12.2第1课时边边边(SSS)

合集下载

人教版数学八年级上册 12.2三角形全等的判定 第一课时 “边边边”(sss)判定(共31张ppt)(智能版推荐)

人教版数学八年级上册 12.2三角形全等的判定  第一课时 “边边边”(sss)判定(共31张ppt)(智能版推荐)

学完本节课你应该知道
定理:三条边都相等的三角形全等
全等三角形 “边边边”
判定
数学语言表示和证明
尺规画定三角形 尺规作图
尺规画等角
动笔练一练
• 满足下列条件的两个三角形不一定全等的
是( C )
A. 有一边相等的两个等边三角形 B. 有一腰和底边对应相等的两个等腰三角形 C. 周长相等的两个三角形 D. 三条边都相等的三角形
动笔练一练
• 在四边形ABCD中, 已知:AB=CD, AD=CB。试证明: ∠A=∠C。
动笔练一练
证明: 在△ABC和△FDE中:
AB=CD(已知) AD=CB(已知) BD=DB(公共边) ∴△ABD ≌△ ACD(SSS) ∴∠A=∠C(全等三角形的对 应角相等)
课后练一练
请同学们独立完成配套课后练习题。
下课!
谢谢同学们!
在我的印象里,他一直努力而自知,每天从食堂吃饭后,他总是习惯性地回到办公室看厚厚的专业书不断提升和充实自己,他的身上有九零后少见的沉稳。同事们恭喜他,大多看 到了他的前程似锦,却很少有人懂得他曾经付出过什么。就像说的:“如果这世上真有奇迹,那只是努力的另一个名字,生命中最难的阶段,不是没有人懂你,而是你不懂自已。” 而他的奇迹,是努力给了挑选的机会。伊索寓言中,饥饿的狐狸想找一些可口的食物,但只找到了一个酸柠檬,它说,这只柠檬是甜的,正是我想吃的。这种只能得到柠檬,就说 柠檬是甜的自我安慰现象被称为:“甜柠檬效应”。一如很多人不甘平庸,却又大多安于现状,大多原因是不知该如何改变。看时,每个人都能从角色中看到自已。高冷孤独的安 迪,独立纠结的樊胜美,乐观自强的邱莹莹,文静内敛的关睢尔,古怪精灵的曲筱绡。她们努力地在城市里打拼,拥有幸或不幸。但她依然保持学习的习惯,这样无论什么事她都 有最准确的判断和认知;樊胜美虽然虚荣自私,但她努力做一个好HR,换了新工作后也是拼命争取业绩;小蚯蚓虽没有高学历,却为了多卖几包咖啡绞尽脑汁;关睢尔每一次出镜 几乎都是在房间里戴着耳机听课,处理文件;就连那个嬉皮的曲筱潇也会在新年之际为了一单生意飞到境外……其实她们有很多路可以走:嫁人,啃老,安于现状。但每个人都像 个负重的蜗牛一样缓缓前行,为了心中那丁点儿理想拼命努力。今天的努力或许不能决定明天的未来,但至少可以为明天积累,否则哪来那么多的厚积薄发和大器晚成?身边经常 有人抱怨生活不幸福,上司太刁,同事太蛮,公司格局又不大,但却不想改变。还说:“改变干嘛?这个年龄了谁还能再看书考试,混一天是一天吧。”一个“混”字就解释了他 的生活态度。前几天我联系一位朋友,质问为什么好久不联系我?她说自已每天累的像一条狗,我问她为什么那么拼?她笑:“如果不努力我就活得像一条狗了。”恩,新换的上 司,海归,虽然她有了磨合几任领导的经验,但这个给她带来了压力。她的英语不好,有时批阅文件全是大段大段的英文,她心里很怄火,埋怨好好的中国人,出了几天国门弄得 自己像个洋鬼子似的。上司也不舒服,流露出了嫌弃她的意思,甚至在一次交待完工作后建议她是否要调一个合适的部门?她的脸红到了脖子,想着自己怎么也算是老员工,由她 羞辱?两个人很不愉快。但她有一股子倔劲,不服输,将近40岁的人了,开始拿出发狠的学习态度,报了个英语培训班。回家后捧着英文书死啃,每天要求上中学的女儿和自己英 语对话,连看电影也是英文版的。功夫不负有心人,当听力渐渐能跟得上上司的语速,并流利回复,又拿出漂亮的英文版方案,新上司看她的眼光也从挑剔变柔和,某天悄悄放了 几本英文书在她桌上,心里突然发现上司并没那么讨厌。心态好了,她才发现新上司的优秀,自从她来了后,部门业绩翻了又翻,奖金也拿到手软,自己也感觉痛快。她说:这个 社会很功利,但也很公平。别人的傲慢一定有理由,如果想和平共处,需要同等的段位,而这个段位,自己可能需要更多精力,但唯有不断付出,才有可能和优秀的人比肩而立。 人为什么要努力?一位长者告诉我:“适者生存。”这个社会讲究适者生存,优胜劣汰。虽然也有潜规则,有套路和看不见的沟沟坎坎,但一直努力的人总会守得云开见月明。有 些人明明很成功了,但还是很拼。比如剧中的安迪,她光环笼罩,商场大鳄是她的男闺蜜,不离左右,富二代待她小心呵护,视若明珠,加上她走路带风,职场攻势凌历,优秀得 让身边人仰视。这样优秀的人,不管多忙,每天都要抽出两个小时来学习。她的学习不是目的,而是能量,能让未来的自己比过去更好一些。现实生活中,努力真的重要,它能改 变一个人的成长轨迹,甚至决定人生成败。有一句鸡汤:不着急,你想要的,岁月都会给你。其实,岁月只能给你风尘满面,而希望,唯有努力才能得到!9、懂得如何避开问题的 人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在家里看到的永远是家,走出去看到的才 是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观念是上策。财富买不来好观念,好观念能换来 亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵支配心灵。人与人之间的差别,主要差在两耳之间的 那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路,人失意的时候要找一条出路!孩子贫穷是与父母的有一定 的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选择什么态度;有什么态度,就会有什么行为;有什么行为,就产生 什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行

