认识三角形第一课时教案

合集下载

南开区三中七年级数学下册第四章三角形1认识三角形第1课时三角形的内角和教案新版北师大版

南开区三中七年级数学下册第四章三角形1认识三角形第1课时三角形的内角和教案新版北师大版

1认识三角形第1课时三角形的内角和【知识与技能】进一步认识三角形的有关概念及其根本要素,掌握三角形内角和定理和直角三角形中两锐角的关系。

【过程与方法】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力;通过小组合作学习,培养集体协作学习的能力及概括能力。

【情感态度】让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣。

【教学重点】三角形的相关概念;内角和定理;直角三角形两锐角关系的探究和归纳。

【教学难点】三角形角之间的关系的应用.一、情景导入,初步认知1。

如何表示线段、射线和直线?2。

如何表示一个角?【教学说明】复习与回忆学生以前学习的几何图形的概念、线段及角的表示法、线段的测量等知识,为认识三角形概念、表示法、三要素、边的关系的学习奠定了根底。

二、思考探究,获取新知探究1:三角形的相关概念。

1。

能从下列图中找出4个不同的三角形吗?2.与同伴交流各自找到的三角形.3。

这些三角形有什么共同的特点?【归纳结论】三角形定义:由不在同一直线上的三条线段,首尾顺次相接所组成的图形叫做三角形.4.三角形包含哪些元素呢?这些元素如何表示呢?5.我们在前面学习了角、平行等,为了书写方便,使用了角、平行的符号。

那么三角形可以用什么样的符号表示呢?【归纳结论】三角形的三要素:边:〔如图〕三边AB、BC、AC,也可以用a、b、c来表示。

顶点:〔如图)三个顶点,顶点A,顶点B,顶点C.内角:(如图〕三个内角,∠A,∠B,∠C.6.三角形的表示法:“三角形"用符号“△",如图的三角形记作:△ABC(或△BCA或△CBA等〕.注:顶点字母与顺序无关【教学说明】在提问学生的根底上,得出三角形的定义,培养学生的语言表达能力;在学生操作及交流的根底上,得出三角形的三要素及三角形的表示法。

探究2:三角形的内角和定理每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验,能否拼出一个或几个角的和为180°.为什么是180°.通过小组合作交流,讨论有几种拼合方法?开展小组竞赛(看哪个小组发现多?说理清楚。

三角形认识的教案(推荐9篇)

三角形认识的教案(推荐9篇)

三角形认识的教案(推荐9篇)三角形认识的教案第1篇一、教学目标(一)知识与技能在观察、操作活动中,概括三角形的特征,认识各部分名称以及底和高的含义,会在三角形内画高,用字母表示三角形。

(二)过程与方法在观察、操作活动、概括中,积累认识图形的经验和方法。

(三)情感态度和价值观体验数学与生活的联系,培养学生学习数学的兴趣。

二、教学重难点教学重点:概括三角形的概念,认识三角形各部分的名称,知道三角形的底和高。

教学难点:会画三角形的高。

三、教学准备课件、实物投影。

四、教学过程(一)创设情境,引入新知1.出示主题图。

教师:同学们,你们知道这是哪儿吗?你能找出图中的三角形吗? 2.生活中的三角形。

教师:生活中哪儿有三角形?(随着学生说出示)3.引入。

教师:真会观察,生活中的很多地方都会用到三角形,今天我们就一起走进三角形的世界。

【设计意图】关注学生已有的知识经验,让学生在熟悉的情境中找三角形,列举生活中的三角形,唤起旧知,调动学生已有的生活经验,丰富了三角形的表象,同时体会三角形与生活的密切联系。

