纳滤反渗透膜分离实验
纳滤反渗透膜分离实验

化工原理实验报告学院:专业:班级:式中, N —溶质浓缩倍数;R c -浓缩液的浓度,kmol/m 3;-透过液的浓度,kmol/m 3。
该值比较了浓缩液和透过液的分离程度,在某些以获取浓缩液为产品的膜分离过程中(如大分子提纯、生物酶浓缩等),是重要的表征参数。
三、实验装置本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。
主要工艺参数如表1-1膜组件 膜材料 膜面积/m 2最大工作压力/Mpa纳滤(NF ) 芳香聚纤胺 0.4 0.7 反渗透(RO)芳香聚纤胺0.40.7表1-1膜分离装置主要工艺参数反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。
Pc图1-1膜分离流程示意图1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌;8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀四、实验步骤(1)用清水清洗管路,通电检测高低压泵,温度、压力仪表是否正常工作。
(2)在配料槽中配置实验所需料液,打开低压泵,料液经预过滤器进入预过滤液槽。
(3)低压预过滤5-10min后,开启高压泵,分别将清液、浓液转子流量计打到一定的开度,实验过程中可分别取样。
(4)若采用大流量物料(与实验量产有关),可在底部料槽中配好相应浓度料液。
(5)实验结束,可在配料槽中配置消毒液(常用1%甲醛,根据物料特性)打入各膜芯中。
(6)对于不同膜分离过程实验,可采用安装不同膜组件实现。
五、原始数据记录原始数据记录表实验条件电导率k(ms/cm)室温(℃)压力(MPa)原料液透过液浓缩液10.4 0.82 6.07 0.13 6.9910.4 0.8 5.95 0.07 7.26六、数据处理(1)料液浓度计算:常温常压下,电导率与溶液浓度关系曲线如图1所示:图1 电导率与溶液浓度关系曲线电导率与溶液浓度模型:C= 0.6253k - 0.0195式中k为电导率,单位ms/cm;C为溶液浓度,单位×10-3g/cm3。
膜法水处理实验(二)——纳滤与反渗透截留性能比较

膜法水处理实验(二)——纳滤与反渗透截留性能比较一、 实验目的(1) 掌握评价纳滤和反渗透除盐率的标准方法。
(2) 了解纳滤和反渗透除盐性能差异。
二、 实验原理反渗透(RO ,Reverse Osmosis )又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。
对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。
从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。
若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。
反渗透时,溶剂的渗透速率即液流能量N 为:()h N K p π=∆-∆ (1)其中,K h 表示水力渗透系数,它随温度升高稍有增大;Δp 表示膜两侧的静压差;Δπ表示膜两侧溶液的渗透压差。
稀溶液的渗透压π可表示为:iCRT π= (2)其中,i 表示溶质分子电离生成的离子数;C 为溶质的摩尔浓度;R 为摩尔气体常数;T 为绝对温度。
反渗透膜反渗透膜外压渗透反渗透图1 反渗透原理反渗透通常使用非对称膜和复合膜。
反渗透所用的设备,主要是中空纤维式或卷式的膜分离设备。
反渗透膜能截留水中的各种无机离子、胶体物质和大分子溶质,从而取得净制的水。
也可用于大分子有机物溶液的预浓缩。
由于反渗透过程简单,能耗低,近20年来得到迅速发展。
现已大规模应用于海水和苦咸水淡化、锅炉用水软化和废水处理,并与离子交换结合制取高纯水,目前其应用范围正在扩大,已开始用于乳品、果汁的浓缩以及生化和生物制剂的分离和浓缩方面。
纳滤(NF ,Nanofiltration )是一种介于反渗透和超滤之间的压力驱动膜分离过程,纳滤膜的孔径范围在几个纳米左右。
纳滤分离原理近似机械筛分,但由于纳滤膜本体带有电荷性使其在很低压力下仍具有较高脱盐性能。
纳滤具有以下两个特征:1、对于液体中分子量为数百的有机小分子具有分离性能;2、对于不同价态的阴离子存在道南效应。