八年级数学上册12.2三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版

八年级数学上册12.2三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版

八年级数学上册 12.2 三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.2节讲述了三角形全等的判定,这是初中的一个重要知识点。

在这一节中,学生将学习到用“SSS”(Side-Side-Side,即边-边-边)方法判定三角形全等。

通过这一节的学习,学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

二. 学情分析在进入这一节的学习之前,学生已经学习了三角形的基本概念,如三角形的边、角等,并掌握了用“ASA”(Angle-Side-Angle,即角-边-角)和“AAS”(Angle-Angle-Side,即角-角-边)方法判定三角形全等。

因此,学生在理解和掌握用“SSS”方法判定三角形全等时,已经有了相关的基础知识。

三. 说教学目标1.知识与技能:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

2.过程与方法:通过观察、操作、思考、交流等活动,学生能够自主探索用“SSS”方法判定三角形全等的过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,培养合作意识和团队精神,增强对数学学科的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

2.教学难点:学生能够灵活运用“SSS”方法判定三角形全等,解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂活动,培养学生的自主学习能力。

2.教学手段:利用多媒体课件、学具、黑板等,辅助学生直观地理解三角形全等的概念和“SSS”方法。

六. 说教学过程1.导入:通过复习三角形的基本概念和已学的判定方法(ASA和AAS),引导学生进入新的学习内容。

2.自主探究:学生分组合作,利用学具和多媒体课件,观察和操作三角形,自主探索用“SSS”方法判定三角形全等的过程。

人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计

人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计
1.帮助学生巩固全等三角形的定义,强化他们对全等概念的理解。
2.引导学生通过实际操作和探究,发现并理解SSS判定方法,提高他们的几何推理能力。
3.针对不同学生的学习特点,设计有针对性的教学活动,使他们在轻松愉快的氛围中掌握知识。
4.关注学生的学习情感,激发他们的学习兴趣,培养他们的自主学习能力。
在教学过程中,教师要关注学生的个体差异,充分调动他们的积极性,使他们在合作、交流、探索中不断提高,为后续几何知识的学习打下坚实基础。
-运用多媒体辅助教学,展示动态的几何图形,帮助学生形象地理解全等三角形的性质和判定方法。
-设计实际案例,让学生在解决问题的过程中,将理论知识与实际应用相结合。
2.教学步骤:
(1)导入新课:通过复习全等三角形的定义和已知判定方法,为新课的学习做好铺垫。
(2)自主探究:学生分组讨论,尝试运用SSS判定方法判断给定三角形是否全等,并总结规律。
4.鼓励学生运用所学知识,解决实际问题,培养他们的创新意识和应用能力。
(三)情感态度与价值观
在本节课的学习过程中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情。
2.培养学生的自信心,让他们在解决问题的过程中体验成功的喜悦。
3.培养学生严谨的学术态度,让他们明白在数学推理中,每一步都需要严谨的逻辑支撑。
人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计
一、教学目标
(一)知识与技能
1.了解全等三角形的定义,知道全等三角形在形状和大小上完全相同。
2.熟练掌握用SSS(Side-Side-Side,即边-边-边)判定两个三角形全等的方法。
3.能够运用SSS判定方法,解决实际问题和几何证明题。

