动比率应维持为1:1左右比较理想C.流动比率越高,说明资产的流动性越大,短期偿付能力越强D.流动比率可以用来衡量盈利能力对债务偿付的保证程度 [单选]对乡(镇)、村集体企业资产中账面价值与实际价位背离较大的主要固定资产的价值进行重新评定估算的工作,称为()。A.核实资金B.清查资产C.资产价值重估D.资产价值评估 [单选]职业道德不仅有(),也有一定的历史继承性。A、价值观念B、技术延续C、法律色彩D、创造性 [单选,A1型题]泌尿系统结石容易引起的病理生理变化是()A.尿路梗阻和感染B.酸碱平衡失调C.肾功能不全D.诱发癌变E.电解质紊乱 [单选]图示支座反力BC的影响线形状正确的是:()A.B.C.D. [多选]双代号网络图中虚工作的特点有()。A.虚工作要占用时间B.虚工作不消耗资源C.实际工作中不存在虚工作D.工作用虚箭线表示E.虚箭线和实箭线不可以交叉 [单选]渗出、变性和增生是下列哪种病变的基本病理变化()A.肿瘤B.炎症C.视神经萎缩D.青光眼E.白内障 [单选,A2型题,A1/A2型题]CPR后因缺氧最易引起的并发症是()A.肺水肿B.脑水肿C.心力衰竭D.肾衰竭E.肝功能衰竭 [问答题,简答题]激励明星销售人员的方法有几种? [单选]在金属罐壁作内防腐时()再刷两遍自环氧磁漆。A、开始B、中间C、最后D、开始和最后 [单选]下列不会引起下消化道出血的疾病是()A.急性细菌性痢疾B.缺血性结炎C.右膈下脓肿D.结肠息肉E.结肠癌 [单选]在头脑中提取同类事物的本质物征,舍弃非本质特征的思维过程是()A.分析B.比较C.抽象D.概括 [单选]低频信号发生器的频率波段钮在100~1KHz,“×1”钮在“4”,“×0.1”钮在“6”,“×0.01”钮在“5”则此时仪器输出信号的频率为()。A、465HZB、465KHZC、46.5HZD、46.5KHZ [单选]当零件同一表面上有不同的粗糙度要求时,需用()画出其分界线,并注明相应的代号和尺寸。A.细实线;B.粗实线;C.虚线;D.点划线。 [单选]低合金结构钢是在普通碳素结构钢的基础上,加入质量分数不超过()的合金元素,以提高其强度。A、2%~3%B、3%~4%C、4%~5%D、3%~5% [单选]()不属于生产物流控制的内容。A.进度控制B.制成品管理C.在制品管理D.偏差的测定和处理