几种接地保护方式
接地的种类

接地的种类除防雷接地外,还有交流工作接地、保护接地、直流接地、过电压保护接地、防静电接地、屏蔽接地等等。
电子设备的接地方式有独立地和联合接地。
独立地的接地电阻值除另有规定外,一般不大于4欧,并采用一点接地方式。
电子设备接地宜与防雷接地系统共设,但其接地电阻不宜大于1欧。
若与防雷地分设,两接地系统的距离不宜小于20米。
电力系统接地种类区分周建民在电网系统中,供电企业在不同场合采取了工作接地、保护接地、重复接地、防雷接地四种接地措施。
那么,它们之间有什么区别呢?工作接地。
在正常或事故情况下,为了保证电气设备可靠运行,而必须在电力系统中某一点进行接地,称为工作接地。
此种接地可采取直接接地或经特殊装置接地。
如变压器中性点的直接接地或经消弧线圈接地。
保护接地。
为防止因绝缘损坏而遭受触电的危险,将与电气设备带电部分相绝缘的金属外壳或构架,同接地体之间做良好的连接,称为保护接地。
如变压器底座和外壳接地、配电盘的框架接地、互感器的二次绕组接地,将与带电部分相绝缘的电气设备的金属外壳或构架,与中性点直接接地系统中的保护中性线相连接等。
重复接地。
将中性线上的一点或多点与大地再次做金属连接,称为重复接地。
如在三相四线制的中性线首端、分支点及沿线每1千米处和接户线处做的接地、与高压线路同杆架设的低压线路的中性线在共敷段首末段接地等。
防雷接地。
为了防止人、畜、建筑物、架空线路等遭受雷击而做的接地,称为防雷接地。
如与建筑物顶部避雷针及高压架空线路避雷线相连而做的接地等。
地与电(信号),这是一对形影不离的双胞胎。
接地,通常是指用导体与大地相连。
可在电子技术中的地,可能就与大地毫不相关,它只是电路中的一等电位面。
如收音机、电视机中的地,它只是接收机线路里的一电位基准点。
接地,在电力和电子技术中,既简单,又复杂,而且还必不可少。
按接地的作用,可分为工作接地、保护接地、过压保护接地、防静电接地、屏蔽接地、信号地等多种。
在广电技术中,以上几种接地类型都会遇到。
几种接地保护方式

几种接地保护方式接地保护是一种重要的安全措施,用于保护电气设备和人员免受电击等危险。
在电力系统中,接地保护可以有效地将电流引导到地面,防止电阻或故障引起的电压积累,从而保证电气设备的正常运行。
本文将介绍几种常见的接地保护方式。
1. 系统接地系统接地是指将电力系统中的中性点或一侧相接地,通常使用接地电阻或接地变压器来实现。
这种接地方式能够降低系统的电压,并将故障电流引导到地面,减少电气设备受损和人员受伤的风险。
系统接地可以分为直接接地和间接接地两种方式。
直接接地是将电力系统的中性点直接接地,通常采用接地电阻来限制故障电流的流动。
接地电阻的阻值根据系统的额定电压和电流来确定,一般应符合相关的国家标准和规定。
间接接地是通过接地变压器实现的,将系统的中性点与地之间绝缘并通过变压器连接。
接地变压器可以使系统与地之间保持一定的绝缘,减少电气设备的电压升高。
2. 保护接地保护接地是在电力系统中增加保护接地,用于防止电压升高和保护设备和人员的安全。
保护接地一般采用保护接地装置,如接地开关、接地故障指示器等。
接地开关是一种能够将设备与地之间连接或断开的开关装置,可以在故障发生时迅速切断故障电源,避免电气设备的损坏和人员的伤害。
接地故障指示器是一种能够监测电力系统中是否存在接地故障的装置,当接地故障发生时,指示器会报警,提醒操作人员及时采取措施。
3. 信号接地信号接地是指将信号系统中的信号接地,用于保护信号传输的可靠性和设备的正常运行。
在信号系统中,信号接地可以减少电磁干扰和噪音的影响,提高信号的传输质量。
常见的信号接地方式包括单点接地和多点接地。
单点接地是将信号系统中的所有信号共用一个接地点,可以减少接地回路的复杂性,提高信号的稳定性。
多点接地是将信号系统中的不同信号分别接地,可以避免信号之间的干扰和串扰,提高信号传输的清晰度和准确性。
总结:接地保护是保证电气设备和人员安全的重要措施,具备不同的接地方式可以根据具体的工程需求和系统要求选择适合的接地方式。
浅谈低压配电中的几种不同的保护接地方式

