降次解一元二次方程

合集下载

【初中数学】22.2 降次-解一元二次方程(重难点)

【初中数学】22.2  降次-解一元二次方程(重难点)

降次-解一元二次方程(重难点、易错点)课前检测1、简述一元二次方程的常见解法,并分析和比较这几种解法的优缺点。

2、结合一元二次方程的几种解法分析一元二次方程无实数根、有两个相等的实数根和有两个不相等的实数根的情况。

3、通过配一元二次方程的一般式得到一元二次方程的求根公式。

重难点讲解1、配方法判断多项式的值。

例题1:用配方法证明:2x x-+-的值恒小于0.31216变式1:对于二次三项式21036-+,小明同学得到如下结论:无论x取何值,它的值都x x不可能是10.你是否同意他的说法?请说明理由。

2、一元二次方程的根例题2:已知方程20++=有一个根是(0)x bx a-≠,则下列代数式的值恒为常a a数的是()C.a b+D.a b-A.a bB.ab例题3:关于x的一元二次方程20+=解的情况是___________________________;mx nx例题4:已知关于x的一元二次方程2-++-=,试证明不论m取何值,原9(7)30x m x m方程都有两个不相等的实数根。

3、根据一元二次方程根的情况判断三角形形状例题5:若,,a b c 是A B C 的三边,且关于x 的方程22(1)2(1)0a x cx b x --++=有两个相等的实数根,试判断A B C 的形状。

变式2:在R t A B C 中,090C ∠=,若,,a b c 是R t A B C 的三边,试证明关于x 的方程21()()04a c x bx c a +-+-=有两个相等的实数根。

变式3:若,,c a b 是A B C 的三条边的长,且,a b 是方程2-33+1=0x x 的两根,5c =试判断A B C 的形状。

4、根据方程的根求多项式的值例题6:(2010北京海淀第一学期期中)已知关于x 的一元二次方程21(31)04a x ax --+=有两个相等的实数根,求代数式2121a a a-++的值。

例题7:已知12,x x 是方程2310x x ++=的两实根,则312820x x ++=____________;5、根与系数关系例题8:已知关于x 的方程222(3)410x k x k k --+--=。

降次--解一元二次方程(初中数学九年级)

降次--解一元二次方程(初中数学九年级)

降次--解一元二次方程(初中数学九年级) 学情分析:在学习本节之前,学生对一元一次方程及一元一次方程的解的有关知识有一定的了解,并且九年级的学生有一定的数学思维基础,分析和概括能力相对于八年级学生有很大的提高,容易开发学生的主观能动性,适合有特殊到一般的探究方式教学内容分析:本节课主要学习运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标:1、经历推导求根公式的过程,加强推理技能的训练。

2、会用公式法解简单系数的一元二次方程。

3、会利用b2-4ac来判断一元二次方程根的情况。

教学难点分析:重点:运用开平方法解形如(m x+ n)2=p(p≥0)的方程.难点:通过根据平方根的意义解形如x2=n的方程,知识迁移到形如(x+m)2=n(n≥0)的方程.关键:理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.教学课时: 1课时教学过程:一、温故知新:1、用配方法解一元二次方程的步骤有哪些?(口答)2、用配方法解下列方程:(1)x 2-6x+5=0 (2)2x 2-7x+3=0(学生扳演,教师点评)二、自主学习:〈一〉自学课本P40---P 41思考下列问题:1、结合配方法的几个步骤,看看教材中是怎样推导出求根公式的?2、配方时,方程两边同时加是什么?3、教材中方程②()224422a acb a b x -=+能不能直接开平方求解吗?为什么?4、什么叫公式法解一元二次方程?求根公式是什么?交流与点拨:公式的推导过程既是重点又是难点,也可以由师生共同完成,在推导时,注意学生对细节的处理,教师要及时点拨;还要强调不要死记公式。

