数字信号处理实验三 卷积
数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
实验报告信号卷积实验

一、实验目的1. 理解卷积的概念及其物理意义。
2. 掌握卷积运算的原理和方法。
3. 通过实验加深对卷积运算在实际应用中的理解。
二、实验原理1. 卷积的定义:卷积是一种线性运算,它描述了两个信号在时域上的相互作用。
对于两个连续时间信号f(t)和g(t),它们的卷积定义为:F(t) = ∫f(τ)g(t-τ)dτ其中,F(t)是卷积结果,f(τ)是信号f(t)的任意时刻的值,g(t-τ)是信号g(t)在时刻t-τ的值。
2. 卷积的性质:卷积具有交换律、结合律和分配律等性质。
其中,交换律是指f(t)和g(t)的卷积与g(t)和f(t)的卷积相等;结合律是指三个信号f(t)、g(t)和h(t)的卷积可以分别进行两两卷积后再进行一次卷积;分配律是指一个信号与两个信号的卷积等于该信号分别与两个信号卷积后的和。
三、实验内容1. 实验一:连续时间信号卷积实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为矩形脉冲信号,g(t)为指数衰减信号。
(2)卷积计算:根据卷积的定义,计算f(t)和g(t)的卷积F(t)。
(3)结果分析:观察F(t)的波形,分析卷积结果的物理意义。
2. 实验二:离散时间信号卷积实验(1)选用信号:选取两个离散时间信号f[n]和g[n],其中f[n]为单位阶跃信号,g[n]为矩形脉冲信号。
(2)卷积计算:根据离散时间信号卷积的定义,计算f[n]和g[n]的卷积F[n]。
(3)结果分析:观察F[n]的波形,分析卷积结果的物理意义。
3. 实验三:MATLAB仿真实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为正弦信号,g(t)为余弦信号。
(2)MATLAB编程:利用MATLAB的信号处理工具箱,编写程序实现f(t)和g(t)的卷积运算。
(3)结果分析:观察MATLAB仿真得到的卷积结果,分析其物理意义。
四、实验结果与分析1. 实验一:连续时间信号卷积实验(1)实验结果:通过计算得到f(t)和g(t)的卷积F(t)的波形。
《数字信号处理》序列的基本运算和时域变换与离散信号的卷积和实验

《数字信号处理》序列的基本运算和时域变换与离散信号的卷积和实验一、实验目的1、掌握两个离散信号卷积和的计算方法和编程技术。
2、进一步熟悉用MATLAB 描绘二维图像的方法。
3、熟悉用MA TLAB 描绘二维图像的方法。
4、掌握用MA TLAB 对序列进行基本的运算和时域变换的方法。
二、实验器材 MATLAB 软件2019三、实验原理离散信号的卷积和原理:两个离散序列x (n )与y (n )的卷积和f (n )定义为∑∞-∞=-=*=m m n y m x n y n x n f )()()()()(由于通常信号处理中所碰到的都是有始信号或有限时间信号,因此在实际计算卷积和时,求和是在有限范围内进行的。
计算过程中上下限的选取和所得结果的分布区间取决于参与卷积的两个序列,下面将分别进行讨论:1、两个从n = 0开始的序列)()()(n u n x n x =和)()()(n u n y n y =的卷积和∑∑=∞-∞=-=--=nm m n u m n y m x m n u m n y m u m x n f 0)()]()([)()()()()( (1)上式右边因子u (n )表示卷积和的结果也是一个从n = 0开始的序列。
2、从n = n 1开始的序列)()()(1n n u n x n x -=和从n = n 2开始的序列)()()(2n n u n y n y -=的卷积和,其中n 1和n 2为任意整数。
∑∑-=∞-∞=---=----=21)()]()([)()()()()(2121n n n m m n nn u m n y m x n m n u m n y n m u m x n f (2)上式右边因子u (n -n 1-n 2)表示卷积和是一个从n = n 1+n 2开始的序列。
上机:conv.m 用来实现两个离散序列的线性卷积。
其调用格式是:y=conv(x,h)若x 的长度为N ,h 的长度为M ,则y 的长度L=N+M -1。
(完整版)数字信号处理实验三

3.41;3.42 由教材可知: ,即序列的偶部分的傅立叶变换是序列的傅立叶变换的实部。
5、实验步骤
1、进行本实验,首先必须熟悉matlab的运用,所以第一步是学会使用matlab。
2、学习相关基础知识,根据《数字信号处理》课程的学习理解实验内容和目的。
plot(w/pi,angle(h1));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
title('原序列的相位谱')
subplot(2,2,4)
plot(w/pi,angle(h2));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
grid;
title('相位谱arg[H(e^{j\omega})]');
xlabel('\omega/\pi');
ylabel('以弧度为单位的相位');
3.4
clf;
w=-4*pi:8*pi/511:4*pi;
num1=[1 3 5 7 9 11 13 15 17];
h=freqz(num,1,w);
Q3.32 通过加入合适的注释语句和程序语句,修改程序P3.8,对程序生成的图形中的两个轴加标记。时移量是多少?
Q3.33 运行修改后的程序并验证离散傅里叶变换的圆周时移性质。
Q3.36 运行程序P3.9并验证离散傅里叶变换的圆周卷积性质。
Q3.38 运行程序P3.10并验证线性卷积可通过圆周卷积得到。
实验三 线性卷积与循环卷积

