基于Ziee的农业大棚光照环境监控系统设计

合集下载

基于ZigBee技术的农业温室大棚监控及智能控制方案(优.选)

基于ZigBee技术的农业温室大棚监控及智能控制方案(优.选)

基于ZigBee技术的农业温室大棚监控及智能控制方案一概述“物联网”被称为继计算机、互联网之后,世界信息产业的第三次浪潮。

业内专家认为,物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。

目前,美国、欧盟、中国等都在投入巨资深入研究探索物联网。

我国也正在高度重视物联网的研究,工业和信息化部会同有关部门,在新一代信息技术方面正在开展研究,以形成支持新一代信息技术发展的政策措施。

智能控制是为了达到节能、舒适、便利的目的,要求对市政、家庭、农业等的智能控制和监视制定细致的策略和方案。

但是,传统的智能控制系统由于很多因素的制约,很难达到要求。

为了解决这些问题,业界尝试了很多办法,但基本上都属于封闭式的,多采用私有协议,彼此间难以互通,导致结构不透明,灵活性、扩充性不佳。

从长远看,智能控制系统的发展趋势是走向开放,尤其是智能控制与互联网的融合是其中一个重要发展趋势。

智能农业控制通过实时采集农业大棚内温度、湿度信号以及光照、土壤温度、土壤水分等环境参数,自动开启或者关闭指定设备。

可以根据用户需求,随时进行处理,为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据。

大棚监控及智能控制解决方案是通过光照、温度、湿度等无线传感器,对农作物温室内的温度,湿度信号以及光照、土壤温度、土壤含水量、CO浓度等环境参数进行实时采集,自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。

二项目需求在每个智能农业大棚内部署空气温湿度传感器2只,用来监测大棚内空气温度、空气湿度参数;每个农业大棚内部署土壤温度传感器2只、土壤湿度传感器2只、光照度传感器2只,用来监测大棚内土壤温度、土壤水分、光照度等参数。

所有传感器一律采用直流24V电源供电,大棚内仅需提供交流220V市电即可。

每个农业大棚园区部署1套采集传输设备(包含中心节点、无线3G路由器、无线3G网卡等),用来传输园区内各农业大棚的传感器数据、设备控制指令数据等到internet上与平台服务器交互。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的发展,智慧农业成为了农业领域发展的重要方向。

智慧农业大棚监控系统是智慧农业的重要组成部分,通过集成物联网、传感器、大数据等先进技术,实现对农业大棚环境的实时监测和智能调控,提高农业生产效率和产品质量。

本文将介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 系统架构设计智慧农业大棚监控系统采用分层设计的思想,主要包括感知层、传输层、应用层。

感知层负责采集大棚环境数据,传输层负责将数据传输到服务器端,应用层负责数据的处理和展示。

2. 硬件设计(1)传感器:传感器是智慧农业大棚监控系统的核心组成部分,主要包括温度传感器、湿度传感器、光照传感器、CO2浓度传感器等,用于实时监测大棚环境参数。

(2)控制器:控制器负责接收传感器数据,并根据预设的阈值进行相应的调控操作,如调节温室遮阳帘、通风口等。

(3)网络设备:网络设备包括无线通信模块和有线网络设备,用于将传感器数据传输到服务器端。

3. 软件设计(1)数据采集与处理:软件系统通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

(2)数据分析与展示:软件系统对采集的数据进行分析和挖掘,通过图表、报表等形式展示给用户,帮助用户了解大棚环境状况和作物生长情况。

(3)智能调控:软件系统根据预设的阈值和调控策略,自动或手动调节温室设备,如调节温室遮阳帘、通风口等,以保持大棚环境在最佳状态。

三、系统实现1. 硬件实现硬件设备选型与采购:根据系统需求,选择合适的传感器、控制器和网络设备,并进行采购。

设备安装与调试:将硬件设备安装在大棚内,并进行调试,确保设备能够正常工作并采集准确的数据。

2. 软件实现(1)数据采集与处理模块:通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

采用数据库技术对数据进行管理和维护。

(2)数据分析与展示模块:通过数据分析算法对采集的数据进行分析和挖掘,以图表、报表等形式展示给用户。

基于Zigbee技术的农作物温室大棚监控系统的设计和实现

基于Zigbee技术的农作物温室大棚监控系统的设计和实现

参考内容
一、引言
随着科技的不断发展,智能化监控系统在许多领域得到了广泛的应用。特别 是在农业领域,温室大棚监控系统的应用对农作物的生长和产量有着重要的影响。 ZigBee作为一种低功耗、低成本、高可靠性的无线通信技术,为农业温室大棚监 控系统的设计与实现提供了新的解决方案。
二、系统设计
基于ZigBee的农业温室大棚监控系统主要包括传感器节点、ZigBee协调器、 数据传输模块和上位机软件。
二、技术ห้องสมุดไป่ตู้述
Zigbee是一种基于IEEE 802.15.4标准的低速无线个人区域网络通信技术。 它具有低功耗、低成本、高可靠性、大容量等特点,非常适合于智能家居、工业 自动化、农业等领域。在农作物温室大棚监控系统中,Zigbee技术可实现传感器 数据的实时采集、设备控制以及数据传输等功能。
三、系统设计
四、系统实现
1、部署方案
在温室大棚内,根据需要布置温度传感器、湿度传感器、光照传感器和CO2 传感器,并将传感器数据通过Zigbee模块传输到监控中心。监控中心部署有接收 器和显示设备,方便工作人员实时监测大棚环境参数。
2、操作方法
工作人员可通过监控中心的显示设备实时查看各个温室大棚的环境参数。根 据需要,可通过监控中心对温室大棚进行控制,如调整通风设备、灌溉系统等。 同时,监控中心可对历史数据进行记录和分析,以便更好地了解农作物生长情况 和优化温室环境。
2、网络构建
基于Zigbee技术的温室大棚监控系统采用星型网络结构。每个温室大棚作为 一个独立的网络节点,节点上布置有多个传感器和Zigbee模块。通过Zigbee模块 将传感器数据传输到监控中心,监控中心通过显示界面展示环境参数。
3、数据传输
系统采用无线传输方式,通过Zigbee模块将传感器数据传输到监控中心。数 据传输采用UDP协议,具有较低的延迟和较高的可靠性。同时,监控中心可对各 个温室大棚的环境参数进行实时监测,并根据需要对大棚环境进行调整。