关键感受推导过程。

在处理问题3时,要结合前边学过的平方的意义,何时才能开方。

三、例题学习:例1(教材P 41例2)解下列方程:(1)2x 2-x-1=0 (2)x 2+1.5x=-3 x(3)x 2-x 2= -21(4)4x 2-3x+2=0解:将方程化成一般形式 解:a=4, b= -3, c=2.x 2-x 2+21=0 b 2-4ac=(-3)2-4×4×2=9-32=-23<0a=1, b= -2, c=21 因为在实数范围负数不能开平方,所以方b 2-4ac=(-2)2-4×1×21=0 程无实数根。

22. 2.3 降次——解一元二次方程(因式分解法)

22. 2.3 降次——解一元二次方程(因式分解法)

100 x1 , x2 0 49
100 x1 , x2 0 49
探究
10 x 4.9 x 0
2
x 10 4.9x 0
x0
因式分解
如果a ·b = 0, 那么 a = 0或 b = 0。
两个因式乘积为 0 降次,化为两个一次方程 或 10 4.9 x 0
右化零 左分解
两因式 各为0
布置作业
第5次 课本第17页第6、10、11题
例3 解下列方程:
(1) x( x 2) x 2 0; 1 3 2 2 (2)5 x 2 x x 2 x . 4 4
分解因式法解一元二次方程的步骤是: 1.使方程右边等于0; (有时化为一般形式) 2. 将方程左边因式分解为a×b; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
例3 解下列方程:
1 x x 2 x 2 0;
2
x-2看成是一个整体
(1)因式分解,得 解: (x-2)(x+1)=0.
于是得
1 3 2 5x 2 x x 2 x . 2 4 4
(2)移项、合并同类项,得
2
因式分解,得
于是得
4 x 1 0.
5 5 r1 , r2 (舍去). 2 1 1 2
答:小圆形场地的半径是
5 m. 2 1
小结
分解因式法解一元二次方程的步骤是: 1. 将方程左边因式分解,右边等于0;
2. 根据“至少有一个因式为零”,转化为两个一元 一次方程. 3. 分别解两个一元一次方程,它们的根就是原方 程的根.

一元二次方程降次法例题

一元二次方程降次法例题

一元二次方程降次法例题一、引言在数学领域,一元二次方程是一种常见的方程类型,它在数学、物理等领域有着广泛的应用。

然而,一元二次方程的求解过程往往较为复杂,尤其是当方程中的系数较为复杂时,更是如此。

为此,人们提出了一种名为降次法的求解方法。

二、一元二次方程降次法的定义和原理1.定义一元二次方程降次法,指的是将一元二次方程转化为一次方程或不等式组,从而求解原方程的方法。

2.原理降次法的原理在于,通过分解一元二次方程的二次项,将其转化为一次项,从而将原方程转化为一次方程或不等式组。

三、一元二次方程降次法的具体步骤1.准备工作对于给定的一元二次方程,首先需要进行准备工作,包括确定方程的系数、判断方程的根的情况等。

2.分解因式根据方程的系数和根的情况,运用恰当的分解方法,将二次项分解为两个一次项的乘积。

3.消去二次项将分解后的二次项代入原方程,消去二次项,得到一次方程或不等式组。

4.求解一次方程对于得到的一次方程或不等式组,根据求解方法,求解出方程的解。

四、降次法的应用实例1.实例一给出方程:x^2 - 2x - 3 = 0应用降次法求解:首先,根据方程的系数,可以得到a=1,b=-2,c=-3。

分解因式:x^2 - 2x - 3 = (x-3)(x+1)消去二次项:得到一次方程:(x-3)(x+1) = 0求解一次方程:得到x=3,x=-12.实例二给出方程:x^2 + 2x - 1 = 0应用降次法求解:首先,根据方程的系数,可以得到a=1,b=2,c=-1。

分解因式:x^2 + 2x - 1 = (x+1)(x-1)消去二次项:得到一次方程:(x+1)(x-1) = 0求解一次方程:得到x=-1,x=13.实例三给出方程:x^2 + 3x + 2 = 0应用降次法求解:首先,根据方程的系数,可以得到a=1,b=3,c=2。

分解因式:x^2 + 3x + 2 = (x+2)(x+1)消去二次项:得到一次方程:(x+2)(x+1) = 0求解一次方程:得到x=-2,x=-1五、降次法的优缺点1.优点降次法在求解一元二次方程时,可以简化求解过程,减少计算量,尤其适用于方程系数较复杂的情况。