膜分离实验报告

膜分离实验报告一、实验目的1.了解不同膜分离工艺的原理、设备及流程。
2.掌握RO、NF的适用范围和对象。
二、实验原理1.反渗透(RO)反渗透膜的孔径在0.1-1nm之间。
反渗透技术是利用高压液体的高压作用,克服渗透膜的渗透压,使溶液中水分子逆方向渗透过渗透膜到达离子浓度较低的一端,从而达到去除溶液中大部分离子的目的。
为了防止被截留下来的其他离子越积越多而堵塞RO膜,往往采用动态的方法来进行反渗透,即在进行反渗透的同时,利用一股液体流连续冲刷膜表面的截留物,以保持反渗透膜表面始终具有良好的通透性。
因此,反渗透设备的出水有两股,一股为透过液(淡水),一股为截留液(浓水)。
溶液进行实验,用在线电导仪测定进水、“淡水”和实验采用NaCl、MgSO4“浓水”的电导率变化,表示反渗透膜的处理效果。
图1 反渗透(RO)示意图2.纳滤(NF)纳滤膜的孔径范围介于反渗透膜和超滤膜之间。
纳滤技术是从反渗透中派生出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。
一般认为,纳滤膜存在纳米级的细孔,可以截留95%的最小分子约为1nm的物质。
纳滤膜的特点在于:较低的渗透压和较高的膜通透性,因此,可以节能;通过纳滤膜的渗透作用,可以去除多价的离子,保留部分低价的对人体有益的矿物离子。
为了防止被截留下来的其他离子越积越多而堵塞NF膜,同样采用动态的方法来进行纳滤,即在进行纳滤的同时,利用一股液体流连续冲刷膜表面的截留物,以保持纳滤膜表面始终具有良好的通透性。
因此,纳滤设备的出水也有两股,一股为透过液(淡水),一股为截留液(浓水)。
实验采用NaCl、MgSO溶液进行实验,用在线电导仪测定进水、“淡水”和4“浓水”的电导率变化,表示纳滤膜的处理效果。
同时将纳滤和反渗透对一价和二价离子的截留效果进行比较,可以知道纳滤膜出水中保留了比反渗透出水中更多的有益矿物离子。
三、实验流程与设备整套膜分离装置的四个单元共同安装在一个支架上,由微滤单元和反渗透单元组成设备的1/2,超滤单元和纳滤单元组成设备另外的1/2。
实验十 膜分离试验

实验十 膜分离实验一、实验目的1.了解不同膜分离工艺的原理、设备及流程。
2.掌握EM 、UF 、RO 和NF 的适用范围和对象。
二、实验原理1.微滤(EM )微滤米的微孔直径为0.22μm ,当膜的一面遇到具有一定压力、含有一定悬浮颗粒物质的液体时,粒径>0.22μm 的悬浮颗粒物质就被截流在膜的一面,粒径小于0.22μm 的悬浮颗粒物质与水分子一起透过微滤膜排除出。
从而达到分离水体的部分悬浮颗粒物质的目的。
实验采用含有少量悬浮颗粒物质的水进行实验,通过测定进水和出水的浊度来表示微滤膜的处理效果。
2.超滤(UF )超滤膜的微孔直径在10nm —0.1μm ,截流分子量在2—5万,范围根据需要进行选择。
当膜的一面遇到具有一定压力、含有一定悬浮颗粒物质的液体时,粒径>膜孔径的颗粒物质被截流在膜的一面。
为了防止被截流下来的颗粒物质越来越多而堵塞滤膜,往往采用动态过滤的方法进行超滤,即将进行超滤的同时,利用一股液体连续冲刷膜的表面的截流物,以保持超滤表面始终具有良好的通透性。
因此,超滤膜设备出水与两股,一股为透过水(淡水),一股为截流物液(浓水)。
参见下面的图示:超滤液 浓缩液 原液 (图一)超滤膜示意图静态过程 (图二) 动态过程 图10-1超滤(UF )示意图超滤膜可以截流溶液中的细菌病毒、热源、蛋白质、胶体、大分子有机物等等。
实验采用含有少量染料物质的水进行实验,通过测定水、“淡水”和“浓水”的色度变化表示超滤膜的处理效果。
3.反渗透(RO)反渗透膜的孔径在0.1-1nm 之间。
反渗透技术是利用高压液体的高压作用,库夫渗透膜的渗透压,使溶液中的分子逆向渗透过渗透膜到达离子浓度较低的一端,从而到达去除溶液只能够大部分例子的目的。
为了防止被截流下来的其他例子越积越多儿堵塞RO 膜,同样采用动态的方法来进行反渗透,即将进行反渗透的同时,利用一股液体连续冲刷膜的表面的截流物,以保持反渗透表面始终具有良好的通透性。
反渗透膜分离制高纯水实验报告

反渗透膜分离制高纯水实验报告一、实验目的1.掌握反渗透膜的基本原理,学会使用反渗透膜分离制高纯水。
2.掌握反渗透膜的组成结构及其影响因素。
3.通过实验,了解反渗透膜在水处理中的应用和优点。
二、实验器材实验器材包括:反渗透膜分离装置、超纯水制备设备、PH计、计时器、天平、移液管、量筒、实验用水、电导率计等。
