最新整理的高考数学复习精华资料
高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
新课标高考数学公式(精华版)

1高考数学公式(精华版)1.子集个数:n 元集合有2n 个子集,有21n -个真子集,21n-个非空子集,22n-个非空真子集; 2.常见数集:自然数集:N 正整数集:*N N 、+ 整数集:Z 有理数集:Q 实数集:R3.集合间的基本运算:(1)交集:公共元素;B A I (2)并集:全部元素(不能重复);B A Y (3)补集:除去公共元素而剩余的元素;A C U4.二次函数:2()(0)f x ax bx c a =++≠:判别式ac b 42-=∆;(1)0>∆时,图像与x 轴有两个交点; (2)0=∆时,图像与x 轴有一个交点; (3)0<∆时,图像与x 轴没有交点; 5.韦达定理:若21x x 、是一元二次方程)0(02≠=++a c bx ax 的两个根,则:a b x x -=+21,acx x =21.6.单调性:设1x ,2[,]x a b ∈,且12x x ≠,那么:(1)[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; (2)[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数;(3)如果0)(>'x f ,则)(x f 为增函数;0)(<'x f ,则)(x f 为减函数;(4)增函数+增函数=增函数;减函数+减函数=减函数; 增函数-减函数=增函数;减函数-增函数=减函数; 7.奇偶性:(1)()()f x f x -=-⇔()f x 是奇函数⇔()f x 的图像关于原点对称⇒(0)0f =(若在0x =有定义)(2)()()f x f x -=⇔()f x 是偶函数⇔()f x 的图像关于y 轴对称;(3)奇函数±奇函数=奇函数;偶函数±偶函数=偶函数奇函数⨯奇函数=偶函数⨯偶函数=偶函数;奇函数⨯偶函数=奇函数8.对称性:(1)函数()y f x =的图象关于直线x a =对称2()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-9.周期性:(1)()()f x f x a =-+或1()()f x f x a =+⇔()f x 是2T a =的周期函数;(2)()()f x f x a b ++=或()()f x f x a b ⋅+=(0b ≠)⇔()f x 是2T a =的周期函数;10.分数指数幂:n mnmaa=(0,,a m n N*>∈,且1n >).1m nm naa-=(0,,a m n N *>∈,且1n >). 11.对数运算规律:(1)指数与对数互换标准:log b a N b a N =⇔= (2)常用两个对数等式:②01log =a ③1log =a a(3)对数运算法则:log ()log log a a a MN M N =+;log log log aa a MM N N=-;log log n a a M n M = (4)对数的换底公式:log log log m a m N N a=(log log m na a nb b m =)12.常见函数的导函数:(1)0='C (C 为常数);(2)'1()()n n x nx n Q -=∈; (3)x x cos )(sin =';(4)x x sin )(cos -=';(5)x x 1)(ln =';ea x xa log 1)(log ='; (6)x x e e =')(; a a a x x ln )(=';(7)[]'''()()()()f x g x f x g x ±=±; (8)[]'''()()()()()()f x g x f x g x f x g x ⋅=+(9)[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦; (10)())()()]([x g x f x g f '⋅'='(11) []''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数);13.曲线的切线方程:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率为)(0x f ',相应的切线方程是3))((000x x x f y y -'=-.14.角度制与弧度制互化标准:3602rad π︒=,180rad π︒=,10.01745rad ︒≈,'157.35718rad ︒︒≈=15.扇形面积公式:1=2S rl 扇(其中r 为半径,l 为扇形的弧长) 16.