(二)探究新知教学三角形的含义。

(1)教师:我们在生活中找到了三角形,现在请你画一个三角形。

(2)订正:谁来展示一下自己画出的三角形?说说你是怎么画的。

(先画一条线段,从这条线段的一个端点出发,再画一条线段,把两条线段的端点连接起来)预设:学生会画出不同的三角形。

在说画法的过程中体会“围成”。

(3)课件出示:教师:大家看,这两个是三角形吗?为什么?(有两条线段的端点没有连上)课件演示:画三角形的过程。

教师:大家说得非常好,三角形每相邻两条线段的端点必须相连,这样相连的三条线段就是“围成”。

(4)教师总结:说说什么是三角形?(由3条线段围成的图形叫做三角形)【设计意图】在画三角形、说画法、辨析交流的过程中,理解“围成”的含义,概括三角形的含义。

培养学生的观察能力和语言表达能力。

三角形认识的教案第2篇活动目标:1、通过观察、操作认识三角形的特征,认识三角形。

人教版数学四年级下册《三角形的认识》教案1

人教版数学四年级下册《三角形的认识》教案1

人教版数学四年级下册《三角形的认识》教案1一. 教材分析《三角形的认识》是小学四年级数学下册的一章节,主要让学生认识三角形及其特性。

本节课内容是在学生已经掌握了直线、射线的基础上进行的,对于学生来说,具有一定的挑战性。

通过本节课的学习,让学生能够理解三角形的定义,掌握三角形的特性,能够识别各种三角形,并为后续学习三角形的相关知识打下基础。

二. 学情分析四年级的学生已经具备了一定的空间观念和几何知识,对于直线、射线等概念有了一定的了解。

但是,对于三角形的概念和特性,学生可能还比较陌生。

因此,在教学过程中,需要教师通过生动形象的讲解和丰富的教学活动,帮助学生理解和掌握三角形的知识。

三. 教学目标1.让学生了解三角形的定义,能够识别各种三角形。

2.让学生掌握三角形的特性,能够运用三角形的知识解决实际问题。

3.培养学生的空间观念,提高学生的几何思维能力。

四. 教学重难点1.三角形的定义和特性。

2.能够识别各种三角形。

五. 教学方法1.采用直观演示法,通过实物和模型,让学生直观地了解三角形的形状和特性。

2.采用情境教学法,创设各种实际情境,让学生在实践中理解和掌握三角形的知识。

3.采用合作学习法,让学生通过小组讨论和交流,共同探究三角形的特性。

六. 教学准备1.准备各种三角形的模型和图片。

2.准备三角形的相关练习题。

3.准备黑板和粉笔。

七. 教学过程导入(5分钟)教师通过展示一些生活中常见的三角形物体,如三角板、三角形的玩具等,引导学生关注三角形。

然后提出问题:“你们知道这些物体为什么是三角形吗?三角形有什么特殊的性质吗?”让学生思考,激发学生的学习兴趣。

呈现(10分钟)教师通过讲解和展示,向学生介绍三角形的定义和特性。

讲解三角形的定义,即由三条边和三个角组成的图形。

然后讲解三角形的特性,如三角形的内角和为180度,三角形的三条边互相连接,任意两边之和大于第三边等。

同时,教师可以通过举例和实物演示,让学生更加直观地理解三角形的特性。

小班数学课教案《认识三角形》

小班数学课教案《认识三角形》

小班数学课教案《认识三角形》教案概述:本节课旨在引导小班学生认识三角形的基本特征,通过观察、操作、游戏等多种形式,激发学生对几何图形的兴趣,培养学生的观察能力和动手操作能力。

一、教学目标1.让学生能够认识三角形,知道三角形的基本特征。

2.培养学生观察、比较、分类的能力。

3.培养学生合作、分享的精神。

二、教学重点与难点1.教学重点:认识三角形,知道三角形的基本特征。

2.教学难点:三角形的特点及分类。

三、教学过程1.导入新课(1)教师出示一个三角形模型,引导学生观察并提问:“你们认识这个图形吗?它叫什么名字?”2.认识三角形(1)教师展示不同形状的三角形,让学生观察并说出它们的特点。

(2)引导学生发现三角形有三条边、三个角、三个顶点。

(3)教师通过提问,引导学生进一步了解三角形的特征。

3.三角形的分类(1)教师展示不同种类的三角形,让学生观察并分类。

4.动手操作(1)教师发放三角形拼图,让学生动手拼出三角形。

(2)学生互相展示作品,分享拼图过程中的感受。

(3)教师点评学生作品,给予鼓励和指导。

5.游戏环节(1)教师设计“三角形接力”游戏,让学生分成小组,用三角形进行接力。

(2)学生积极参与游戏,体验团队合作的乐趣。

(1)教师引导学生回顾本节课所学内容,巩固三角形的基本特征。

(2)学生分享自己在课堂上的收获。

(3)教师布置作业,让学生课后观察生活中的三角形,并记录下来。

四、课后反思本节课通过多种形式的教学活动,让学生在轻松愉快的氛围中认识了三角形,掌握了三角形的基本特征和分类。

在教学过程中,教师注重启发式教学,引导学生主动参与、积极思考,培养了学生的观察能力和动手操作能力。

同时,通过游戏环节,增强了学生的团队合作意识。

总体来说,本节课达到了预期的教学效果。

附:教学资源1.三角形模型2.三角形拼图3.游戏道具(三角形接力棒)重难点补充:1.教学重点:通过具体实物和模型,让学生亲手触摸和拼接三角形,以加深对三角形三条边、三个角和三个顶点的直观认识。

北师大版数学七年级下册4.1.1《认识三角形》教案

北师大版数学七年级下册4.1.1《认识三角形》教案
五、教学反思
今天在教授《认识三角形》这一章节时,我发现学生们对三角形的定义和分类掌握得比较快,但在理解三角形稳定性和计算面积时遇到了一些困难。在教学中,我尝试了多种方法来帮助学生突破这些难点。
首先,通过生活中的实例引入三角形的概念,让学生们感受到三角形的普遍存在和实际应用。这种导入方式激发了他们的学习兴趣,使得课堂氛围变得更加活跃。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过拼搭三角形,观察其稳定性,并探讨三角形的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由不在同一直线上的三条线段首尾相连组成的封闭图形。它是几何图形中的基本组成部分,具有稳定性,广泛应用于日常生活和工程建筑中。
2.案例分析:接下来,我们来看一个具体的案例。以自行车三角架为例,讲解三角形在实际中的应用,以及它如何帮助我们解决问题。
-三角形的分类:掌握按边分类(不等边三角形、等腰三角形)和按角分类(锐角三角形、直角三角形、钝角三角形)。
-三角形的符号表示:熟练运用小写字母表示三角形的边,大写字母表示对应的角。
-三角形的周长和面积计算公式:理解并掌握三角形周长为三边之和,面积可通过底和高的乘积的一半计算。
举例解释:讲解三角形定义时,可通过实际操作教具或动态软件演示三条线段如何构成三角形,强调“不在同一直线上”的关键条件。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