Science &Technology Vision 科技视界0前言随着社会的不断进步,电能已成为人们生产生活中最基本的不可代替的能源。
然而,在实际生产和人们的生活中,由于人们对电能知识的掌握程度有可能严重不足,特别是日常生活中对电器的使用,不懂得用电知识以及设备电器等存在安全用电的隐患时就随时都会引发各类电气事故,其中对人体的伤害即触电事故是最常见的,而人们最忽视的就是间接触电,保护接地和保护接零是防止间接触电最基本的措施。
本文从低压配电中几种不同的保护接地方式入手,介绍这几种不同的保护接地方式的方法以及进行比较分析,采用最佳的方案以达到保护人身安全为目的。
1低压配电中几种不同的保护接地方式1.1TN系统我国低压配电网中大多数采用TN 系统,而TN 系统又可分为TN-C 系统(如图1所示)、TN-S 系统(如图2所示)和TN-C-S 系统(如图3所示);在此三个系统中,变压器低压中性点都接地,该接地称为工作接地或配电系统接地。
工作接地的作用是保持系统电位的稳定性,既减轻低压系统由高压窜入低压等原因所产生过电压的危险性,主要保护设备的正常运行。
另外,TN 系统中保护中性线上一处或多处通过接地装置与大地再次连接的接地称为重复接地,重复接地能降低漏电设备的对地电压,减轻零线断裂时的触电危险,缩短碰壳或接地短路故障的持续时间,对照明线路能避免因零线断线而引起烧坏灯泡等事故发生。
TN-C 系统的特点是:N 线与PE 线合在一起为PEN 线,其好处是比较节约铜排的使用量,节约了投资,较为经济;TN-C 系统在我国低压配电系统中应用最为普遍。
TN-S 系统的特点是:N 线与PE 线分开,其好处是接零与接地互不影响,在这里,由于N 线与PE 线是连通的,都经主接地线连至主接地体,在安装过程中,一定要清除压线处的氧化层或油漆,以保证其接地电阻达到安装要求。
而N 线与PE 线分开后一般就不再合并,特别是装有漏电保护开关的线路中,所以一般在建筑的基建以及居民住宅和大型楼盘中,因对安全的要求较高,一般均采用TN-S 系统。
重复接地、保护接地、工作接地、防雷接地、屏蔽接地、防静电接地

重复接地、保护接地、工作接地、防雷接地、屏蔽接地、防静电接地接地为防止触电或保护设备的安全,把电力电讯等设备的金属底盘或外壳接上地线;利用大地作电流回路接地线。
在电力系统中,将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接叫做接地。
1、接地种类——常见的接地种类有以下几项重复接地、保护接地、工作接地、防雷接地、屏蔽接地、防静电接地等。
2、重复接地重复接地就是在中性点直接接地的系统中,在零干线的一处或多处用金属导线连接接地装置。
在低压三相四线制中性点直接接地线路中,施工单位在安装时,应将配电线路的零干线和分支线的终端接地,零干线上每隔1千米做一次接地。
对于距接地点超过50米的配电线路,接入用户处的零线仍应重复接地,重复接地电阻应不大于10欧。
保护接地电气设备在正常情况下不带电的金属外壳及金属支架与大地作电气连接,称为保护接地。
保护接地重要应用在中性点不接地的供电系统中。
假如不采纳保护接地措施,那么人体触及带电外壳时,由于输电线和大地之间存在分布电容而构成回路,使人体有电流通过而发生触电事故。
假如电气设备采纳了保护接地措施,那么人体触及带电外壳时,人体与保护接地装置的电阻并联。
由于接地电阻小于人体电阻,此时可以认为通过人体的电流很小,电流几乎不通过人体,避开了触电事故。
工作接地接地网示意图地是为了使系统以及与之相连的仪表均能牢靠运行并保证测量和掌控精度而设的接地。
它分为机器逻辑地、信号回路接地、屏蔽接地,在石化和其它防爆系统中还有本安接地。
防雷接地防雷接地是构成防雷措施的一部分,其作用是把雷电流引入大地。
建筑物和电气设备的防雷重要是用避雷器(包括避雷针、避雷带、避雷网和消雷装置等)。
避雷器的一端与被保护设备相接,另一端连接地装置。
当发生直击雷时,避雷器将雷电引向自身,雷电流经过其引下线和接地装置进入大地。