22.2降次——解一元二次方程-因式分解法

22.2降次——解一元二次方程-因式分解法

(4)x = x x1 = 0, x2 = 1
2
3
2
2.下面的解法正确吗?如果不正确, 下面的解法正确吗?如果不正确, 下面的解法正确吗 错误在哪? 错误在哪? (1)解方程: x + 2)( x − 1) = 3 (1)解方程 ( 解方程:
Q 解: ( x + 2)( x − 1) = 3 × 1
∴ x + 2 = 3, x − 1 = 1 ×
则x1 = 1, x 2 = 2
这个方程需要先转化为一般形式再求解. 这个方程需要先转化为一般形式再求解.
(2)解方程: y = 4 y (2)解方程 解方程:
2
解:Q y = 4 y
2
∴y=4
×
根据等式性质,等式两边都除以一 根据等式性质, 个不为0的数时,等式仍然成立。 个不为0的数时,等式仍然成立。上式 方程两边同除以y 有可能为0. 中,方程两边同除以y,而y有可能为0. 那么,这个方程应该怎样解呢? 那么,这个方程应该怎样解呢?
x2+x=0 解:原方程整理得 x(x+1)=0 ∴x=0 或 (x+1)=0 则x1=0 ,x2=-1 可以发现, 可以发现,利用因式分解可以很快 捷地解出方程。 捷地解出方程。
梳理
上述解法中,通过因式分解使一元 上述解法中, 二次方程化为两个一次式的乘积等于0 二次方程化为两个一次式的乘积等于0的 形式,再使这两个一次式分别等于0,从 形式,再使这两个一次式分别等于0 而实现降次,求出方程的根, 而实现降次,求出方程的根,这种解法 叫做因式分解法 叫做因式分解法。 因式分解法。
(2)(3x +1) − 5 = 0
2
(1)3x(x + 2) = 5(x + 2)

22.2降次——解一元二次方程(共8课时)

22.2降次——解一元二次方程(共8课时)