华东师大版七年级下册数学教案:9.1.1《认识三角形》 教案

华东师大版七年级下册数学教案:9.1.1《认识三角形》 教案

1.认识三角形第1课时、三角形的有关概念及其分类※教学目标※知识与技能感受三角形是最基本的几何图形,体会数学在生活中的广泛应用.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.过程与方法理解与三角形有关的概念,培养学生的空间观念和推理能力.情感、态度与价值观感悟数学分类讨论的思想,培养严谨的数学态度.教学重点三角形的概念及对三角形的分类.教学难点三角形外角的概念.※教学设计※一、创设情境,引入新课设计意图:通过小学知识,引入新的知识,温故而知新,通过教具观察,引起学生的注意,引发学生的学习兴趣.教师出示一个用硬纸板剪好的三角形,并提出问题:小学中我们已经认识了三角形,那么你能不能给三角形下一个定义?学生观察教师出示的教具,然后给出三角形的定义.师生总结归纳:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.二、探究三角形的有关概念设计意图:学生能自己学会的知识,教师一定不要讲,要发挥学生的主观能动性,让学生自己动起来,变要我学为我要学,通过学生的自主探究,培养学生的自主学习能力,安排问题则是为了巩固和反馈.教师布置学生按下面的问题进行自学:(1)三角形的顶点及表示方法;(2)三角形的内角和外角;(3)三角形的边.之后让学生完成下面的问题:如下图中的三角形可表示,它的三边分别是,顶点A的对边还可以表示为.教师关注学生的表示是否规范、正确;然后出示另外已剪好的三角形,各顶点字母与原来不同,通过新三角形让学生巩固刚才的有关概念.三、探究三角形的分类设计意图:通过学生的讨论、交流,使学生体验分类方法的原则,不重不漏,标准统一,在学习过程中进一步培养学生的独立学习能力,并培养学生的归纳概括能力.问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类?教师提问题,学生举手回答.教师提示:分类的标准是什么?学生回答:按角分类,师生共同概括得出:教师进一步提出新的问题,让学生学习有关的概念,如:等边三角形、等腰三角形等,然后给出三角形按边分类的方法.三角形不等边三角形在这一过程中,教师要注意点拨分类的思想和原则.四、练习巩固设计意图:补充练习的安排是为了检测学生对本课知识的掌握情况,同时达到应用巩固知识的目的.(1)将一个三角形纸片剪一刀分成两个三角形,能否使这两个三角形:①都是直角三角形;②都是钝角三角形;③都是锐角三角形.(2)已知等腰三角形的周长是40 cm ,且一边长是腰长的21,求这个等腰三角形的各边长. 五、小结与作业设计意图:回顾反思,找出差距与不足,形成知识体系.小结:谈谈你对三角形的认识.教师引导学生主要从三角形的相关概念和分类方法进行小结.作业:教材第7 5页练习第1、2题.※板书设计※第2课时、三角形的三条重要的线段※教学目标※知识与技能1.掌握三角形的高、中线、角平分线的定义中体现出来的性质.2.会画三角形的高、中线、角平分线.过程与方法经历画图等实践过程认识三角形的高、中线与角平分线.情感、态度与价值观培养学生乐于动手、肯于实践的精神.教学重点了解三角形的高、中线、角平分线的概念,会用工具准确画出三角形的高、中线、角平分线. 教学难点钝角三角形高的画法※教学设计※一、创设情境,探究高的概念及画法设计意图:通过三角形的面积自然引入高的概念,然后步步紧扣提出如何画高的问题,过程显得自然、紧凑.指出直角三角形的高与画钝角三角形的高是难点,通过学生的动手操作,交流探讨,使学生掌握高的画法,尤其是钝角三角形高的画法.问题1:如何求三角形的面积?问题2:什么是三角形的高,怎样画三角形的高?教师首先提出问题1,学生举手回答,然后教师进一步提出问题2,引入本节课的第一个概念.从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高,如上图,AD是△ABC的BC上的高线.想一想,一个三角形有几条高?教师要求学生动手画三个不同的三角形,即锐角三角形、直角三角形和钝角三角形,之后要求学生做出它们的高,然后同学间进行交流.观察每个三角形的三条高有什么位置关系?(三条高交于一点)教师提出问题:各种三角形的高都分别交于一点吗?学生讨论、交流,然后归纳结果.二、探究三角形的中线与角平分线的概念及画法设计意图:将三角形的中线,角平分线与高类比来学习,有助于提高学生对这三个概念的认识与掌握,便于学生理解概念,掌握性质.通过归纳总结,认识高、中线、角平分线之间的相同与不同之处.1.三角形的中线及其画法.2.三角形的角平分线及其画法.教师指出三角形中线的定义及角平分线的定义,然后仿照三角形的高的教学过程,安排学生画一画,并相应地提出类似的问题.学生动手操作,然后交流探讨,师生共同归纳、总结:三角形的三条中线都在三角形的内部,且它们交于一点,三角形的三条角平分线都在三角形的内部,且它们交于一点,三角形的三条高线不一定在三角形的内部,它们也相交于一点.三角形的高、中线、角平分线都是线段.三、练习巩固设计意图:通过练习,使学生在图形中认识中线和角平分线的定义,并从中认识相关线段、角之间的关系,拓展学生对中线的认识.思考:如图,AD是△ABC的BC上的中线,△ABD和△ADC的面积有何关系,为什么?教师布置学生练习,学生独立完成练习,然后举手回答.教师利用投影出示思考题,学生先讨论后,再进行归纳.归纳:三角形的中线将三角形分成面积相等的两部分.思考:高和角平分线是否也有这样的性质呢?四、小结设计意图:通过小结,形成知识网络,加深理解与认识,培养学生的空间观念.小结:谈谈你对三角形的高、中线、角平分线的认识.教师引导学生从概念、图形中归纳高、中线、角平分线的相关性质.五、布置作业教材第76页练习第1、2题.※板书设计※。