同角三角函数基本关系式:(1)平方关系:1cos sin 22=+αα;(2)商数关系:αααtan cos sin =; 17.诱导公式:(奇变偶不变,符号看象限)212(1)sin ,(sin()2(1)s ,nn n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数)(为奇数),212(1)s ,cos()2(1)sin ,nn co n n n απαα+⎧-⎪+=⎨⎪-⎩(为偶数)(为奇数) eg :ααπcos )2sin(=- ααπsin )2cos(=- ααπsin )sin(=-ααπcos )cos(-=- ααπcos )2sin(=+ 18.两角和与差的正余弦,正切公式:cos()cos cos sin sin cos()cos cos sin sin αβαβαβαβαβαβ+=-⎧⎨-=+⎩ ;sin()sin cos cos sin sin()sin cos cos sin αβαβαβαβαβαβ+=+⎧⎨-=-⎩ βαβαβαtan tan 1tan tan )tan(-+=+;βαβαβαtan tan 1tan tan )tan(+-=-19.二倍角公式:αααcos sin 22sin = ααα2tan 1tan 22tan -=ααααα2222sin 211cos 2sin cos 2cos -=-=-=20.降次(幂)公式: 21cos 2sin 2αα-=21cos 2cos 2αα+=1sincos sin 22ααα= 21.辅助角公式:sin cos )a x b x x ϕ±=±,其中tan baϕ=4特别的,有:sin cosx x x +=sin cos )4x x x π-=-cos 2sin()6x x x π+=+cos 2sin(x x x -=sin 2sin()3x x x π=+,sin 2sin(3x x x =23.三角函数图像的变换:(1)左右平移:左加右减;(2)周期变换:伸长缩短;在ABC ∆中,R CcB b A a 2sin sin sin ===. 22cos bc A -,222b c cos 2a A bc+-=; 22cos ac B -,222cos 2a c b B ac+-=;22cos ab C -,222cos 2a b c C ab +-=;)sin B C +=,cos()cos A B C +=-,(π=++C B A ,︒180)(2)若ABC ∆是锐角三角形,则sin cos A B >27.面积公式:111sin ()222ABC S ah ab C a b c r ∆===++(r 为ABC ∆内切圆半径)528.平面向量的基本运算:设11(,)a x y =r ,22(,)b x y =r;(1)1212(,)a b x x y y +=++r r ,1212(,)a b x x y y -=--r r;1212a b x x y y ⋅=+r r(2)若ar ∥br ⇔1221=-y x y x ,若a b ⊥r r ⇔12120a b x x y y ⋅=+=r r(3)cos ,cos ,a b a b a b a b a b a b⋅⋅=<>⇔<>=r rr r r r r r r r r r2121y x +=29.平面向量的基本定理:已知OP xOA yOB =+u u u r u u u r u u u r,若A 、P 、B 三点共线1x y ⇔+=30.若G 为ABC ∆的重心,则0GA GB GC ++=u u u r u u u r u u u r r,且(,)33A B C A B Cx x x y y y G ++++31.数列中n a 与n S 的关系:2111≥=-⎩⎨⎧=-n n S S S a n n n32.等差数列及其性质:(1)通项公式:1(1)()n m a a n d a n m d =+-=+-;(2)前n 项和:1()2n n n a a S +=1(1)2n n na d -=+; (3)若c b a 、、依次成等差数列,则有:b c a 2=+;(4)若m n p q +=+,则m n p q a a a a +=+;特别地,若2m n t +=,则2m n t a a a +=;(5)n S ,2n n S S -,32n n S S -成等差数列,且公差为2n d ; 33.等比数列及其性质:(1)通项公式:11n n m n m a a q a q --==;(2)前n 项和:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩(3)若c b a 、、依次成等比数列,则有:2b c a =⋅;(4)若m n p q +=+,则m n p q a a a a ⋅=⋅;特别地,若2m n t +=,则2m n t a a a ⋅=;(5)n S ,2n n S S -,32n n S S -成等比数列,且公比为n q ; 34.