22.2降次——解一元二次方程(共8课时)第一课时:配方法(1)一、教学目的1.使学生掌握用直接开平方法解一元二次方程.2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.二、教学重点、难点重点:准确地求出方程的根.难点:正确地表示方程的两个根.三、教学过程复习过程回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.求下列各式中的x:1.x2=225; 2.x2-169=0;3.36x2=49; 4.4x2-25=0.回答解题过程中的依据.解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.引入新课我们已经学过了一些方程知识,那么上述方程属于什么方程呢?新课教学过程设计做一做1.一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?(课件:盒子的棱长)2.对照上述解方程的过程,你能解下列方程吗?从中你能得到什么结论?(1)2x-=;(2)2692(21)5x x++=.学生独立分析问题,在必要的时候进行讨论.经过分析发现(1)和问题1中的方程形式类似,可以利用平方根的定义直接得到21x-=对于(2),发现方程左边是一个完全平方式,可以化为(1)的形式,然后利用(1)的方法解决.鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”——把二次降为一次,进而解一元一次方程即可.引导学生归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.即,如果方程能化成2xp=或2()(0)m x n p p +=≥的形式,那么可得x =m x n+=课堂练习解下列方程.学生独立思考、独立板书解题1.x 2-3=0 2.4x 2-9=0 3. 4x 2+4x+1=1 4. x 2-6x+9=03、应用拓展市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x .•一年后人均住房面积就应该是10+•10x=10(1+x );二年后人均住房面积就应该是10(1+x )+10(1+x )x=10(1+x )2解:设每年人均住房面积增长率为x , 则:10(1+x )2=14.4 (1+x )2=1.44直接开平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.课堂小结问题:本节课你学到了什么知识?从中得到了什么启发?1.本节主要学习了简单的一元二次方程的解法——直接法.2.直接法适用于ax 2+c=0(a >0,c <0)型的一元二次方程.由应用直接开平方法解形如x 2=p (p ≥0),那么x=开平方法解形如(mx+n)2=p(p≥0),那么mx+n=的.作业31页练习1、2第二课时:配方法(2)教学目的1.使学生掌握用配方法解一元二次方程的方法.2.使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程.并由此体会转化的思想.重点:掌握配方的法则.难点:凑配的方法与技巧.教学过程一、复习回顾、引入新课用开平方法解下列方程:(1)x2=441; (2)196x2-49=0;我们知道,形如x2-A=0的方程,可变形为x2=A(A≥0),再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如ax2+bx+c=0(a>0)的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.二、探究新知、归纳配方法一般过程.学生通过思考,自己列出方程,然后讨论解方程的方法.问题:要使一块矩形场地的长比宽多6 cm,并且面积为16 cm2,场地的长和宽分别是多少?设场地的宽为x m,则长为(x+6)m,根据矩形面积为16 cm2,得到方程x(x+6)=16,整理得到x2+6x-16=0,对于如何解方程x2+6x-16=0可以进行讨论,根据问题1和问题2以及归纳的经验可以想到,只要把上述方程左边化成一个完全平方式的形式,问题就解决了,于是想到把方程左边进行配方,对于代数式x2+6x只需要再加上9就是完全平方式(x+3)2,因此方程x2+6x=16可以化为x2+6x+9=16+9,即(x+3)2=25,问题解决.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程探究二:利用配方法解下列方程,你能从中得到在配方时具有的规律吗?(课件:配方)学生首先独立思考,自主探索,然后交流配方时的规律. (1)x 2-8x + 1 = 0; (2)2213x x+=;(3)23640x x -+=.(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=;(3)按照(2)的方式进行处理.在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分析利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式2a xb xc ++=;(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.三、应用提高、拓展创新,培养学生应用意识.绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长应是多少米?师生活动设计:学生在独立思考的基础上解决问题,在必要时教师进行适当引导,遇到问题时可以让学生讨论解决.…解答‟设绿地的宽是x 米,则长是(x +10)米,根据题意得x (x +10)=900.整理得210900x x +=,配方得2(5)925x +=.解得1255x x =-+=--由于绿地的边长不可能是负数,因此绿地的宽只能是5-+的长是5+四、课堂练习解方程x 2-4x-3=0. 解方程2x 2+3=7x .五、归纳总结、布臵作业1、 在解决问题的过程中你采取了什么方法?2、应用配方法解一元二次方程ax 2+bx+c=0(a ≠0)的要点是: (1)化二次项系数为1;(2)移项,使方程左边为二次项和一次项,右边为常数; (3)方程两边各加上一次项系数一半的平方; 作业:习题22.2第1~3题.第三课时:用公式法解一元二次方程。

《降次--解一元二次方程》 课件01

《降次--解一元二次方程》 课件01

(3)9 x2 6 x 1 4
1 x1 3 , x2 1
注意:方程两边需同时开平方。
方程x2+6x=2如何解? 此方程不能直接写成完全平方式等 于常数的形式,故需要把方程左边凑成 完全平方式的形式。x2+6x还差一个平方 项,把6x分解为两数积的2倍,则知添上 32即可凑成完全平方式。
21
2
即x1

x2

4 2

2
解: (3) a=4,b=-3,c=1
b2-4ac=(-3)2- 4×1×4= -7<0 因为在实数范围内负数没有平方
根,所以方程无实数根。
对于一元二次方程ax2+bx+c=0 (a≠0),b2-4ac的范围与方程的根的情 况有怎样的联系?
梳理
1、当b2-4ac≥0时,一元二次方程 ax2+bx+c=0(a≠0)有两个不等实数根:
解:原方程整理为 (x+3)2=2
方程两边同时开方(降次),得 x3 2 x 2 3
则方程的根为:
x1 2 3, x2 2 3
梳理
如果方程能化成 x2 p 或 (mx n)2 p( p ≥ 0 )的形式,那么 可得x p或mx n p.
(2)( y 2)( y 3) 0 y1 2, y2 3
(3)(3x
(4)x2
2)(2x
x x1
1)
0,
0 x1
x2 1