北师大版七年级下册数学教案-第4章 三角形-1 认识三角形

1认识三角形第1课时三角形的内角和教学目标一、基本目标1.通过具体实例,认识三角形的概念及其基本要素,会将三角形按角分类.2.掌握“三角形三个内角的和等于180°”,能应用三角形内角和解决一些简单的求三角形内角的度数问题,能发现“直角三角形的两个锐角互余”并会利用.3.通过观察、操作、想象、推理“三角形三个内角的和等于180°”的活动过程,发展空间观念、推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形三个内角的和等于180°;直角三角形的两个锐角互余.【教学难点】探究、发现和验证“三角形三个内角的和等于180°”.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P81~P84的内容,完成下面练习.【3 min反馈】(一)三角形1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.“三角形”可以用符号“△”表示,如图中顶点是A、B、C的三角形,记作△ABC.△ABC的三边,有时也用a、b、c来表示,如图中,顶点A所对的边BC用a表示,边AC、AB分别用b、c来表示.(二)三角形的内角和1.利用三角板的三个角之和为多少度来探索三角形三个内角的和.图1图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形三个内角的和都等于180°.(1)如图,剪一张三角形的纸片,它的三个内角分别为∠1、∠2和∠3;(2)将∠1、∠2撕下,按图所示将这两个角拼在第三个角的顶点处,用量角器量出∠BCD 的度数,可得到∠A+∠B+∠ACB=180°;(3)将∠2、∠3撕下,按下图拼在一起,用量角器量一量∠MAN的度数,可得到∠BAC +∠B+∠C=180°;(4)三角形内角和定理:三角形三个内角的和等于180°.(三)三角形的分类1.三角形按内角大小可以分为三类:锐角三角形、直角三角形、钝角三角形.2.(1)通常,我们用符号“Rt△ABC”表示“直角三角形ABC”.把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边,如图;(2)直角三角形的两个锐角互余,即上图中∠A+∠B=90°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD的度数是________.【互动探索】(引发学生思考)DF⊥AB,∠A=40°→∠AEF=50°(直角三角形两锐角互余)→∠CED=50°(对顶角相等),由∠D=43°→∠ACD=87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?【互动探索】(引发学生思考)(方法一)A、B、C三岛的连线构成△ABC,所求的∠ACB 是△ABC的一个内角,如果能求出∠CAB、∠ABC,就能求出∠ACB;(方法二)过点C作AD 的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】(方法一)根据题意,得∠CAB=∠BAD-∠CAD=80°-50°=30°.因为AD∥BE,所以∠BAD+∠ABE=180°,所以∠ABE=180°-∠BAD=180°-80°=100°,所以∠ABC=∠ABE-∠EBC=100°-40°=60°,所以∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.(方法二)∠ABC的求法同“方法一”中的求法.如图,过点C作CF⊥AD于点F,延长FC交BE于点H,则CH⊥BE.因为∠ACF=180°-∠F AC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,所以∠ACB=180°-∠ACF-∠BCH=180°-40°-50°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.【互动总结】(学生总结,老师点评)由平行线的性质把已知角与三角形的内角相联系,进而利用三角形内角和定理可求出有关角的度数.活动2巩固练习(学生独学)1.已知一个三角形中一个角是锐角,那么这个三角形是(D)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.在△ABC中,BC边的对应角是(A)A.∠A B.∠BC.∠C D.∠D3.在△ABC中,已知∠A=80°,∠B=∠C,则∠C=50°.4.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.5.如图,在Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有5个直角三角形.6.如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC于点E.若∠A=46°,∠D=50°,求∠ACB的度数.解:因为DF⊥AB,所以∠DFB=90°.又在△DFB中,∠D=50°,所以∠B=180°-∠DFB-∠D=40°.又在△ABC中,∠A=46°,所以∠ACB=180°-∠A-∠B=94°.活动3拓展延伸(学生对学)【例3】探究与发现:如图1,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE、DF恰好分别经过点B、C.请写出∠BDC与∠A+∠ABD+∠ACD之间的数量关系,并说明理由.应用:某零件如图2所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?图1图2【互动探索】根据三角形内角和定理探究∠BDC 与∠A +∠ABD +∠ACD 之间的数量关系,然后利用得到的关系求解应用的问题.【解答】探究与发现:∠BDC =∠A +∠ABD +∠ACD .理由如下:因为∠BDC +∠DBC +∠DCB =180°,∠A +∠ABC +∠ACB =∠A +∠ABD +∠ACD +∠DBC +∠DCB =180°,所以∠BDC =∠A +∠ABD +∠ACD . 应用:能,连结BC .因为∠A =90°,∠ABD =32°,∠ACD =21°,所以由上述结论,得∠BDC =∠A +∠ABD +∠ACD =143°. 因为检验员量得∠BDC =145°≠143°, 所以这个零件不合格.【互动总结】(学生总结,老师点评)本题考查了三角形的内角和定理,能灵活运用定理进行推理是解此题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形内角和定理 三角形三个内角的和等于180°. 3.三角形按角分类 三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形直角三角形4.直角三角形的性质 直角三角形的两个锐角互余.练习设计请完成本课时对应练习!第2课时 三角形的三边关系教学目标一、基本目标1.结合具体实例,认识等腰三角形和等边三角形的概念及基本要素.2.在度量三角形边长的实践活动中理解三角形三边的不等关系.3.掌握三角形的三边的不等关系,并能解决相关问题.4.经历观察、操作、推理、交流等活动,进一步发展推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形的三边关系.【教学难点】探究三角形的三边关系及灵活应用三边关系解决生活中的实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P86的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形.2.三角形的三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.3.下列长度的三条线段能否组成三角形?(1)3,4,8;(不能)(2)2,5,6;(能)(3)5,6,10;(能)(4)5,6,11.