12-2《三角形全等的判定》(共4课时)教案

12-2《三角形全等的判定》(共4课时)教案

12-2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1 如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC,画一个三角形△A′B′C′,使AB=A′B′∠B=∠B′,BC=B′C′.教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法. 操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗? (2)上面的探究说明什么规律? 总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”)[师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长; (2)画线段A ′B ′,使A ′B ′=AB ;(3)分别以A ′,B ′为顶点,A ′B ′为一边作∠DA ′B ′,∠EB ′A ′,使∠DA ′B ′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A ′D 与B ′E 交于一点,记为C ′. 即可得到△A ′B ′C ′.将△A ′B ′C ′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”)这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”)例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE. [师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充. 三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”.2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS);方法二:测量没遮住的一条直角边和一个对应的锐角(ASA或AAS).工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?二、探究新知多媒体出示教材探究5.任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.把画好的Rt△A′B′C′剪下来,放到Rt△ABC 上,它们全等吗?画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.想一想,怎么样画呢?按照下面的步骤作一作:(1)作∠MC′N=90°;(2)在射线C′M上截取线段B′C′=BC;(3)以B′为圆心,AB为半径画弧,交射线C′N于点A′;(4)连接A′B′.△A′B′C′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.多媒体出示教材例5如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角. 在Rt △ABC 和Rt △BAD 中, ⎩⎨⎧AB =BA ,AC =BD ,∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD. 想一想:你能够用几种方法判定两个直角三角形全等? 直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS ,ASA ,AAS ,SSS ,还有直角三角形特殊的判定全等的方法——“HL ”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评. 四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边. 2.直角三角形全等的所有判定方法: 定义,SSS ,SAS ,ASA ,AAS ,HL .思考:两个直角三角形只要知道几个条件就可以判定其全等? 3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.。

人教版八年级上册12.2三角形全等的判定(边边边)教案

人教版八年级上册12.2三角形全等的判定(边边边)教案

《12.2三角形全等的判定(SSS)》教学设计教学任务分析教学过程设计形吗?并与同伴做的三角形进行比较,他们一定全等吗?从特殊到一般:任意画出一个△ABC再画一个△DEF,使AB=DE,BC=EF,AC=DF.把画好的△ABC剪下来,放到△DEF上,它们全等吗?“边边边”的数学语言表述:在△ABC和△ DEF中AB=DEBC=EFCA=FD∴△ABC ≌△ DEF(SSS)思考:为什么三角形具有稳定性呢?[活动4]典例分析:例 1. 如下图,△ABC是一个钢架,AB=AC,AD是连接A与BC中点D 的支架。

求证:△ABD≌△ACD应用所学:利用前面的结论,你可以得到作一个角等于已知角的方法吗?已知:∠AOB 得出结论。

教师演示画图过程,并指导学生完成作图,并总结出规律:三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)。

从数学规律到语言表述给学生规范解题格式,明确判定条件的题设和结论,指导学生正确应用。

引导学生应用所学指导实践,解释三角形的稳定性。

教师引导学生分析问题中的以致条件,以及两个三角形全等还需要的条件。

教师请一名学生在黑板上演示解题过程,并请其他同学,指出缺点,完善解题格式与过程。

教师实际操作演示画图过程,学生模仿作图,并说明作通过观察和实验,我们得到一个规律:培养学生科学谨慎的态度,规范的应用判定条件。

培养学生学以致用能力。

培养学生的逻辑推理能力,学会运用“SSS”条件判定三角形全等,并规范地书写证明过程。

培养学生观察能力,作图能AB CDE F教学反思。

12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。

一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。

2.书写格式①先写出所要判定的两个三角形。

②列出条件:用大括号将两个三角形中相等的边分别写出。

③得出结论:两个三角形全等。

如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。

如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。

3.作一个角等于已知角已知:∠AOB 。

求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。

②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。

D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。

12.2全等三角形的判定(SSS)

12.2全等三角形的判定(SSS)