实验三 线性卷积与循环卷积1、实验目的(1)掌握线性卷积的计算机编程方法,利用卷积的方法观察系统响应的时域特性。
(2)掌握循环卷积的计算机编程方法,并比较与线性卷积的差别,验证二者之间的关系。
利用循环卷积的方法观察、分析系统响应的时域特性。
2、实验原理(1)线性卷积:线性时不变系统(Linear Time-Invariant System, or LTI 系统)输入、输出间的关系为:当系统输入序列为)(n x ,系统的单位脉冲响应为)(n h ,输出序列为)(n y ,则系统输出为:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()( 上式称为线性卷积。
(2)循环卷积设两个有限长序列)(1n x 和)(2n x ,长度分别为1N 和2N ,)()(11k X n x D FT N −−−→←点 )()(22k X n x D F T N −−−→←点如果)()()(21k X k X k X ⋅=则∑---==1021)())(()()]([)(N m N N n R m n x m x k X IDFT n x上式称为)(1n x 和)(2n x 的循环卷积。
(3)两个有限长序列的线性卷积序列)(1n x 和)(2n x ,长度分别为L 点和M 点,)(3n x 为这两个序列的线性卷积,则)(3n x 为∑∞-∞=-=*=m m n x m x n x n x n x )()()()()(21213且线性卷积)(3n x 的非零值长度为L +M -1点。
(4)循环卷积与线性卷积的关系 序列)(1n x 为L 点长,序列)(2n x 为M 点长,若序列)(1n x 和)(2n x 进行N 点的循环卷积)(n x c ,其结果是否等于该两序列的线性卷积)(n x l ,完全取决于循环卷积的长度。
由教材相关推导,得∑∞-∞=+=q N l c n R qN n x n x )()()(,也就是说,循环卷积是线性卷积的周期延拓序列再取主值区间。
信号卷积实验报告

信号卷积实验报告文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]信号与系统实验报告学院:电子信息与电气工程学院班级: 13级电信<1>班学号:姓名:李重阳实验三 信号卷积实验一、实验目的1、理解卷积的概念及物理意义;2、通过实验的方法加深对卷积运算的图解方法及结果的理解。
二、实验原理说明卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。
设系统的激励信号为x (t ),冲激响应为h (t ),则系统的零状态响应为()()()*y t x t h t ==()()x t h t d ττ∞-∞-⎰。
1、两个矩形脉冲信号的卷积过程两信号x (t )与h (t )都为矩形脉冲信号,如图3-1所示。
下面由图解的方法(图3-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。
图3-1 两矩形脉冲的卷积积分的运算过程与结果2、矩形脉冲信号与锯齿波信号的卷积信号f1(t )为矩形脉冲信号, f2(t )为锯齿波信号,如图3-2所示。
根据卷积积分的运算方法得到f1(t )和f2(t )的卷积积分结果f (t ),如图3-2(c )所示。
图3-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果3、本实验进行的卷积运算的实现方法在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。
结果与模拟信号的直接运算结果是一致的。
数字信号处理系统逐步和完全取代模拟信号处理系统是科学技术发展的必然趋势。
图3-3为信号卷积的流程图。
图3-3 信号卷积的流程图三、实验内容1、检测矩形脉冲信号的自卷积结果。
用双踪示波器同时观察输入信号和卷积后的输出信号,把输入信号的幅度峰峰值调节为4V,再调节输入信号的频率或占空比使输入信号的时间宽度满足表中的要求,观察输出信号有何变化,判断卷积的结果是否正确,并记录表3-1。
数字信号处理实验报告1-5

实验一时域离散信号的产生及时域处理实验目的:了解Matlab软件数字信号处理工具箱的初步使用方法。
掌握其简单的Matlab语言进行简单的时域信号分析。
实验内容:[1.1]已知两序列x1=[0,1,2,3,4,3,2,1,0];n1=[-2:6];x2=[2,2,0,0,0,-2,-2],n2=[2:8].求他们的和ya及乘积yp. 程序如下:x1=[0,1,2,3,4,3,2,1,0];ns1=-2;x2=[2,2,0,0,0,-2,-2];ns2=2;nf1=ns1+length(x1)-1;nf2=ns2+length(x2)-1;ny=min(ns1,ns2):max(nf1,nf2);xa1=zeros(1,length(ny));xa2=xa1;xa1(find((ny>=ns1)&(ny<=nf1)==1))=x1;xa2(find((ny>=ns2)&(ny<=nf2)==1))=x2;ya=xa1+xa2yp=xa1.*xa2subplot(4,4,1),stem(ny,xa1,'.')subplot(4,1,2),stem(ny,xa2,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,3),stem(ny,ya,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,4),stem(ny,yp,'.')line([ny(1),ny(end)],[0,0])[1.2]编写产生矩形序列的程序。
并用它截取一个复正弦序列,最后画出波形。
程序如下:clear;close alln0=input('输入序列起点:n0=');N=input('输入序列长度:N=');n1=input('输入位移:n1=');n=n0:n1+N+5;u=[(n-n1)>=0];x1=[(n-n1)>=0]-[(n-n1-N)>=0];x2=[(n>=n1)&(n<(N+n1))];x3=exp(j*n*pi/8).*x2;subplot(2,2,1);stem(n,x1,'.');xlabel('n');ylabel('x1(n)');axis([n0,max(n),0,1]);subplot(2,2,3);stem(n,x2,'.');xlabel('n');ylabel('x2(n)');axis([n0,max(n),0,1]);subplot(2,2,2);stem(n,real(x3),'.'); xlabel('n');ylabel('x3(n)的实部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);subplot(2,2,4);stem(n,imag(x3),'.'); xlabel('n');ylabel('x3(n)的虚部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);[1.3]利用已知条件,利用MATLAB生成图形。