(不能)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是()A.2,3,5B.4,7,10C.1,1,3D.3,4,9【互动探索】(引发学生思考)根据“三角形任意两边之和大于第三边”逐项判断即可.A中,2+3=5,不能组成三角形;B中,4+7>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只要判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)理解题意,得出等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→已知边是腰还是底边→分类讨论→得三角形另外两边长→利用三角形三边关系进行判断→得出结论.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)分情况讨论:①当4厘米长为底边时,设腰长为x厘米,则4+2x=18,解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米.②当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x=10.此时三边长为4厘米、4厘米、10厘米.而4+4<10,所以此时不能构成三角形.故能围成底边长为4厘米,腰长为7厘米的等腰三角形.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰还是底边,再解决问题.活动2巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则|a+b-c|-|b-c-a|的化简结果是(D)A.2a B.-2bC .2a +2bD .2b -2c3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8D .114.已知等腰三角形的两边长分别为4 cm 和6 cm ,且它的周长大于14 cm ,则第三边长为6 cm.5.已知三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长. 解:设三角形三边的长分别为x -1,x ,x +1.根据三角形的三边关系,得x -1+x >x +1,解得x >2. 因为三角形的周长小于20,所以x -1+x +x +1<20,解得x <203.所以2<x <203且x 为整数,所以x 为3,4,5,6.当x =3时,三角形三边长分别为2,3,4; 当x =4时,三角形三边长分别为3,4,5; 当x =5时,三角形三边长分别为4,5,6; 当x =6时,三角形三边长分别为5,6,7. 环节3 课堂小结,当堂达标 (学生总结,老师点评)1.等腰三角形:有两边相等的三角形. 2.等边三角形:三边都相等的三角形.3.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.练习设计请完成本课时对应练习!第3课时 三角形的中线、角平分线教学目标一、基本目标1.理解并掌握三角形的中线、角平分线的定义,认识三角形的重心. 2.能准确画出三角形的中线、角平分线. 3.理解并掌握三角形中线、角平分线的性质. 二、重难点目标【教学重点】三角形的中线、角平分线的定义及其性质. 【教学难点】三角形的中线、角平分线的画法及应用.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P87~P88的内容,完成下面练习. 【3 min 反馈】 (一)三角形的中线1.在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线.三角形的三条中线交于一点,这点称为三角形的重心.2.如图,点D 、E 、F 分别是边BC 、AC 、AB 上的中点.(1)AB 边上的中线是CF ,BC 边上的中线是AD ,AC 边上的中线是BE ; (2)因为BE 是△ABC 中AC 边上的中线, 所以AE =CE =12AC .因为CF 是△ABC 中AB 边上的中线, 所以AB =2AF =2BF . (二)三角形的角平分线1.在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线交于一点.2.(1)因为BE 是△ABC 的角平分线, 所以∠ABE =∠CBE =12∠ABC ;(2)因为CF 是△ABC 的角平分线, 所以∠ACB =2∠ACF =2∠BCF .环节2 合作探究,解决问题活动1小组讨论(师生互学)(一)画三角形的中线如图,线段AD是△ABC中BC边上的中线.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条中线都相交于三角形的内部.(二)画三角形的角平分线如图,线段AD是△ABC的一条角平分线,图中∠BAD=∠CAD.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条角平分线都相交于三角形的内部.活动2巩固练习(学生独学)1.如图,在△ABC中有四条线段DE、BE、EG、FG,其中有一条线段是△ABC的中线,则该线段是(B)A.线段DE B.线段BEC.线段EG D.线段FG2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC =8 cm,求边AC的长.解:因为CD为△ABC的AB边上的中线,所以AD=BD.因为△BCD的周长比△ACD的周长大3 cm,所以(BC+BD+CD)-(AC+AD+CD)=3 cm,所以BC-AC=3 cm.因为BC=8 cm,所以AC=5 cm.环节3课堂小结,当堂达标(学生总结,老师点评)三角形的中线:(1)定义;(2)画法;(3)三角形重心的定义.三角形的角平分线:(1)定义;(2)画法;(3)三角形的三条角平分线交于一点.练习设计请完成本课时对应练习!第4课时三角形的高教学目标一、基本目标1.认识三角形的高线,会画任意三角形的高线,了解三角形的三条高所在的直线交于一点.2.通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.二、重难点目标【教学重点】三角形高线的定义,会画任意三角形的高.【教学难点】画钝角三角形夹钝角的两边上的高和三角形高的应用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P89~P90的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.2.三角形的三条高所在的直线交于一点.3.分别指出下图中△ABC的三条高.图1图2(1)图1中,直角边BC上的高是AB,直角边AB上的高是BC,斜边AC上的高是BD;(2)图2中,AB边上的高是CE,BC边上的高是AD,AC边上的高是BF.环节2合作探究,解决问题活动1小组讨论(师生互学)用工具准确画出三角形的高如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条高线所在的直线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)直角三角形的三条高线相交于三角形的直角顶点;(4)钝角三角形的三条高线所在的直线相交于三角形的外部.活动2 巩固练习(学生独学)1.如图,在△ABC 中,EF ∥AC ,BD ⊥AC 于点D ,交EF 于点G ,则下列说法错误的是( C )A .BD 是△ABC 的高B .CD 是△BCD 的高C .EG 是△ABD 的高D .BG 是△BEF 的高2.如图,CD 、CE 、CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE3.如图,在△ABC 中,AB 边上的高是CE ,BC 边上的高是AD ;在△BCF 中,CF 边上的高是BC .4.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是直角三角形.5.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是5°.环节3课堂小结,当堂达标(学生总结,老师点评)1.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.2.三角形的三条高所在的直线交于一点.三角形的三条高的特性:锐角三角形直角三角形钝角三角形三角形内部高的数量31 1三条高是否相交是是否三条高所在直线的交点位置三角形内部直角顶点三角形外部练习设计请完成本课时对应练习!。