三、实验原理反渗透膜是由多层薄膜复合而成,具有微孔结构,可使水分子透过,而截留其中的微小杂质和病原菌等物质,从而实现水的纯化。
在反渗透膜分离制高纯水时,首先要将原水通过机械过滤器等装置除去较大的悬浮颗粒物和粗大的杂物,然后由加压泵将原水压入反渗透膜分离器中,靠分离膜对浓缩水进行截留和去除。
经过反渗透膜的过滤,就可以得到高纯水。
四、实验操作1.准备工作(1)检查并确认实验器材是否完好无损。
(2)将反渗透膜分离装置竖放于实验台上,并插上电源。
(3)将清洁后的实验用水放入水箱内,并将水箱置于实验台下方平台上。
(4)确保反渗透膜分离器滤芯已清洗干净,各连接管路已连接牢固。
(5)开启水泵,排出风管内的气体,压缩空气排除干净。
2.实验操作(1)通过机械过滤器等装置处理掉原水中较大的悬浮颗粒和杂物。
(2)将原水通过电动加压泵压入反渗透膜装置。
(3)待反渗透膜分离器排出的浓缩液为淡紫色时,关闭仪器电源,取出所制备的高纯水做PH值和电导率测试,记录测试结果。
(4)根据需要,可将所制备的高纯水进行二次及三次甚至更多次处理,以获得更高纯度的水。
五、实验结果分析通过实验操作可以得到较高纯度的水,对于实验、工业等领域具有一定的应用前景。
实验操作需要严格按照操作规程进行,不然会影响实验结果的正确性。
在实验操作过程中应注意实验用水的处理,将水质保持在清洁的状态,才能获得较高纯度的水。
超滤纳滤反渗透实验思考题

超滤纳滤反渗透实验思考题一、实验介绍1. 实验目的2. 实验原理3. 实验步骤及所需材料二、超滤实验思考题1. 什么是超滤?2. 超滤膜的特点和应用场景是什么?3. 超滤实验中如何判断膜污染情况?4. 如何清洗和保养超滤膜?三、纳滤实验思考题1. 什么是纳滤?2. 纳滤与超滤的区别是什么?3. 纳滤膜的特点和应用场景是什么?4. 纳滤实验中如何判断膜污染情况?5. 如何清洗和保养纳滤膜?四、反渗透实验思考题1. 什么是反渗透?2. 反渗透膜的特点和应用场景是什么?3. 反渗透实验中如何判断膜污染情况?4. 如何清洗和保养反渗透膜?五、结论及展望1. 实验结果分析及结论总结2. 未来发展方向及研究重点一、实验介绍1、实验目的本实验旨在通过实验操作,学习超滤、纳滤和反渗透等膜分离技术的原理和应用,掌握实验操作技能,培养学生的科学实验精神和创新意识。
2、实验原理超滤、纳滤和反渗透是利用膜分离技术对水进行处理的方法。
超滤是通过超过压力差将水中大分子物质与杂质过滤出去,而纳滤则是利用孔径更小的膜过滤掉溶液中的胶体颗粒和高分子物质;反渗透则是利用半透膜将溶液中的水分子从高浓度到低浓度方向传递,以达到去除溶液中杂质和盐分的目的。
3、实验步骤及所需材料超滤实验:所需材料:超滤膜、水样、注射器、试管等。
步骤:1. 将待处理水样加入注射器内;2. 将注射器连接至装有超滤膜的装置;3. 施加一定压力使水样通过超滤膜;4. 收集经过膜后产生的水样。
纳滤实验:所需材料:纳滤膜、水样、注射器、试管等。
步骤:1. 将待处理水样加入注射器内;2. 将注射器连接至装有纳滤膜的装置;3. 施加一定压力使水样通过纳滤膜;4. 收集经过膜后产生的水样。
反渗透实验:所需材料:反渗透膜、水样、注射器、试管等。
步骤:1. 将待处理水样加入注射器内;2. 将注射器连接至装有反渗透膜的装置;3. 施加一定压力使水样通过反渗透膜;4. 收集经过膜后产生的水样。
反渗透膜分离制高纯水实验报告

反渗透膜分离制高纯水实验预习报告一、实验目的1.熟悉反渗透法制备超纯水的工艺流程;2.掌握反渗透膜分离的操作技能;3.了解测定反渗透膜分离的主要工艺参数。
二、实验原理反渗透是借助外加压力的作用使溶液中的溶剂透过半透膜而阻留某些溶质,反渗透技术具有无相变、组件化、流程简单等特点。
反渗透净水是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。
原理如图:如图(a )所示,半透膜将纯水与咸水分开,水分子将从纯水一侧通过膜向咸水一侧透过,结果使咸水一侧的液位上升,直到某一高度,即渗透过程。
图(b )所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为制定温度下溶液的渗透压N 。
图(c )所示,当咸水一侧施加的压力P 大于该溶液的渗透压N ,可迫使渗透反响,实现反渗透过程。