此外,由于雷电引起静电感应副效应,为了防止造成间接损害,如房屋起火或触电等,通常也要将建筑物内的金属设备、金属管道和钢筋结构等接地;雷电波会沿着低压架空线、电视天线侵入房屋,引起屋内电工设备的绝缘击穿,从而造成火灾或人身触电伤亡事故,所以还要将线路上和进屋前的绝缘瓷瓶铁脚接地。
接地型式的分类

接地型式的分类
接地型式可以分为以下几种:
1.工作接地:为保证电气设备在正常和事故情况下可靠地工作而进行的接地。
2.防雷接地:为防止雷电袭击(直击、感应或线路引入)而进行的接地,是防雷保护设备(如避雷针、避雷线、避雷器等)的需要。
3.保护接地:将正常情况下不带电,而在绝缘材料损坏后或其他情况下可能带电的电器金属部分(即与带电部分相绝缘的金属结构部分)用导线与接地体可靠连接起来的一种保护方式。
4.防静电接地:为防止静电危害影响并将其泄放,是静电防护最重要的一环。
5.屏蔽接地:是消除电磁场对人体危害的有效措施,也是防止电磁干扰的有效措施。
6.重复接地:当系统中发生碰壳或接地短路时,可以降低零线的对地电压;当零线发生断裂时,可以使故障程度减轻。
7.隔离接地:把干扰源产生的电场限制在金属屏蔽的内部,使外界免受金属屏蔽内于扰源的影响。
另外,接地还可以分为临时接地和固定接地两种,其中临时接地包括检修接地和故障接地,固定接地包括工作接地和安全接地,安全接地包含保护接地、防雷接地、防静电接地、屏蔽接地等。
配电系统的几种接地形式TT、TN、IT

配电系统的几种接地形式1 引言低压配电系统接地是十分重要的,它与采取什么样的电击防护措施,选用什么样的保护装置,这些防护措施怎样实施,都与配电系统接地有关系。
如果选择不当,不但不能实现所要求的保护,反而会降低供电系统的可靠性。
在我国的电网中TN、TT、IT并存使用,但同时也存在着许多不足和缺陷,给人身安全带来一定的威胁。
为了提高低压配电系统安全用电水平,人们发现漏电保护装置(RCD)的应用在很大程度上弥补了这些缺陷,从而防止触电和火灾事故的发生,大幅度提高安全用电水平。
为此本文先分析配电系统接地的适用范围和优缺点,然后介绍在不同的配电系统接地下正确安装使用漏电保护装置的必要性,使漏电保护装置在不同的配电系统接地中能够有效和正确安装使用。
2 配电系统接地形式接地形式分为TN、TT、IT三大类,系统特性以符号表示,字母含义为:第一个字母表示电源与地的关系。
“T”表示在某一点上牢固接地;“I”表示所有带电零件与地绝缘或某一点经阻抗接地。
第二个字母表示电气设备外壳与地的关系。
“T”表示外壳牢固的接地,且与电源接地无关,“N”表示外壳牢固地接到系统接地点。
其后的字母表示电网中中性线与保护线的组合方式。
“C”表示中线与保护线是合一的(PEN线);“S”表示中性线与保护线是分开的。
2.1 TN系统TN系统的电源端有一个直接接地点,并引出N线,属三相四线制系统。
系统中用电设备外壳通过保护线与该点直接连接,俗称保护接零。
按照系统中中性线与保护线的不同组合方式,又分为如下三种形式。
(1) TN—C系统整个系统的中性线与保护线是合一的,称为TN—C系统,如图1。
由于投资较少,又节约导电材料,因此在过去我国应用比较普遍。
当三相负荷不平衡或只有单相用电设备时,PEN线上有正常负荷电流流过,有时还要通过三次谐波电流,其在PEN线上产生的压降呈现在用电设备外壳上,使其带电位,对地呈现电压。
正常工作时,这种电压视情况为几伏到几十伏,低于安全电压50V,但当发生PEN线断或相对地短路故障时,使PEN线电位升高,其对地电压大于安全电压,使触电危险加大。
电力系统的接地与保护措施

电力系统的接地与保护措施在电力系统中,接地与保护措施是非常重要的环节,它们帮助确保系统的正常运行,保护人身安全和设备的完整性。
本文将介绍电力系统的接地原理与类型,以及常见的保护措施。
一、电力系统的接地原理与类型1. 接地原理电力系统的接地是通过将系统中的导体与地连接来实现的。
通过接地,可以使系统与地之间产生良好的导电通路,实现安全运行。
接地还可以排除电力系统中的感应电势,减少感应电流的产生。
2. 接地类型根据接地方式的不同,电力系统的接地可以分为以下几种类型:(1)单相接地:即将电力系统中的一个相线接地,通常用于低压系统。