2 3
,
x2

1 2
2.下面的解法正确吗?如果不正确, 错误在哪?
(m 2)x2 (2m 3)x m 2 0有两个

降次——解一元二次方程

降次——解一元二次方程

22.2 降次——解一元二次方程情境感知我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长十二步(宽比长少12步),问阔及长各几步?”基础准备一、配方法1.配方法的定义把一元二次方程的左边化成一个____________________,右边变成一个___________.通过这种形式解一元二次方程的方法,叫做配方法.2.用配方法解一元二次方程的步骤(1)如果二次项系数不是1,就在方程两边同时除以_____________,将其化为1;(2)把___________移到方程的右边;(3)方程两边都加上_________________的平方,使方程的左边变为一个完全平方式;(4)如果方程的右边是一个非负数,根据平方根的定义解方程.问题1.用配方法解方程:21090x x ++=.二、公式法3.一元二次方程()200ax bx c a ++=≠的根可用式子______________________求得,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法. 问题2.用公式法解方程:260x x --=.4.求根公式中的____________叫做一元二次方程()200ax bx c a ++=≠的根判别式. (1)当__________时,一元二次方程()200ax bx c a ++=≠有两个不相等的实数根; (2)当__________时,一元二次方程()200ax bx c a ++=≠有两个相等的实数根;(3)当__________时,一元二次方程()200ax bx c a ++=≠没有实数根.问题3.不解方程,判断下列关于x 的方程的根的情况:(1)245x +=;(2)()22410x mx m -+-=.三、因式分解法5.对于一元二次方程,一边是_________,另一边化为两个_____________的乘积,再使这两个因式分别等于0,从而实现降次,这种方法叫做因式分解法.问题4.用因式分解法解下列方程(1)20x -=;(2)23180x x +-=.要点探究探究1.一元二次方程四种解法的选择例1.用适当的方法解下列方程.(1)2710x x --=.(2)220x x +=.(3)2160x -=.(4)()44x x -=-. 解析:针对方程特点选择最简捷的方法解题.答案:(1)1a =,7b =-,1c =-,()()2247411530b ac -=--⨯⨯-=>,()77212x --±==⨯,∴172x =,272x =. (2)因式分解,得()20x x +=,∴0x =或20x +=,∴10x =,22x =-.(3)移项,得216x =,∴14x =,24x =-.(4)将方程化为一般形式2440x x -+=,即()220x -=,∴122x x ==. 智慧背囊:一元二次方程解法的选择顺序:先特殊,后一般,即先考虑是否可以用直接开平方法,若不能,则看能否用因式分解法,再考虑用公式法,一般没有特殊说明不用配方法,因为配方法比较麻烦,四种解法中最简单的是直接开平方法,最常用的是公式法.活学活用:选择适当的方法解下列方程:(1)2230x x --=;(2)29x =;(3)()2211x x +=+;(4)221x x -=-.探究2.一元二次方程的判别式例2.不解方程,判断下列方程根的情况.(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=. 解析:先将方程化成一般形式,确定a ,b ,c 的值,再计算24b ac -的值,并与0进行比较.答案:(1)∵2a =,3b =,4c =-,∴()2243424410b ac -=-⨯⨯-=>,∴原方程有两个不相等的实数根.(2)原方程可变形为2162490y y -+=,∵16a =,24b =-,9c =,∴24b ac - ()22441690=--⨯⨯=,∴原方程有两个相等的实数根.(3)原方程可变形为25750x x -+=,∵5a =,7b =-,5c =,∴24b a c -=()27- 45549100510-⨯⨯=-=-<.∴原方程没有实数根.智慧背囊:判断方程根的情况的关键是准确计算24b ac -的值,并将其与0进行比较. 活学活用:不解方程,判断下列方程根的情况.(1)2100x -+=;(2)()11x x =+-.例3.已知关于x 的方程2450kx kx k -+-=有两个相等的实数根,求k 的值,并解这个方程.