在高于渗透压的压力作用下,咸水中的化学位升高,超过纯水的化学位,水分子从咸水一侧反向地通过膜透过到纯水一侧,使咸水得到淡化,这就是反渗透脱盐的基本原理。
膜的性能是指膜的物化稳定性和膜的分离透过性。
膜的物化稳定性的主要指标是:膜材料、膜允许使用的最高压力、温度范围、适用的PH 范围,以及对有机溶剂等化学药品的抵抗性等。
膜的分离透过性指在特定的溶液系统和操作条件下,脱盐率、产水流量和流量衰减指数。
三、主要仪器设备与实验装置流程图:膜 咸水 纯水 咸水 膜 纯水 咸水 膜 纯水(1)纯水制备流程净水浓缩水(2)反渗透制纯水实验装置流程图主要设备:1.自来水预过滤器:10英寸活性炭预过滤和5um精过滤;2.原料储槽:容积50升,材质ABS工程塑料;3.Y预过滤器:材质工程塑料,进口;4.增压泵:型号FLUID-O-TECH 1533,进口;5.压力控制器:型号Fannio FNC-K20;6.饭渗透膜组件:2521型低压反渗透膜,纯水通量40-45L/H,脱盐率≥98%;7.膜壳:2521型不锈钢膜壳;8.电导仪:型号RM-220,在线检测纯水电阻仪;9.流量计:规格10-100L/H和1-7L/M,面板式有机玻璃转子流量计;10.紫外杀菌器:在线流过式杀菌器;11.核级混合树脂床,约3公斤;12.管道及阀门:UPVC管阀;13.不锈钢电控柜及不锈钢支架。
纳滤-反渗透分离膜处理水性漆废液中COD的研究

纳滤-反渗透分离膜处理水性漆废液中COD的研究黄春林;卢智昊;孙贤波【摘要】The high concentration waste liquid from the waterborne automobile coating workshop was treated with two-stage membrane and biological process after coagulation-flocculation as pretreatment.The COD was reduced from 1.75× 105 mg/L to about 1.10× 104 mg/L,which indicated a removing rate of 93.7%,wherein the COD removing rate by nanofiltration was 25%~31% and the COD removing rate by reverse osmosis was 85%~93%.The performance of the tubular nanofiltration membrane and the vibrating nanofiltration membrane were compared in terms of the membrane flux,which showed that the performance and durability of the vibrating nanofiltration were better than that of the tubular membrane.In addition,the results of energy disperse spectroscopy (EDS) analysis indicated that the waterborne paint was based on the acrylic system with high sulfuration.%针对某整车厂涂装车间产生的高浓度水性漆废液,经混凝预处理后,采用纳滤-反渗透工艺进行处理.膜处理过程采用纳滤-反渗透二级膜处理,使COD(化学需氧量)从1.75×105 mg/L左右降低到1.10×104 mg/L左右,去除率达93.7%.其中,纳滤的COD去除率在25%~31%,反渗透对纳滤进水的COD去除率在85%~93%.通过考察膜通量,比较管式纳滤膜和振动纳滤膜的性能,表明振动膜的处理性能和耐用性高于管式膜.能谱仪(EDS)分析表明,该水性漆为丙烯酸类,且硫化程度较高.