(2)三相接地:即将电力系统中的三个相线同时接地,通常用于高压系统。
(3)零序接地:即将系统中的零序导线接地,用于保护电力系统中的设备。
二、电力系统的保护措施1. 过电流保护过电流保护是电力系统中最常见的保护措施之一,它可以及时检测到系统中的过载和短路情况,并采取相应的措施,以防止设备损坏和人身安全事故发生。
2. 过压保护过压保护主要用于防止电力系统中的电压突然升高,超过设定的安全范围。
过压保护装置能够迅速切断电路,保护设备免受过高电压的损坏。
3. 欠压保护欠压保护用于检测电力系统中的电压降低情况,当电压低于设定值时,欠压保护装置会切断电路,避免设备的故障运行。
4. 接地保护接地保护主要用于检测电力系统中的接地故障,如接地短路或接地电流过大等。
接地保护装置能够及时切断故障电路,保护系统的正常运行。
5. 过温保护过温保护用于监测电力系统中的设备温度,当设备温度超过设定的安全值时,过温保护装置会采取相应措施,如切断电路或发送报警信号。
6. 隔离保护隔离保护主要用于隔离电力系统的故障部分,以防止故障扩散和进一步损坏。
隔离保护装置能够迅速切断故障部分与正常部分之间的连接。
三、总结电力系统的接地与保护措施是确保系统正常运行的重要环节。
通过接地可以排除感应电势,减少感应电流的产生,保证系统的安全运行。
安全用电保护接地措施

安全用电保护接地措施1. 引言在日常生活中,电力是我们的重要能源之一,但同时也存在着一定的安全风险。
不正确的用电行为可能会导致电击、短路、火灾等危险。
为了确保人身安全和财产安全,我们需要采取一系列的保护措施来保证安全用电。
其中,最重要的一项措施就是接地保护。
本文将介绍安全用电保护接地措施的原理和实施方法。
2. 接地原理电力系统中的接地是指将金属部件、设备或导体与地面保持良好的电气连接。
接地的主要目的是为了在电路故障时保护人身安全和设备正常运行。
接地可以将电流引导到地面,使故障电流通过执行器,而不是通过人体或设备。
接地的原理主要有以下几点:•人身安全:接地可以防止触电危险。
当人体接触到带电设备时,若设备接地良好,电流会从人体流向地面,减少触电伤害。
•设备保护:接地可以降低设备损坏的风险。
当设备出现故障导致漏电时,接地可以迅速将故障电流引导到地面,避免设备过载或损坏。
•电磁干扰抑制:接地可以降低电磁干扰。
通过将设备接地,能够有效地减少电磁波的辐射,避免对其他电子设备的干扰。
3. 接地方法3.1. 保护接地保护接地是指在低压电气设备中,将设备的金属外壳和其他可带电部分与地面有效接地的方法。
具体而言,可以通过以下几种方式实施保护接地:•接地电极:一般情况下,接地电极是由导体制成的,埋在地下深度足够,确保与潮湿土壤接触良好。
常用的接地电极包括接地棒、接地网等。
接地电极的材料选择应符合国家标准,并保证其良好接地效果。
•接地线道路:接地线道路是将设备的金属外壳与接地电极之间建立的导电路径。
接地线道路应选用导电性能良好的导线,并保证其连接坚固可靠。
•接地电缆:接地电缆用于连接设备的金属外壳与接地线道路,通常采用铜质或铝质导线。
接地电缆的选择应考虑导线的导电性、耐腐蚀性和耐磨损性等方面的要求。
3.2. 隔离接地隔离接地是指在高压电气设备中,通过绝缘措施将设备的金属外壳与地面隔离的方法。
隔离接地的主要目的是确保设备在正常运行时不会泄漏电流到地面,防止电流通过人体形成触电危险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种接地保护方式(TN-C,TN-S,TN-C-S)
TT是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统。
TT 方式供电系统的特点如下:
1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。
但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困
此TT 系统难以推广。
3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。
