七年级数学认识三角形1
北师大版数学七年级下册4.1.1《认识三角形》教案

今天在教授《认识三角形》这一章节时,我发现学生们对三角形的定义和分类掌握得比较快,但在理解三角形稳定性和计算面积时遇到了一些困难。在教学中,我尝试了多种方法来帮助学生突破这些难点。
首先,通过生活中的实例引入三角形的概念,让学生们感受到三角形的普遍存在和实际应用。这种导入方式激发了他们的学习兴趣,使得课堂氛围变得更加活跃。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过拼搭三角形,观察其稳定性,并探讨三角形的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由不在同一直线上的三条线段首尾相连组成的封闭图形。它是几何图形中的基本组成部分,具有稳定性,广泛应用于日常生活和工程建筑中。
2.案例分析:接下来,我们来看一个具体的案例。以自行车三角架为例,讲解三角形在实际中的应用,以及它如何帮助我们解决问题。
-三角形的分类:掌握按边分类(不等边三角形、等腰三角形)和按角分类(锐角三角形、直角三角形、钝角三角形)。
-三角形的符号表示:熟练运用小写字母表示三角形的边,大写字母表示对应的角。
-三角形的周长和面积计算公式:理解并掌握三角形周长为三边之和,面积可通过底和高的乘积的一半计算。
举例解释:讲解三角形定义时,可通过实际操作教具或动态软件演示三条线段如何构成三角形,强调“不在同一直线上”的关键条件。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
【课件】1 认识三角形 第5课时三角形的高

D. 不能确定
课堂小结 1. 知识方面: ______________________________
2.数学思想方法方面:________________________
课堂探究一
从三角形的一个顶点 向它的对边 所在直线作垂线, 顶点 和垂足 之间的线段 叫做三角形的高线, 简称三角形的高。 (height)
如图,线段AF是BC边上的高。
三角形的高的定义
A
B
F
C
想一想
分别指出图中△ABC 的三条高。
A
A
D
B
C
直角边BC边上的
高是
;
直角边AB边上的
高是
;
斜边AC边上的
高是
;
F
D
B
C
E
AB边上的高是 ; BC边上的高是 ; CA边上的高是 ;
课堂探究二
锐角三角形的三条高
每人准备一个锐角三角形纸片。
(1)你能画出这个三角形的三条高吗?
你能用折纸的办法得到它们吗?
O
(2)这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流。
锐角三角形的三条高是
在三角形的内部还是外部?
锐角三角形 直角三角形 钝角三角形
3
1
1
相交
相交
不相交
相交
相交
相交
三角形内部 直角顶点 三角形外部
三角形的三条高所在直线交于一点
例4 如图, AD是ΔABC的中线,AF⊥BC,垂足 点F。填空: (1) AF是图中哪几个三角形的高; (2)图中哪两个三角形面积相等?请说明理由。
A
B
DF
C
练习
1.下列各组图形中,哪一组图形中AD是△ABC 的高( )
北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条
苏科版数学七年级下册认识三角形

探究交流
根据:两点之间线段最短!
A
若把A、B看作定点,
c
b 可得AC+BC>AB;
同理:AC+ AB >BC;
B
a
C AB +BC>AC。
三角形的任意两边之和大于第三边。
A
探究交流
a
b
Bc
C
任意两边之和大于第三边。
才艺展示
1、如图是用三根细棍组成的图形, 其中符合三角形概念的图形是
(D )
A
B
C
D
才艺展示
2、三条线段的长度分别为: (1)3、8、10 (2)5、2、7 (3)5、5、11 (4)13、12、20
能组成三角形的有(B )组。 A、1 B、2 C、3 D、4 点拨: 比较较小的两边之和与最长边的大 小即可.
才艺展示
3、有3、5、7、10的四根木条,要 摆出一个三角形,有(B)种摆法。
A、1 B、2 C、3 D、4
小结思考
本节课你有什么收获?
1. 学习了三角形的概念,及三角形的基 本要素,重点研究了三角形3边间的关系.
2. 从三角形3边关系的研究中可知:三 角形的3边长度相互制约----三角形的 任意两边之和大于第三边.
A
C
B
DE
探究交流 三角形按角分有几种分法?
(1)
(2)
(3)
所有内角都是锐角的三角形————锐角三角形 有一个内角是直角的三角形————直角三角形
有一个内角是钝角的三角形————钝角三角形
探究交流
将下列三角形按角分类
①
北师大版七年级数学下册第三章第一节认识三角形(1)PPT课件