教案《三角形的初步认识》

教案《三角形的初步认识》教案:三角形的初步认识一、教学目标:1.知识与技能:(1)掌握三角形的定义;(2)理解三角形的特性和分类;(3)能够绘制和辨认不同类型的三角形。

2.过程与方法:(1)通过讲解与互动提出问题,激发学生的思考;(2)通过实物展示和图片演示,帮助学生理解三角形的特性;(3)通过绘制和分类练习,提高学生的三角形辨认和绘制能力;(4)通过小组合作和课堂讨论,培养学生的合作意识和思维能力。

3.情感态度和价值观:(1)培养学生对几何的兴趣与好奇心;(2)通过合作探究和互动交流,培养学生的团队合作意识。

二、教学重点:1.掌握三角形的定义和特性;2.能够绘制和分类不同类型的三角形。

三、教学难点:1.理解并应用三角形的特性进行分类;2.准确绘制不同类型的三角形。

四、教学过程:1.导入(5分钟)教师出示一些三角形的图片和实物,引导学生讨论它们的特点和共性,并提问:“你们觉得什么样的图形才能称为三角形?”引导学生思考三角形的定义。

2.探究(15分钟)(1)教师向学生解释三角形的定义:“只有三条边的、两两相交的图形才能称为三角形。

”(2)教师示范如何绘制一个三角形,并引导学生一起绘制。

之后,教师给出一些示范图形,请学生判断它们是否属于三角形,并解释原因。

(3)教师出示一张三角形分类表格,让学生在小组内合作填写。

然后,学生一起讨论每个分类的特点和共性。

3.练习(20分钟)(1)学生个人练习:教师给学生发放练习纸,并让学生根据所学内容绘制5个不同类型的三角形。

(2)学生小组合作:将学生分组,每个小组选一个代表来展示自己绘制的三角形,并回答其他小组提出的问题。

(3)课堂讨论:教师引导学生讨论所绘制的三角形的特点和共性,并对学生的绘制结果进行评价和指导。

4.拓展(10分钟)教师出示一些有关三角形的实际问题,如“海里有一些三角形的鱼群,每个鱼群有6只鱼,共有18只鱼,请问这些鱼群可能是什么样的三角形?”引导学生思考并找出解决办法。

认识三角形教案【优秀9篇】

认识三角形教案【优秀9篇】《三角形》教案篇一《三角形》一章第一节是与三角形有关的线段,昨晚学生进行了预习,这节课是在提问概念和做题中完成的。

课本上三角形线段间的关系是这样说的:三角形两边之和大于第三边。

而在基训上出现了已知两边求第三边范围,这样需要补充“三角形任意两边之差小于第三边”的知识。

后面我又补充了几道关于应用的题目,加深学生对此的理解。

今天因状态不佳课堂效果并不很好。

今天又阅完了上章的测试题,十班的学生和九班学生有较大差距,下午杨冬和高丹又给我送来了英语的测试成绩,我看了大吃一惊,有许多比较优秀的学生成绩竟然不及格,英语老师因家中有事,可能学生的学习受到影响,但变化幅度如此之大让人难以接受。

我把那十几位同学叫出教室外一一谈了谈,学生的学习不能只看表面现象。

今天比较累,如果批评学生可能话会说重了,静下心来,气生不得。

现在的主要问题还是提高课堂的效率。

今天我设计了一个课堂参与程度统计表,督促学生积极参与,对学生每天上课举手发言情况做好纪录,不知效果如何,能否调动起学生上课的积极性拭目以待。

认识三角形教案篇二教学目标1、知道三角形高、中线、角平分线的定义2、会做任意三角形高、中线、角平分线重点会做任意三角形高、中线、角平分线难点会做任意三角形高、中线、角平分线教学方法讲练结合、探索交流课型新授课教具投影仪一、三角形的高1、复习:过点A做BC的垂线,垂足为D2、在黑板上做△ABC,过点A做对边BC的垂线,垂足为D,我们就将线段AD称为△ABC的高3高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂足之间的线段称为三角形的高例如在上图中,我们从△ABC的一个顶点出发,向它对边BC所在的直线作垂线,垂足为D,线段AD就是三角形的高注:1)三角形的高必为线段2)三角形的高必过顶点垂直于对边3)三角形有三条高为了将这三条高加以区别,我们把AD称为BC边上的高例:做出下列三角形的三条高1锐角三角形:可由教师先做示范,然后再让学生自行画出其余两个2直角三角形由于△C等于900,说明AC△BC,那么BC边上的高即为AC,AC边上的高即为BC,3钝角三角形二,三角形的角平分线1引入:一知△ABC,做△A的平分线AD交BC与点E,线段AE就称为△ABC的角平分线2定义:在三角形中,一个内角的平分线与它的对边相交,,这个角的顶点与交点间的线段称为三角形的角平分线3注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线2)三角形的角平分线必过顶点平分三角形的一内角如上所示,△ABC的角平分线AE平分△A,即△BAE=△CAE=△BAC3)三角形有三条角平分线为了将这三条角平分线加以区别,我们把AE称为△BACD的角平分线例:做出下列三角形的三条角平分线教师先做示范,然后再让学生自行画出其余两个锐角三角形直角三角形钝角三角形三,中线1引入:如右所示,取BC的中点F,连结AF,那么线段AF就称为△ABC的中线2定义:在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线如上所示,线段AF就是△ABC的中线31)三角形的中线必为线段2)三角形的中线必平分对边如上所示,线段AF是△ABC的中线必有:BF=CF=BC3)三角形有三条中线例:做出下列三角形的三条角平分线教师先做示范,然后再让学生自行画出其余两个锐角三角形直角三角形:钝角三角形素材A:1在△ABC中,AD是角平分线,BE是中线,△BAD=400,则△CAD=,若AC=6cm,则AE=素材B:2下列说法正确的是()A三角形的角平分线、中线、高都在三角形的内部B直角三角形只有一条高C三角形的三条至少有一条在三角形内D钝角三角形的三条高均在三角形外答案:1400、6㎝2C认识三角形教案篇三活动目标1.认识三角形的特征,知道三角形由3条边,三个角。