均值不等式:222a b ab +≥(当且仅当a b =时等号成立) ab b a 2≥+(当且仅当a b =时等号成立) “一6正、二定、三相等”35.常见几何体表面积公式:(1)圆柱:222S rl r ππ=+ (2)圆锥:2S rl r ππ=+(3)圆台:'22'()S r r r l rl π=+++ (4)球:24S R π=36.常见几何体体积公式:(1)柱体的体积公式V Sh =(其中S 为底面面积,h 为高)(2)锥体的体积公式13V Sh =(其中S 为底面面积,h 为高) (3)台体的体积公式'1()3V S S h =(其中'S ,S 分别为上、下底面面积,h 为高) (4)球的体积公式343V R π=(其中R 为球半径) 37:空间线面关系证明思路: (1)线线平行:①三角形中位线平行于第三边(且等于第三边的一半);②平行四边形对边平行;③两平行平面的垂线平行;(2)线面平行:①(平面外)直线与平面内一直线平行,则这条直线与平面平行;②两平面平行,其中一平面内一直线平行于另一平面; (3)面面平行:其中一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,这两个平面平行;(4)线线垂直:①等腰三角形底边的中线垂直于底边(即是高线);②矩形的邻边垂直、菱形的对角线垂直;③直线垂直于平面则垂直于平面内的任意直线;④三垂线定理:平面内一直线与该平面的一条斜线在平面内的射影垂直,则这条直线与这条斜线垂直;三垂线逆定理也成立;(5)线面垂直:①一条直线垂直于平面内的两条相交直线,则垂直于这个平面;②两个平面垂直,其中一个平面内一直线垂直于两个平面的相交直线,则这条直线垂直于另一个平面;(6)面面垂直:其中一个平面内一直线垂直于另一个平面,则两平面垂直。
2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。
2024年高三数学高考知识点总结

2024年高三数学高考知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义及函数关系的表示方法- 函数的定义域、值域和区间- 函数的奇偶性、周期性及单调性2. 一次函数与二次函数- 一次函数的性质及图像- 二次函数的性质及图像- 一次函数与二次函数的应用3. 指数函数与对数函数- 指数函数的性质及图像- 对数函数的性质及图像- 指数函数与对数函数的应用4. 三角函数- 正弦函数、余弦函数、正切函数的性质及图像- 三角函数之间的关系及图像的性质- 三角函数的应用5. 幂函数与反比例函数- 幂函数的性质及图像- 反比例函数的性质及图像- 幂函数与反比例函数的应用6. 方程和不等式- 一元一次方程与一元一次不等式的解法- 一元二次方程与一元二次不等式的解法- 方程与不等式的应用7. 绝对值方程与绝对值不等式- 绝对值方程与绝对值不等式的解法及应用- 带有绝对值的一元二次方程的解法二、数列与数学归纳法1. 数列的概念与性质- 数列的定义及常见数列的形式- 等差数列与等比数列的性质及通项公式2. 数列的通项公式与求和公式- 等差数列的通项公式及前n项和公式- 等比数列的通项公式及前n项和公式- 递推数列的通项公式及前n项和公式3. 数学归纳法- 数学归纳法的基本思想及应用- 利用数学归纳法证明不等式4. 递归数列与逼近法- 递归数列的定义及应用- 逼近法解决数学问题三、三角恒等变换1. 三角函数的和差化积与积化和差- 正弦、余弦、正切的和差化积公式- 正弦、余弦、正切的积化和差公式2. 三角函数的倍角化半角与半角化倍角- 正弦、余弦、正切的倍角化半角公式- 正弦、余弦、正切的半角化倍角公式3. 三角方程的基本解法- 使用三角函数的恒等变换解三角方程- 利用等效代换解三角方程4. 三角函数的图像与性质- 三角函数图像的性质及平移、伸缩、翻转操作- 三角函数图像的综合性质及应用四、平面几何与立体几何1. 二维几何相关知识- 平面几何基本概念及性质- 二维几何形状的性质与判定2. 三角形相关知识- 三角形的内角和与外角和的性质- 三角形的中线、高线、角平分线的性质及应用3. 圆相关知识- 圆的基本概念及性质- 弧长与扇形面积的计算- 切线与切线定理的应用4. 直线与圆的位置关系- 直线与圆的位置关系的判定及性质- 直线与圆的切线与切点的性质与计算5. 空间几何相关知识- 空间几何基本概念及性质- 空间几何形状的性质与判定6. 空间几何立体的计算- 空间几何立体的体积与表面积的计算- 立体的展开图与折叠图的应用五、概率与统计1. 概率的基本概念与性质- 随机事件与样本空间的概念- 概率的定义及性质- 概率的计算方法2. 