【期刊名称】《涂料工业》【年(卷),期】2018(048)002【总页数】7页(P50-56)【关键词】水性漆废液;纳滤;反渗透;膜通量;粒径分布【作者】黄春林;卢智昊;孙贤波【作者单位】上海洗霸科技股份有限公司,上海200437;华东理工大学资源与环境工程学院,上海200237;上海洗霸科技股份有限公司,上海200437;华东理工大学资源与环境工程学院,上海200237【正文语种】中文【中图分类】TQ630.9水性漆以较溶剂型涂料更加环保等优点,近年来在国内被大规模推广应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳滤反渗透膜分离实验————————————————————————————————作者:————————————————————————————————日期:化工原理实验报告学院: 专业: 班级:姓名学号实验组号实验日期指导教师成绩实验名称纳滤反渗透膜分离实验一、实验目的1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。
2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。
二、实验原理1.膜分离简介膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。
其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。
膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。
微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。
四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。
微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。
2.纳滤和反渗透机理对于纳滤,筛分理论被广泛用来分析其分离机理。
该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。
应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。
如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。
由此可见,膜的孔径大小和膜表面的化学性质将分别起着不同的截留作用。
反渗透是一种依靠外界压力使溶剂从高浓度侧向低浓度侧渗透的膜分离过程,其基本机理为Sourirajan 在Gi bbs 吸附方程基础上提出的优先吸附-毛细孔流动机理,而后又按此机理发展为定量的表面力-孔流动模型(详见教材)。
3.膜性能的表征一般而言,膜组件的性能可用截留率(R)、透过液通量(J)和溶质浓缩倍数(N)来表示。
100R =⨯0P 0c -c%c (12—1)式中, R -截流率;0c -原料液的浓度,km ol /m3;P c -透过液的浓度,kmol/m 3。
对于不同溶质成分,在膜的正常工作压力和工作温度下,截留率不尽相同,因此这也是工业上选择膜组件的基本参数之一。
()2PV S tJ L m h =⋅⋅(12—2)式中, J -透过液通量,L/(m 2⋅h )P V -透过液的体积,L;S -膜面积,m 2;t -分离时间,h 。
其中,t V Q p=,即透过液的体积流量,在把透过液作为产品侧的某些膜分离过程中(如污水净化、海水淡化等),该值用来表征膜组件的工作能力。
一般膜组件出厂,均有纯水通量这个参数,即用日常自来水(显然钙离子、镁离子等成为溶质成分)通过膜组件而得出的透过液通量。
P R c cN =(12—3)式中, N —溶质浓缩倍数;Rc -浓缩液的浓度,kmol/m 3; -透过液的浓度,kmol/m 3。
该值比较了浓缩液和透过液的分离程度,在某些以获取浓缩液为产品的膜分离过程中(如大分子提纯、生物酶浓缩等),是重要的表征参数。
三、实验装置Pc本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。
主要工艺参数如表1-1膜组件膜材料膜面积/m2最大工作压力/Mpa 纳滤(NF)芳香聚纤胺0.4 0.7反渗透(RO) 芳香聚纤胺0.4 0.7表1-1膜分离装置主要工艺参数反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。