解析:若一元二次方程有两个相等的实数根,则240b ac -=.解题时注意题中隐含条件二次项系数0k ≠.答案:∵a k =,4b k =-,5c k =-,∴()()22244451220b ac k k k k k -=---=+. ∵方程有两个相等的实数根,∴240b ac -=,即212200k k +=,解得10k =,253k =-.当0k =时,原方程不是一元二次方程,∴0k =不合题意,舍去,当53k =-时,原方程化为2440x x -+=,解得122x x ==.智慧背囊:对于一次项系数含有字母的一元二次方程,在用根的判别式时必须考虑题目中的隐含条件,即二次项系数不能等于0.活学活用:已知关于x 的方程()21230m x mx m -+++=有两个不相等的实数根,求m 的取值范围.随堂尝试A 基础达标1.选择题(1)一元二次方程240x -=的解是( )(A )2x =.(B )2x =-.(C )12x =,22x =-.(D )1x =2x =(2)方程20x x +=的解是( )(A )1x =±.(B )0x =.(C )1x =.(D )10x =,21x =-.(3)用配方法将代数式245a a -+变形的结果是( )(A )()221a -+.(B )()221a ++.(C )()221a +-.(D )()221a --.(4)已知228x x k ++是完全平方式,则k 的取值是( )(A )4.(B )-4.(C )4±.(D )16.(5)下列方程中,无实数根的是( )(A )270x =.(B )()2116x -=.(C )()()112x x +-=-.(D )()210x +-=. 2.填空题(1)对于方程2316x x =,用_____________法解最简便.(2)当y =_____________时,代数式276y y ++的值与1y +的值相同.(3)当x =_____________(4)一个三角形两边长为2和4,第三边长适合方程2210120x x -+=,则三角形的周长为_____________.3.用适当的方法解下列方程: (1)21943x ⎛⎫+= ⎪⎝⎭;(2)260x x --=;(3)2310y y -+=;(4)22110362x x --=.4.若关于x 的方程()22(21)10m x m x -+++=有两个不相等的实数根,求m 的取值范围.B 能力升级5.试分别写出一个一元二次方程,使它的两根:(1)一根是0,一根是负数;(2)一根是正数,另一根是在-2与-1之间.6.已知实数a ,b ,c ()2130b c +++=,求方程20ax bx c ++=的根.7.若规定两个数a ,b 通过运算得4ab ,即a △b 4ab =,例如:2△642648=⨯⨯=.(1)求3△5的值;(2)求x △x 2+△x -2△40=中x 的值;(3)若不论x 是什么数时,总有a △x x =,求a 的值.C 感受中考8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )(A )240x +=.(B )24410x x -+=.(C )230x x ++=.(D )2210x x +-=.9.方程220x x +=的解为_____________.10.已知关于x 的一元二次方程2410x x m ++-=.(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设α,β是(1)中你所得到的方程的两个实数根,求22αβαβ++的值.课后实践高次方程有求根公式吗一元二次方程有求根公式,一般的一元三次方程、一元四次方程等高次方程是否也有类似的求根公式呢?数学家们也曾提出过类似的问题,在意大利的数学家们之间还发生了一连串有趣的故事.1535年,意大利数学家塔尔塔利亚与另一位数学家举行了一场数学比赛,双方各出30个三次方程的问题,限30日交卷,约定谁解出的题目多谁就获胜,结果塔尔塔利亚取得了胜利.这次胜利促使塔尔塔利亚进一步潜心研究一般三次方程的解法.1541年,他终于完全解决了三次方程的求解问题.意大利米兰城有个学者卡尔达诺听说塔尔塔利亚会三次方程的解法,就多次向塔尔塔利亚恳求教他,并保证严守秘密,不告诉别人.当塔尔塔利亚把这个方法告诉了他之后,卡尔达诺却将其公开发表,因此现在还习惯称三次方程的求解公式为卡尔达诺公式.当然,塔尔塔利亚大为光火,两人为此曾展开公开论战.一元三次方程一经解出,一元四次方程的解法很快就被卡尔达诺的学生费拉里获得.此后200多年的时间里,推求四次以上高次方程的解法的人不可胜数,但都没有结果.久而久之,人们怀疑这个问题难以解决.挪威数学家阿贝尔证明了一般的五次及五次以上的方程都不可能有公式解法.而代数方程可解性问题的完满解决应归功于法国数学奇才伽罗瓦,他的成果被后人称之为伽罗瓦理论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