认识三角形教案(优秀8篇)

认识三角形教案(优秀8篇)《三角形认识》教案篇一教学目标(一)使学生理解三角形的意义,掌握三角形的特征,学会按角的特征给三角形分类.(二)培养学生观察能力、识图能力和归纳概括能力.教学重点和难点使学生理解三角形的意义和特征,会按角的特征给三角形进行分类,既是教学的重点,也是学习的难点.教学过程设计(一)复习准备1.指出下面各是什么图形?(投影)说出长方形、正方形的边是直线、射线还是线段?2.指出下面各是什么角?说出什么叫直角、锐角、钝角?组成角的两条边是什么线?3.请大家在本子上画出直角(用三角板)、锐角、钝角各一个.小结:我们已经学习了线段和角,如果把角的两条边改为线段,把角的两个端点连起来会出现什么图形?(三角形)我们今天就来研究和认识三角形.(板书课题:三角形的认识)(二)学习新课1.理解三角形的意义.(1)我们已学过三角形,你能举例说出哪些物体的面是三角形吗?(红领巾、三角板、小红旗等)(2)结合复习题,思考讨论:①三角形是几条线段围成的?②什么样的图形叫三角形?在讨论的基础上,引导学生概括:三角形是由三条线段围成的,由三条线段围成的图形叫做三角形.(3)巩固概念.①找一找,哪些是三角形?(投影)②用三条线段组成的图形叫做三角形.这句话对不对?为什么?在学生回答的基础上,教师强调,看一个图形是不是三角形,要从两方面看:一是看只有三条线段,二是要看是否围成的封闭图形.2.掌握三角形的特征.刚才大家找出这么多三角形,它们的形状各不相同,进一步观察一下,这些三角形有没有共同的地方?启发学生明确:它们都是三条线段围成的,它们都有三个角,都有三个顶点.再引导学生概括:围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点.3.教学三角形的特性.我们学习的三角形在日常生活中有很多地方要用到,像自行车的车架、房梁架等.为什么要用三角形的呢?我们来做一次实验.教师用事先准备好的木框,让同学们拉一拉.先拉五边形木框.(变形)再拉四边形木框.(变形)后拉三角形木框.(拉不动,三角形不变).提问:通过三角形木框拉不动,你明白了什么道理?可以得出什么结论?引导学生明确:三角形的三条边长度固定,三角形的形状和大小就固定不变了.因而三角形具有稳定性.这就是三角形的特征.你能举出生活中有哪些用到三角形的特性吗?(椅子腿松动了,可以固定一个三角形铁架)4.教学三角形的分类.三角形是多种多样的,我们可以根据三角形中角的不同进行分类.怎样分?(1)出示投影片,观察每个三角形内角的度数.(2)比较这三个三角形的三个角,它们有什么相同点和不同点?引导学生明确:相同点是每个三角形都至少有两个锐角;不同点是还有一个角分别是锐角、钝角和直角.(3)分类.根据上边三个三角形三个角的特点的分析,可以把三角形分成三类.图①,三个角都是锐角,它就叫锐角三角形.(板书)提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)引导学生根据另一个角来区分.图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形.请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?教师板书:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形.(4)三角形的关系.我们可以用集合图表示这种三角形之间的关系.把所有三角形看作一个整体,用一个圆圈表示.(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭.(边说边把集合图补充完整.)每种三角形就是这个整体的一部分.反过来说,这三种三角形正好组成了所有的三角形.(5)怎样判断三角形的类型呢?填表后观察.(投影)由上表可以看出,三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角.……(三)巩固反馈1.说说三角形的意义、特征.2.三角形有什么特性?3.三角形按角分,可以分为哪几类?4.判断题.(1)由三条线段组成的图形叫三角形.(2)锐角三角形中最大的角一定小于90°.(3)看到三角形中一个锐角,可以断定这是一个锐角三角形.(4)三角形中能有两个直角吗?为什么?(四)作业练习三十一第1~3题.课堂教学设计说明三角形是常见的一种图形,也是最基本的多边形,是学习研究其它几何图形的基础,在实践中有着广泛的应用.因此这部分内容很重要.本课教学既重视概念教学,又重视学生实践,不仅教知识,还要注意培养学生能力.新课第一部分,首先让学生理解三角形的概念.通过学生自己举例,观察,讨论后引导学生概括出什么样的图形叫做三角形.第二部分,让学生通过对各种形状三角形的观察、比较、找出它们的共同点,从而概括出三角形的特征,有三条边、三个角、三个顶点.第三部分,学习三角形的特性.让学生自己动手拉一拉五边形、四边形、三角形的木框,从而发现三角形的特性,即具有稳定性.第四部分,学习三角形的分类.学生在观察比较各种不同的三角形中的相同点和不同点的基础上,把三角形按角分类,可以分成锐角三角形、钝角三角形、直角三角形,概括出各种三角形的定义,并掌握它们之间的关系.通过不同形式的练习,让学生在思维中分辨,在观察中思维,使学生进一步理解概念,提高观察、概括能力.板书设计由三条线段围成的图形叫做三角形.三条边、三个角、三个顶点特性:稳定性按角分类三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形.《三角形认识》教案篇二【教材分析】本课是苏教版四年级下册第七单元第一课时的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、三角形
1、认识三角形
第1课时认识三角形
【教学内容】
四年级下册35~36页的例1、例2
【教学目标】
1. 通过观察比较,认识三角形的特征和含义.
2. 在动手操作中理解三角形的高和底的含义,会在三角形内画高。