图1-1膜分离流程示意图1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌;8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀四、实验步骤(1)用清水清洗管路,通电检测高低压泵,温度、压力仪表是否正常工作。
(2)在配料槽中配置实验所需料液,打开低压泵,料液经预过滤器进入预过滤液槽。
(3)低压预过滤5-10min后,开启高压泵,分别将清液、浓液转子流量计打到一定的开度,实验过程中可分别取样。
(4)若采用大流量物料(与实验量产有关),可在底部料槽中配好相应浓度料液。
(5)实验结束,可在配料槽中配置消毒液(常用1%甲醛,根据物料特性)打入各膜芯中。
(6)对于不同膜分离过程实验,可采用安装不同膜组件实现。
五、原始数据记录原始数据记录表实验条件 电导率k (ms/cm ) 室温(℃) 压力(MPa) 原料液 透过液 浓缩液 10.4 0.82 6.07 0.13 6.99 10.40.85.95 0.077.26六、数据处理 (1)料液浓度计算:常温常压下,电导率与溶液浓度关系曲线如图1所示:图1 电导率与溶液浓度关系曲线电导率与溶液浓度模型:C= 0.6253k - 0.0195式中k为电导率,单位ms/cm;C为溶液浓度,单位×10-3g/cm3。
①原料液浓度C0=0.6253*6.07-0.0195=3.776071*10-3(g/cm3)=0.026584561 kmol/m3透过液浓度C P=0.6253*0.13-0.0195=0.061789*10-3(g/cm3)=0.000435011 kmol/m3浓缩液浓度CR=0.6253*6.99-0.0195= 4.351347*10-3(g/cm3)=0.030634659 kmol/m3②原料液浓度C0=0.6253*5.95-0.0195= 3.701035*10-3(g/cm 3)=0.026056287 kmol/m3透过液浓度C P=0.6253*0.07-0.0195=0.024271*10-3(g/cm3)=0.000170874 kmol/m3浓缩液浓度C R=0.6253*7.26-0.0195=4.520178*10-3(g/cm3)=0.031823275 kmol/m3(2)膜组件性能表征:利用公式:计算截留率R。
式中, R-截流率;-原料液的浓度,kmol/m3;-透过液的浓度,kmol/m3。
①截留率R。
R=C O−C PC O ×100%=0.026584561−0.0004350110.026584561∗100%=98.3637%②截留率R。
R=C O−C PC O ×100%=0.026056287−0.0001708740.026056287∗100%=99.3442%七、实验结果及讨论经过对实验数据的处理,计算结果Ro为98%和99%,截留率较好,与理论值有一定差距,说明过滤膜有一定杂质堵塞。
实验较为成功,存在一定误差,误差分析:存在一定的操作误差,对低浓度取样后的仪器没有高浓度润洗,仪器显示实验数据不稳定进行读数,造成读数误差。
八、思考题1.常用膜分离技术有哪些?其特点和用途各是什么?答:微滤,超滤,纳滤,反渗透。
微滤:特点:微滤利用微孔膜将滤液中大于膜孔径的微粒、细菌及悬浮物资等截留下来达到澄清的膜技术。
用途:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。
超滤:特点:以压力差为推动力,通过膜的筛分作用截留溶液中大于膜孔的大分子溶质。
用途:早期的工业超滤应用于废水和污水处理。
三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。
纳滤:特点:用于从有机溶液中脱除氯化钠等单价无机盐离子,理论可截留摩尔质量大于200的有机溶质,使之与盐离子分离。
用途:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保工业等。
反渗透:特点:是利用膜两侧溶液中的盐溶质浓度不同所产生的渗透压,使低盐浓度侧的水渗透过膜,实现溶质的浓缩,饮用水的制备。
用途:由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水。
其他2.膜分离装置中预过滤器的作用有哪些?作用:对原料液进行预过滤,过滤掉原料液中的不溶性大颗粒物质,防止在过滤过程中堵塞管子或实验装置。
指导教师意见签名:年月日。