TN 方式供电系统的特点如下:
1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT 系统的 5.3 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的
脱扣器会立即动作而跳闸,使故障设备断电,比较安全。
2 )TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。
TN-C是用工作零线兼作接零保护线,可以称作保护中性线。
TN-C 方式供电系统的特点如下:
1 )由于三相负载不平衡,工作零线上有不平衡电流,对地有电压,所以与保护线所联接的电
气设备金属外壳有一定的电压。
2 )如果工作零线断线,则保护接零的漏电设备外壳带电。
3 )如果电源的相线碰地,则设备的外壳电位升高,使中性线上的危险电位蔓延。
4 )TN-C 系统干线上使用漏电保护器时,工作零线后面的所有重复接地必须拆除,否则漏电
开关合不上;而且,工作零线在任何情况下都不得断线。
所以,实用中工作零线只能让漏电保
护器的上侧有重复接地。
5 )TN-C 方式供电系统只适用于三相负载基本平衡情况。
TN-S是把工作零线N 和专用保护线PE严格分开的供电系统。
TN-S 方式供电系统的特点如下:
1 )系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡电流。
PE 线对地没
有电压,所以电气设备金属外壳接零保护是接在专用的保护线PE 上,安全可靠。
2 )工作零线只用作单相照明负载回路。
3 )专用保护线PE 不许断线,也不许进入漏电开关。
4 )干线上使用漏电保护器,工作零线不得有重复接地,而PE 线有重复接地,但是不经过漏
电保护器,所以TN-S 系统供电干线上也可以安装漏电保护器。
5 )TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。
在建筑工程工工
前的“三通一平”(电通、水通、路通和地平——必须采用TN-S 方式供电系统。
TN-C-S是在建筑施工临时供电中,如果前部分是TN-C方式供电,而施工规范规定施工现场必须采用TN-S
方式供电系统,则可以在系统后部分现场总配电箱分出PE线,这种系统称为TN-C-S供电系统。
T前面这个T表示电源中性点接地,如果是I表示不接地或者间接接地;后面这个T表示设备外壳保护方式,T是保护接地,N表示保护接零。
S表示保护接零直接与接地线相连,C表示保护接零通过零线与地线连接。
N-C-S 方式供电系统
1 )工作零线N 与专用保护线PE 相联通,前段线路不平衡电流比较大时,电气设备的接零保
护受到零线电位的影响。
后段的PE 线上没有电流,即该段导线上没有电压降,因此,TN-C-
S 系统可以降低电动机外壳对地的电压,然而又不能完全消除这个电压,这个电压的大小取决
于后段N线的负载不平衡的情况及这段线路的长度。
负载越不平衡,这段N线又很长时,设
备外壳对地电压偏移就越大。
所以要求负载不平衡电流不能太大,而且在PE 线上应作重复接地。
2 )PE 线在任何情况下都不能进入漏电保护器,因为线路末端的漏电保护器动作会使前级漏
电保护器跳闸造成大范围停电。
3 )对PE 线除了在总箱处必须和N 线相接以外,其他各分箱处均不得把N 线和PE 线相
联,PE 线上不许安装开关和熔断器,也不得用大顾兼作PE 线。
通过上述分析,TN-C-S 供电系统是在TN-C 系统上临时变通的作法。
当三相电力变压器工作接地情况良好、三相负载比较平衡时,TN-C-S 系统在施工用电实践中效果还是可行的。
但是,在三相负载不平衡、建筑施工工地有专用的电力变压器时,必须采用TN-S 方式供电系统。
6、IT 方式供电系统I 。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。
在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。
只有在供电距离不太长时才比较安全。
这种供电方式在工地上很少。