课题12..2全等三角形的判定第1课时学习内容:通过独立思考和小组合作,能够利用“边边边”判定三角形全等 学习目标:1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.能够作一个三角形与原三角形全等.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.1、已知△ABC ≌△A ′B ′C ′,找出其中相等的边____________________________ 相等的角___________________________________.C 'B 'A 'C B A2、探究1(1).只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?①.只给定一条边时:只给定一个角时:可以发现按这些条件画出的三角形 一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即: .(2).给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.可以发现按这些条件画出的三角形一定全等.(3)给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:.3、探究2(1)按课本提供的作图方法画出另一个三角形(2)这两个三角形全等吗?(3)这两个三角形全等具备了哪些条件?(4)这一基本事实是简写成(5)在解题过程中的叙述∵在△和△中{∴△≌△4、学习例题15、学习尺规作图二、小组合作解决以上问题三、拓展延伸1.如图13—2—46所示,MP=MQ,PN=QN,MN交PQ于O点,则下列结论中不正确的是()A.△MPN≌△MQN B.OP=OQ C.MO=NO D.∠MPN=∠MQN2.如图13—2—47所示,在∠AOB的两边上截取AO=BO,CO=DO,连结AD、BC交于点P,则下列结论中正确的是()①△AOD≌△BOC ②△APC△BPD ③点P在∠AOB的平分线上A.①B.②C.①②D.①②③3.如图13—2—48所示,已知OA=OB,OC=OD,AD与BC相交于E,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对4.如图13—2—49所示,AB=CD,AD=BC。

12.2 三角形全等的判定 第1课时 课件-人教版数学八年级上册

12.2 三角形全等的判定 第1课时 课件-人教版数学八年级上册

弧,分别交OA , OB 于点C , D;
(2)画一条射线O′A′ ,以点O′为圆心, OC
O
长为半径画弧,交O′A′于点C′;
(3)以点 C′ 为圆心, CD 长为半径画弧,与第2
步中所画的弧交于点D′;
(4)过点D′画射线O′B′ ,则∠A′O′B′ = ∠AOB.
O′
B D
C
A
B′ D′
C′ A′
复习引入 探索三角形全等的条件
A
A'
△ABC≌△A'B'C' 性质
B
C B'
C'
边 AB=A'B',BC=B'C',AC=A'C'
角 ∠A=∠A',∠B=∠B',∠C=∠C'
思考
如果△ABC与△A'B'C'满足上述六个条件中的1个或2个,它们一定全等吗?
获取新知 探索三角形全等的条件
探究
只满足1个条件时,两个三角形一定全等吗?
12.2 三角形全等的判定 第1课时
学习目标
1.通过教师引导明确判定两个三角形全等至少需要三个条件,发展学生 的逻辑推理能力. 2.通过自主探究并掌握“边边边”判定方法,会用“边边边”的判定方 法证明三角形全等,提高学生分析问题和解决问题的能力. 3.经历探索三角形全等条件的过程,体会如何探索研究问题,让学生初 步体会分类思想.
一边 一角


A
A'
A
A'
A'
B
C B'
C'
B
C B'
C'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.2第1课时边边边(SSS
、选择题
1.如图,△ ABC 中,AB=AC , EB=EC ,
A. △ ABD 尢ACD .△ ABE 尢ACE
C. △ BDE 尢CDE .以上答案都不对
3.如图,已知AB=AC BD=DC那么下列结论中不正确的是(
A. △ ABD^A ACD
C. / BAD是/ B 的一半 D . AD平分/ BAC
4.如图,AB=AD CB=CD / B=30° , / BAD=46,则/ ACD的度数是()
5.如图,线段AD与BC交于点0,且AC=BDAD=BC则下面的结论中不正确的是()
A. △ ABC^A BAD
B. / CAB2 DBA
C.0B=0C
12.2 三角形全等的判定
AC与BD相交于点E,若不再添加)2.如图,在△ ABC和^DCB 中,AB = DC,
任何字母与辅助线,要使△ ABC ◎△ DCB,则还需增加的一个条件是(
A.AC=BD
B.AC=BC
C.BE=CE
D.AE=DE
第1题图第2题图
则由“ SSS”可以判定(
./ ADB=90
A.120 °
B.125
C.127
D.104
D. / C=/ D
第4题图第5题图
6.如图,AB=CD,BC=DA、F是AC上的两点,且AE=CF,DE=BF,那么图中全等
A. 4对
三角形共有()对
7.如图,AB=CD BC=AD则下列结论不一定正确的是(
A.AB// DC
B. / B=/ D
C. / A=/ C
).
D. AB=BC
8.如果△ ABC的三边长分别为3, 5, 7,^DEF的三边长分别为3, 3X —2,
2X—1若这两个三角形全等,则X等于()
二、填空题
9. (2011湖北十堰)工人师傅常用角尺平分一个任意角。