3. 通过观察和操作,培养比较、概括、判断、推理的能力,发展空间观念。

4. 体验数学和生活的联系,培养学生学习数学的兴趣。

【教学重点】
理解三角形的定义,掌握三角形的特征。

【教学难点】
理解三角形高和底的含义,会在三角形内画高。

【教学准备】
多媒体课件、三角板、答题纸。

【教学过程】
一、情景引入(1分)
1、由谜语和情景引入课题
形状像座山,稳定性能坚,三竿首尾连,学问不简单。

猜一种学过的平面图形。

今天老师带同学们到公园去玩,看,公园里有刚才猜的这种平面图形吗?
2、揭示课题:三角形的用处真大,今天我们就走进三角形的王国,去认识三角形(板书:认识三角形)。

[设计意图:由猜谜语和学生熟悉的生活情境引入,调动学生的生活经验,丰富学生的生活表象,让数学知识和生活充分结合起来。

]
二、新知学习
1.三角形的含义。

(1)从实物中抽象出三角形。

①同学们看见这么多的三角形,你能闭上眼睛想一想三角形是什么样吗?
②拿出题单画出你头脑中的三角形。

温馨提示:画图用作图工具。

(师画三角形)
(2)比较归纳,揭示三角形含义
①画三角形反馈:
同桌互相比较,看谁画得好,两人都画得好的互相击掌鼓励。

看看老师画得怎么样,老师画得好就给老师一点鼓励。

反馈:展示自己的作品,画得不好的请完善。

②给三角形的各部分取名
老师看到你们画出了不同形状的三角形,我们一起来给这三角形的各部分取名。

板书:三角形的特征是有三条边,三个角,三个顶点(课件闪动出示三条边,三个角,三个顶点)
在你画的三角形上标注三角形各部分的名称,然后同桌互相评价,请把掌声送给自己。

③归纳三角形的含义:
我们知道了三角形有三条边,三个顶点,三个角,那究竟什么样的图形是三角形呢?
预设:有三条线段的图形三角形。

三条线段组成的封闭的图形是三角形。

由三条经线段组成的,每相邻两条线段的端点相连的图形是三角形。

由三条线段围成的图形叫做三角形。

现在我们看三角形应该是——由三条线段围成的图形叫做三角形。

(板书,齐读)
你觉得哪些词重要?
预设:三条线段,围成(板书:打重点符号)
(3)练习:判断:下面这些图形是三角形吗?说说理由(课件出示)
[设计意图:通过学生想象三角形——画三角形——给三角形各部分命名等活动逐步感受三角形的本质属性,为归纳三角形的含义提供了充分的感性和理性的储备,结论水到渠成。

最后判断练习,再次加深对含义的理解,突出重点。

]
2.学习例2 ,认识三角形的底和高
(1)建立高的概念
①生活中有很多三角形,陈老师这次到重庆来学习看到很多桥,老师带来了一座大桥的图片(课件出示大桥),你们从这座斜拉桥中看到了什么?
这些拉索与桥面构成了很多的三角形,你们能帮帮老师怎样确定桥面到顶端的高度?
由于照片是从侧面照的,现在我们从正面看过去(课件演示抽象出三角形),在这些拉索中哪一条最能代表桥面柱顶的距离?
(师边演示课件边讲述)你们都想到了从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段就是三角形的高,在数学学习中,高一般用虚线来表示,怎么知道这条虚线就是三角形的高呢?(直角符号)这条对边是三角形的底。

②看例2 ,看看书上怎么说的,把重要的勾出来,你知道了什么?(齐读)
(2)画高
①探索:知道了什么是高,请在题单第2题画出它们的高。

提示:高用虚线。

②汇报:你怎么画的?展示学生的画法。

(两人)
③师板书演示正确的画法(让学生指导老师画),再课件演示。

然后请学生纠正自己的画法。

小结:从三角形的一个顶点向对边做垂线,顶点和垂足之间的线段是三角形的高,这条对边是三角形的底。

画高时画虚线,标上直角符号。

④高与底有什么关系?
板书:高与底互相垂直
(3)拓展,进一步认识高和底
还有没有其它的高?一个三角形有几条高?为什么?
(老师用不同颜色画出三对高与底)
[设计意图:首先从直观的解决问题中引出“高”,现抽象到数学上理论的“高”,理解“高”的含义,学会在三角形内画高,知道高与底的关系,最后拓展到三角形高的条数。

通过多角度的活动,突破难点。

]
三、巩固。

1、判断:下列图中底边上的高画对了吗?
底底底
底高

学生在展台上用三角板演示正确的高,师重点讲述直角三角形的高。

2、独立判断:下面的说法正确吗?为什么?
(1). 由三条线段组成的图形叫做三角形。

( )
(2). 三角形有三条边、三个角、三个顶点。

( )
(3). 三角形只有一条高。

( )
[设计意图:对底边上高的画法是否正确,了解三角形的高的正确画法,知道高与底是一一对应关系,再由第2题加深对三角形定义及特征的理解,再一次突破难点。

]
四、小结
这节课你有什么收获?
五、拓展练习
练习九第4题,学生独立画。

反馈:学生画的结果在展台上展示。

重点看第1个图,原有一个三角形,从顶点向底边连一条线,就增加了2个三角形,共3个三角形。

按照这样的思路,完成后面3个图形。

[设计意图:此环节拓展练习,引导学生从多角度思考问题。

]
【板书设计】
认识三角形
由三条线段围成的图形叫做三角形。

特征:三条边
三个角
三个顶点
顶点边底
高与底互相垂直
(重庆市荣昌县桂花园小学陈贵芝)。

相关文档
最新文档