(A) 2a-2b
(C) 2b-2c
(B) 2a+2b+2c
(D) 2a-2c
2014年3月30日星期日 7时10分42秒
19
动动脑
某地有四个汽车停车场,位于如图所示的四边形 ABCD的四个顶点,现在要建立一个汽车维修站,你 能利用“三角形任意两边之和大于第三边”在四边 形ABCD的内部找一点P,使点P到A,B,C,D四点的 距离之和最小吗?
(4)5cm,
5cm,
11cm
2.现有长度分别为1cm,2cm,3cm,4cm,5cm的五条线段, 从其中选三条线段为边可以构成 3 个的不同的三角形。
2014年3月30日星期日 7时10分42秒
17
3.如果三角形的两边长分别是2和4,且第三边是奇数, 那么第三边长为 3。若第三边为偶数,那么三角 或5 10 形的周长 。
10
练一练
1.小强用三根木棒组成的图形,其中符合三角形概念是 ( C )
A
B
AC
C
2.如图三角形ABC 记作: ∠B的对边:
ABC
A
C
D E
邻边是: AB,BC
B
此图中有几个三角形?你能表示出来吗?
2014年3月30日星期日 7时10分42秒 11
议一议
(1) 元宵节的晚上,房梁上亮起了彩 灯,装有黄色彩灯的电线与装有红色 彩灯的电线哪根长呢?说明你的理由。 利用你发现的规律填空
c=_____
c=_____
三角形任意两边之差小于第三边
2014年3月30日星期日 7时10分42秒
14
有两根长度分别为5cm和8cm的木棒,用长度为2cm的 木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒 呢?动手摆一摆。
七年级数学上册第一章三角形1认识三角形第1课时课件鲁教版五四制

至D. 因为∠ACE =∠A, 所以CE∥AB,
所以∠DCE =∠B,
又因为 ∠ACE+∠DCE +∠ACB =180°,
所以 ∠A+∠B+∠C=180°.
三角形分类
锐角三角形 (三个内角都是锐角)
直角三角形 (有一个内角是直角)
钝角三角形 (有一个内角是钝角)
【探究新知】
“直角三角形ABC”用“Rt△ABC”表示.
C
此图中有几个三角形? 你能表示出来吗?
DE B
6个,△ABD, △ADE, △AEC, △ABE, △ADC, △ABC.
【想一想】
三角形的三个内角有什么关系? 三角形三个内角的和等于180°. 小学里,是用什么方法得到三角形内角和为180°的 结论的?
将一个三角形的三个角撕下来,拼在一起,可以得到 三角形的内角和为180°.
三边可表示为AB,BC,AC,顶点A所对的边BC也 可表示为a,顶点B所对的边AC也可表示为b,顶点 C所对的边AB也可表示为c.
【揭示新知】
1.当表示三角形时,字母没有先后顺序.
2.如图,我们把BC(或a)叫做A的对边,把AB(或c)、 AC(或b)叫做A的邻边.
A
c
b
B
a
C
如果我说三角形有三要素,
3.(苏州·中考)△ABC的内角和为( )
(A)180°
(B)360°
(C)540°
(D)720°
【解析】选A.根据三角形的内角和为180°,得△ABC
的内角和为180°,故A正确.
通过本课时的学习,需要我们掌握: 1.三角形的概念. 2.三角形的内角和为180°. 3.三角形的任意两边之和大于第三边,任意两边之 差小于第三边. 4.直角三角形两个锐角互余.
七年级数学认识三角形1(PPT)4-1