做法如下: 如图,
/ AOB是一个任意角,在边0A 0B上分别取OM=QN移动角尺, 使角尺
两边相同的刻度分别与M N重合•,过角尺顶点C作射线OC由做法得
△ MO^A NOC勺依据是
10 .如图,已知AC=FE , BC=DE・,点A、D B、F在一条直线上,要使△ ABC
◎△ FDE,还需添加一个条件,这个条件可以是_____________________ .
3
第9题图
C 第10题图
11. 如图,AC=DF BC=EF AD=BE / BAC=72 , / F=32°,则/ ABC=
12、如图,用直尺和圆规作一个角等于已知角,能得出 ^TAOB^NAOB 的依据
16.已知线段a 、b 、c ,求作△ ABC 使BGa ,AC=b ,AB=c ,下面作法的合理顺序
①分别以B C 为圆心,C 、b 为半径作弧,两弧交于点A ;
②作直线BP,在BP 上截取BC=a ; ③连结AB AC △ AB (为所求作三角形.
D /A
X
第12题图
13.如图,AB=AC BD=CD / B=20° ,则/ C=
14.如图,若D 为BC 中点,那么用
“ SSS 判定△ ABD^A ACD 需添加的一个条
件是
15.如图,已知 0A= OB ,AC= BC , / 1=30°,则/ ACB 的度数是
第11题图
B'
B
第13题图
第第41题图
B
17.如图,AB=CD BF=DE E 、F 是AC 上两点,且 AE=CF 欲证/ B=/ D,可先用
,再用“ sss 证明 __ q 得到结论. 18.如图,△ ABC 中,AB = AC , AE=CF
NCAF
三、解答题
19. (2009年怀化)如图,AD=BC, AB=DC.求证:/ A+/ D=180
20.如图,已知线段AB CD 相交于点O,AD CB 的延长线交于点 E,OA=OC,EA=EC,
请说明/ A=/ C.
等式的性质证明AF= BE = AF ,贝y N E =厶
C
第17题图
F
第18题图
21. (2010浙江金华)如图,在△ ABC 中, D 是BC 边上的点(不与B , C 重合),
F , E 分别是AD 及其延长线上的点,CF// BE 请你添加一个条件,使△ BDE
◎△ CDF(不再添加其它线段,不再标注或使用其他字母 ),并给出证明.
(1)你添加的条件是:
22.如图,AC 与 BD 交于点
0, AD=CB E 、F 是BD 上两点,且 AE=CF DE=BF 请
证明下列结论: ⑴/ D=/ B;
⑵AE// CF.
23.如图,已知 AB=AE BC=ED AC=AD.
(1) / B =/ E 吗?为什么?
(2)证明
:
C
(2)若点F为CD的中点,那么AF与CD有怎样的位置关系?请说明理由.
E
12.2三角形全等的判定
第1课时边边边(SSS)、选择题
1. B
2. A
3.C
4.C
5.C
6.B
7.D
8.B
二、填空题
9. SSS 11. 76 16.②①③18. F, ABE 10. AB=FD
12. SSS
17. EC,
(答案不惟一,也可以是AD
=FB )
13 .20 14. AB=AC
15. 60
三、解答题
19.证明:连结AC
••• AD=BC,AB=DCAC = CA •••△ABC也
△CDA A/BAC =/ ACD •••AB//CD •/A +
/D= 180°
20.解:连结0E
在^ EACm EBC中
j OA= OC (已知)
{EA=EC (已知)
[OE= OE (公共边)
•••△ EAC^A EBC(SSS
•/心/C (全等三角形的对应角相等)
21.解:(1)BD=DC(或点D是线段BC的中点),
任选一个即可•
(2)以BD=DC为例进行证明:
••• CF/ BE
• / FCD=/ EBD
又••• BD =DC ,/ FDC=/EDB
•••△ BDE^A CDF
22.证明:(1)在^ EADF^A FCB中
AD=C,B AE=CF,DE=BF
:.△ EAD^A FCB( SSS
•••/ D=/ B
(2)由(1)知:△ EAD^A FCB
•••/ DEA=/ BFC
V/ AEO=180/ DEA, /
CFO=180/ BFC,
•••/ AEO=/ CFO
••• AE // CF
23.解:(1)/ B=/ E
理由如下:在△ ABC^HA AED中
CF =BE 中FD =ED ,
AB=AE,BC=ED,AC=AD. :.△ ABC^A AED( SSS •••/ B=/ E.
2)AF 垂直于CD.
理由如下:
V点F是CD的中点,
••• CF=FD.
在△ACF和△ ADF中AC=C,D AF=AF,CF=DF :.△ ACF^A ADF( SSS •••/ AFC=/ AFD.又•••/ AFC+Z AFD=180 •••/ AFC=/ AFD=90
••• AF垂直于CD.。

相关文档
最新文档