排列、组合与概率计算- 排列与组合的基本概念与计算方法- 包含条件的排列与组合的计算方法- 概率计算中的排列与组合问题的应用3. 随机变量与概率分布- 随机变量的定义及性质- 离散型和连续型随机变量的概率分布- 随机变量的数学期望与方差的计算4. 概率统计与抽样调查- 总体与样本的概念及表示方法- 抽样调查的基本方法与误差分析- 统计量的计算与应用六、向量与矩阵1. 向量的基本概念与性质- 向量的定义及表示方法- 向量的数量乘法、加法、减法与向量的线性相关性2. 向量的线性组合与线性方程组- 向量的线性组合与线性方程组概念- 线性方程组的解的判定与求解3. 矩阵的基本概念与运算- 矩阵的定义及表示方法- 矩阵的乘法、加法、减法与矩阵的性质4. 矩阵的转置、行列式与逆矩阵- 矩阵的转置运算与性质- 矩阵的行列式及其性质与应用- 矩阵的逆矩阵的定义与求解5. 矩阵的秩与线性方程组- 矩阵的秩的定义及性质- 秩与线性方程组解的存在性与唯一性的关系这只是对____年高三数学高考知识点进行的一个预测总结,具体内容还需要参考教材或高考大纲进行复习和学习。
高考数学108个知识点

高考数学108个知识点数学作为高考科目之一,对于广大考生来说是一道相当重要的门槛。
高考数学试卷中涵盖了大量的知识点,考生需要深入了解和掌握这些知识点,才能在考试中取得好成绩。
在这篇文章中,我们将细致地梳理高考数学的108个知识点,并给出相应的解析和例题。
一. 代数与函数1. 复数与复数基本运算:复数的概念与表示方法,复数的四则运算。
2. 幂的运算:定义、性质及应用,实指数幂与零指数幂。
3. 根式与分式的性质:根式的概念与性质,分式的概念与性质。
4. 分式的四则运算:分式的加减乘除,简化分式。
5. 线性方程组与解的性质:线性方程组的定义、解的存在唯一性以及解的性质。
6. 二次函数与一元二次方程:二次函数的概念、性质以及图像,一元二次方程的定义解的判别式。
二. 三角函数7. 角的概念与运算:弧度制与角度制的转换,三角函数的概念、性质以及应用。
8. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像、性质以及周期性。
9. 三角函数的基本关系式:正弦函数、余弦函数、正切函数之间的基本关系。
10. 三角函数的合并与拆分:任意两个三角函数的合并与拆分。
11. 三角函数的方程与恒等式:三角方程的定义、基础解法以及特解法。
三. 解析几何12. 平面直角坐标系与平面向量:平面直角坐标系的概念、性质以及应用,平面向量的概念、基本运算以及性质。
13. 直线与圆的方程:直线的方程、性质以及相关定理,圆的方程、性质以及相关定理。
14. 二次曲线的方程:椭圆、双曲线、抛物线的方程、性质以及相关定理。
15. 空间几何与立体几何:空间直角坐标系的概念、性质以及应用,空间向量的概念、基本运算以及性质。
四. 数量关系16. 空间图形的投影与旋转:平行投影、垂直投影、投影的比例与相似性,图形绕一定轴线的旋转。
17. 总和与平均数:总和与平均数的概念、计算方法以及应用。
18. 线性规划:线性规划的定义、基本模型以及解法。
19. 组合与排列:组合与排列的定义、性质以及计算方法。
高考数学常见题型汇总(精华资料)

一、函数1、求定义域(使函数有意义) 分母 ≠0偶次根号≥0对数log a x x>0,a>0且a ≠1三角形中 0<A ∠<180, 最大角>60,最小角<60 2、求值域判别式法 V ≥0 不等式法 22232111133y x x x x x x x x =+=++≥⨯⨯=导数法 特殊函数法 换元法 题型: 题型一:1y x x =+法一:111(,222同号)或y x x x x x xy y =+=+≥∴≥≤-法二:图像法(对(0)by ax ab x =+>有效2-2-11题型二:()1(1,9)y x x x =-∈()/2(1)(9)110180,,0,9导数法:函数单调递增即y x y x xy f f y =+>∴=-⎛⎫∴∈∈ ⎪⎝⎭ 题型三:2sin 11sin 1sin ,1,2112化简变形又sin 解不等式,求出,就是要求的答案y yy yy y θθθθ-=++=≤-+∴≤-题型四:2222sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()114化简变形得即又由知解不等式,求出,就是要求的答案y y y yy y x y x y y x yy θθθθθθθθθ-=+-=+-=++++=++=+++≤≤+题型五2222333(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y+=-+=-+-+==--⨯≥V反函数1、反函数的定义域是原函数的值域2、反函数的至于是原函数的定义域3、原函数的图像与原函数关于直线y=x 对称 题型1()(2)32,2322,2已知求解:直接令,解出就是答案x xf f x xx x --=+-=+周期性()()()(2)()()(2)00(2,函数 -)式相减)是一个周期是2t 的周期函数x x t x t x t x x x t f f f f f f f +++++=+==对称()()()(2)()()()),(2,), 函数关于直线x=a 对称对称的判断方法:写出2个对应点的坐标A(x,求出其中点的坐标C(a,)。