一、三角形的相关概三条线段首尾顺次相接
所组成的图形叫做三角形.
2、顶点: 用一个大写字母表示如A、B、C
3、边:边AB,边BC,边AC
4、角(内角):∠A,∠B,∠C
5、三角形记作:△ABC
6、对角:BC边的对角是∠A
对边:∠C的对边是BA
在谢花后-天套袋。 套袋方法:先套树冠上部的果,后套树冠下部的果。上下左右内外分布均匀,通常应当整个果园或整株树套袋。套袋时先把手伸进袋中膨 起,一手抓住果柄或果枝,一手托起袋底,把幼果套入袋中,将袋口从两边向中部果柄处挤掐,再将铁丝卡反转度,弯绕扎紧在果柄或果枝上, 一定要把袋
口封严,但不要扎得过紧,以免;雷速app 雷速app ;损伤果柄彰响幼果生长。套完后,用手往上托起袋底,使全袋膨起来,两底角的出 水口张开,幼果悬空在袋中,不与袋壁贴附 [] 。 整形修剪 、夏季修剪 夏季修剪也称为生长期修剪,是促进果实品质提升,减缓大小年现象的重要手段。很 多果园管理者也意识到夏季修剪的重要性,但在实际操作过程中,存在修剪不到位不科学的问题,因此,有必要对梨树夏季修剪技术进行详细介绍,以指导 果树生产 [] 。 ()除萌和疏枝 除萌一般是去除小于 cm以下的萌芽;疏枝则是去除超过 cm的新梢。 ()摘心 摘心是将年生枝条的顶端摘除,枝条顶端是生 长点也是枝条的生长中心。 ()环剥 环剥是将果树的韧皮部隔断,起到阻碍养分运输的作用。 ()扭梢 扭梢是对枝条进行扭伤处理,目的是减缓枝条的生
长势、促进花芽分化以及调整树体形态等。 ()拉枝 由于梨树顶端优势比较强烈,导致枝千的直立性很强,造成梨树高度不断增加,出现徒长等现象,抑制
了花芽分化,直接影响梨树的产量。合理的进行拉枝是矮化梨树、增加光合作用面、增加透气透光的常规手段 [] 。 、冬季修剪 梨树的整形修剪应根据树的 品种特性、树龄和长势、修剪反应、自然条件和栽培管理水平等因素为依据,进行有针对性的整形和修剪。 ()新植树修剪 对新植梨树,树苗定植后在~cm 处剪顶定干,萌发新梢后在顶端~cm整形带内留~个芽,选-个方向不同、分布均匀的健壮枝,培养成为主枝,其余的全部抹除。主枝生长-cm后摘心或停止 生长后短截,促发二次枝。选留生长健壮、方向、角度适当的枝作为主枝延长枝和侧枝。对主枝与侧枝上的过密枝、细弱枝.病虫枝以及扰乱树形的枝条全部 剪除 [] 。 ()幼龄梨树修剪 幼龄梨树是形成树冠的重要时期。修剪的主要任务是:根据所选树形的树体结构.选择和培养骨干枝,并适当培养结果枝,使幼龄 梨树在迅速扩大树冠的同时,适时进人结果期 [] 。 ()初果期梨树修剪 培养骨干枝和枝组,对骨干延长枝的修剪,要逐年缩短,但要保持适当的延伸角度。 枝条较软的品种,为防止角度开张过大,可先选- -适宜的背上枝,培养为新的延长枝.待新延长枝的
()七年级数学下册第四章三角形1认识三角形三角形认识讲义(无答案)(新版)北师大版

三角形的认识段【根底知识】从三角形的一个顶知识点1三角形的定义点向它的对边所在1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形的高线的直线作垂线,顶点表示:三角形可用符号“△〞表示,如右图和垂足之间的线段三角形记作:△ABC b CAc a三角形中,连结一个B 顶点和它对边中点2.一个三角形有三条边,三个角、三个顶点三角形的中线的线段如图三角形中三边可表示为AB,BC,AC,顶点A所对的边BC也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表示为c 三角形一个内角的知识点2三角形的性质平分线与它的对边1.三角形三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于三角形的角平分相交,这个角顶点与第三边。
线交点之间的线段3.4.三角形的内角关系:三角形内角和为1805.三角形的分类:三角形按内角的大小可以分为锐角三角形、直角三角形、钝角结论总结:三角形。
其中直角三角形的两个锐角互余知识点3三角形的中线、角平分线和高线三角形的重要线概念图形表示法AE是△ABC的AB上的高线.CE⊥AB∠AEC=∠BEC=90°.AD是△ABC的BC上的中线.BD=CD=?BC.AE是△ABC的∠ABC的平分线1∴∠1=∠2=2ABC-1-/12【典例剖析】例1.有两根长度分别为5cm和8cm的木棒,再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?如果取一根长度为13cm的木棒呢?聪明的你能取一根木棒,与原来的两根木棒摆成三角形吗?(4)要选取的第三根木棒的长度x要满足什么条件呢?例2.假设△ABC的三边长a,b,c都是正整数,且满足a.bc,如果b=4,问这样的三角形有几个?例3.一个三角形有两边相等,并且周长为56cm,两不等边之比为3︰2,求这个三角形各边的长。
锐角三角形直角三角形钝角三角形角平分线〔有几中线条,是否相交,交高线点在那〕例4.判断满足以下条件的VABC是锐角三角形、直角三角形还是钝角三角形;〔1〕A80o,B25o〔2〕A B30o,BC36oA11CB6〔3〕2例5.三角形ABC的一个内角度数为40o,且A B,求C的外角的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。