1 49 即 ( x )2 4 16
开平方得:
x
3 ∴原方程的解为:x1 2 , x2 2
1 7 4 4
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
2
6 x 16
像上面那样,通过配成完全平方形式来解一 元二次方程的方法, 叫做配方法.
心动
不如行动
2
x 6x 7 0 2 解: 移项得:x 6 x 7
配方得: x 6x 3 7 3
2 2 2
例1: 用配方法解方程
即 ( x 3) 16
2
开平方得: x 3 4
左边:所填常数等于一次项系数一半的平方.
填一填
2 2
1 ( x ___) 1 (1) x 2 x _____
2
2
2
2
4 ( x ___) (2) x 8 x _____ 4 5 5 2 2 ) (3) y 5 y ( _____ ( y ___) 2 2 2 2 1 (1) 1 (4) y y ____ ( y ___) 4 4 2
x 3 _______, 2 得 __________
3 2 3 2 x __________ 方程的根为x1 ______, . 2
如果方程能化成x p或 p的形式, (mx n)
2 2
那么可得x p或m x n p .
化成两个一 元一次方程
P31.练习题
问题2
要使一块矩形场地的长比宽多6m,并且 2 面积为16 m , 场地的长和宽应各是多少?
,列方程ห้องสมุดไป่ตู้
解:设场地的宽 xm,长(x+6)m,根据矩形面积 2
为16m
X(x+6)=16
即 x 6 x 16 0
怎样解?
2
x x6 x 16 0 0的流程怎样? 想一想解方程 x 6 16
经检验,5和-5是方程的根,但是棱长不能是负值, 所以正方体的棱长为5dm.
把此方程“降次”, 转化为两个一元 一次方程
怎样解方程(2 x 1) 5及
2
方程 x 6 x 9 2 ?
2
方程 x 6 x 9 2的左边是完全平方形式 ,
2
2
这个方程可以化成 (x 3) 2,进行降次,
2
2
x 6 x 16
2
移项
两边加上32,使左边配成
x 2bx b 的形式
2 2
x 6 x 3 16 3
2 2
2
( x 3) 25
2
左边写成完全平方形式 降次
x 3 5
x 3 5, x 3 5
得 : x 2, x 8
1 2
以上解法中,为什么在方程 x 两边加9?加其他数行吗?
例3 用配方法解下列方程
( 1 ) x 8x 1 0 (2) 2 x 1 3x (3) 3 x 6x 4 0
练习 P34.2
2 2
2
课堂小结布置作业
小结: 1、配方法: 通过配方,将方程的左边化成一个含未
知数的完全平方式,右边是一个非负常数,运用直接开平 方求出方程的解的方法。配方时, 等式两边同时加上的是一次项系数 一半的平方 2 、用配方法解一元二次方程 ax2+bx+c=0(a≠0) 的步骤: (1)化二次项系数为1 (2)移项 (3)配方 (4)开平方(5)写出方程的解
x1 1 , x2 7 ∴原方程的解为:
范例研讨运用新知
例2: 你能用配方法解方程 2 2 x x 6 0 吗?
1 x x 3 0 解: 化二次项系数为1得: 2
2
1 移项得: x x 3 2 1 12 12 2 配方得:x 2 x ( 4 ) 3 ( 4 )
2
2
问题1 一桶油漆可刷的面积为1500 d m ,李林用这桶
2
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
设正方体的棱长为 xdm, 列方程10 6 x 1500 由此可得 x 25 x 5, 即 x1 5, x 2 5
2 2
这种解法叫做什么? 直接开平方法
21.2 降次——解 一元二次方程
21.2.1 配方法
完全平方公式:
a a
2
2ab b (a b) ;
2 2
2
2ab b (a b) .
2 2
大胆试一试:
填上适当的数或式,使下列各等式成立. 2 观察(1)(2)看所填的常 (1) x 6 x 32 =( x+ 3)2 数与一次项系数之间 2 有什么关系? (2) x 8 x 4 2 =( x 4)2 2 2 (3) x 4 x 2 =( x 2 )2 p 2 p 2 (4) x px ( ) =( x 2 )2 2 共同点:
相关文档
最新文档