高考数学大全知识点总复习

高考数学大全知识点总复习一、函数与方程1.函数的性质与运算-函数的定义、自变量、因变量-函数的性质:奇偶性、周期性、单调性-函数的运算:和、积、反函数、复合函数2.一元二次方程-一元二次方程的定义及性质-一元二次方程的解法-一元二次方程的应用:整数、分数、根的关系3.函数的图像与性质-一次函数、二次函数、三角函数的图像与性质-反比例函数、指数函数的图像与性质-一元二次函数的图像与性质4.不等式与绝对值-一次不等式、二次不等式的解法-绝对值的性质与运算-不等式的应用:求解范围、表示范围二、几何与三角1.平面几何的基本概念-点、线、面的定义-直线和平面的交点-平面几何的基本性质:平行、垂直、相似、全等2.三角形的性质与运算-三角形的定义与分类-三角形的性质:内角和、外角和、中线、重心、垂心、外心-三角形的解法:正弦定理、余弦定理、面积公式3.圆的性质与运算-圆的定义与性质-弧长、扇形面积、圆锥体积的计算-圆与直线的位置关系:切线、割线、弦4.空间几何的基本概念-点、线、面、体的定义-空间几何的基本性质:平行、垂直、相交三、数据与概率1.统计与概率-样本、样本空间、事件的定义与性质-概率的定义与性质-随机变量、概率分布、期望值、方差的计算2.数据的处理-数据的收集与整理-数据的统计分析:平均数、中位数、众数-数据的表示与描述:频率分布表、柱状图、折线图3.概率与统计的应用-组合问题:排列组合、分配问题-概率问题:事件的独立、互斥、和、积运算-统计问题:抽样调查、误差分析、假设检验四、导数与积分1.导数与函数的变化率-导数的定义与计算-导数的运算:和、积、商-函数的极值、单调性与凹凸性2.应用题与函数图像-极值问题:最值、最优化问题-变化率问题:速度、密度、增长率-函数图像的绘制与分析:渐近线、拐点、切线3.定积分与不定积分-定积分的定义与性质-不定积分的计算:基本公式、换元法、分部积分法-积分的应用:长度、面积、体积、物理问题。
高考数学第一轮复习资料汇总

高考数学第一轮复习资料汇总高考数学第一轮复习资料 1数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1—an=dan=a1+(n—1)da,A,b成等差2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b ba>b,b>c a>ca>b a+c>b+ca+b>c a>c—ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 aca>b>0,c>d>0 aca>b>0 dn>bn(n∈Z,n>1)a>b>0 > (n∈Z,n>1)(a—b)2≥0a,b∈R a2+b2≥2ab|a|—|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或aa—b>0(或a—b<0=即可(2)若b>0,要证a>b,只需证明。
要证a综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”高考数学第一轮复习资料 21、直线两点距离、定比分点直线方程|AB|=| ||P1P2|=y—y1=k(x—x1)y=kx+b两直线的位置关系夹角和距离或k1=k2,且b1≠b2l1与l2重合或k1=k2且b1=b2l1与l2相交或k1≠k2l2⊥l2或k1k2=—1 l1到l2的角l1与l2的夹角点到直线的距离2、圆锥曲线圆椭圆标准方程(x—a)2+(y—b)2=r2圆心为(a,b),半径为R一般方程x2+y2+Dx+Ey+F=0其中圆心为(),半径r(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系(2)两圆的位置关系用圆心距d与半径和与差判断椭圆焦点F1(—c,0),F2(c,0)(b2=a2—c2)离心率准线方程焦半径|MF1|=a+ex0,|MF2|=a—ex0双曲线抛物线双曲线焦点F1(—c,0),F2(c,0)(a,b>0,b2=c2—a2)离心率准线方程焦半径|MF1|=ex0+a,|MF2|=ex0—a抛物线y2=2px(p>0)焦点F准线方程坐标轴的平移这里(h,k)是新坐标系的原点在原坐标系中的坐标。