基于ZigBee技术的农业大棚灯光智能控制系统

基于ZigBee技术的农业大棚灯光智能控制系统

实用第一f智慧密集■BBaSEIEieSI3l3BBI3SeSBI3BBEIISBBBI3BI9@SI3eSI3aiSieEISeBI3ei3iaEIBBeBI3BaEIEII3SS@ieEl®基于ZigBee技术的农业大棚灯光智能控制系统杜冬雨,任淑霞,李廉杰(天津工业大学计算机科学与软件学院,天津300387)摘要:科技兴农是农业发展的必由之路,通信技术融入到传统农业大棚环境监测是其典型代表。

为确保农业大棚设置合理的照明系统,必须对大棚內光照强度进行精度监测。

针对当前棚內照明强度不能调节、布线复杂、成本高等缺点,提出了一种基于ZigBee技术的智能灯光控制系统。

采用了TI公司的无线射频芯片CC2530作为系统的硬件平台,根据农业大棚的实际场景对协议栈Z-Stack进行修改,利用拓扑网络实现自动组网,所提出的智能灯光控制系统具有低成本、低功耗的特点,此外,也可以在其他以无线传感网络为依托的场合中有一定的应用,具有良好的拓展功能。

关键词:智慧农业大棚;光源监测;无线传感器网络;ZigBee技术1研究背景我国是农业大国,农业关系着国民生计,传统农业生产过程受到自然资源和土地资源的限制,而且农户仅凭经验判断作物生长环境,无法精准满足作物生长所需 的条件[1]O智慧农业大棚是依靠科技将农业做大做强,其改变了传统农业的发展方式,可以人为为农作物生长提供所必须的条件[2]O光照是农作物生长的关键因素之一,传统的照明控制系统一有线控制系统,存在能耗高、布线复杂繁琐、可扩展应用性差,安装维护维修成本高等缺点。

随着科学技术的发展,智能化照明系统不仅能够满足作物对照明的基本需求,同时还具有能够改善照明的质量、减少大量的能源消耗、环境友好,安装维护维修费用低等众多优点。

智能的灯光控制系统和传统方式上的灯光控制系统对比,有众多优势。

首先,和传统照明方式中的一个开 光控制一个工具,或者一个总开关控制所有灯具照明相比,智能的灯光控制可以实现更为人性化的操作[3],它在不同的环境下做出不同的响应,改变了一开即开、一关即关的状态,这样对于不同的灯具也有一定的好处,可以在提高工作效率的同时延长灯具的使用时间。

基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计随着科技的发展和人工智能的应用,农业大棚智能监控系统已经成为农业生产中不可或缺的一部分。

这个系统可以帮助农民监测植物生长环境的各种参数,辅助农民进行农作物的及时管理和调控,提高生产效率和质量。

在这篇文章中,我们将介绍一个基于单片机的农业大棚智能监控网络系统的设计,以及它的工作原理和应用前景。

一、系统设计概述1)系统功能基于单片机的农业大棚智能监控网络系统通常包括环境监测模块、数据传输模块、数据处理模块和用户界面模块。

系统的功能主要包括:- 监测大棚内温度、湿度、光照等环境参数;- 基于传感器数据,实时分析大棚内环境的变化;- 控制通风、灌溉等设备,实现远程操控;- 数据传输和存储,实现数据的远程监控和管理;- 用户界面的设计,便于农民远程监控和管理。

2)系统组成系统主要由传感器、单片机、无线通信模块、执行器等组成。

传感器用于采集环境参数数据,单片机负责数据处理和控制,无线通信模块用于数据传输和远程控制,执行器用于执行控制指令。

3)系统优势相比传统的农业生产方式,基于单片机的农业大棚智能监控网络系统具有以下优势: - 实时监测:可以实时监测大棚内的环境参数,及时发现和解决问题;- 远程控制:农民可以通过手机或电脑远程控制大棚内的设备,方便灵活;- 数据分析:系统可以通过数据分析,为农民提供决策参考;- 节约成本:降低人工成本和资源浪费,提高生产效率和质量。

二、系统工作原理1)传感器采集数据传感器负责采集大棚内的环境参数数据,包括温度、湿度、光照等。

不同类型的传感器可以满足不同的监测需求,比如温湿度传感器、光照传感器等。

2)单片机数据处理单片机负责接收传感器采集的数据,并进行处理和分析。

单片机可以根据预设的环境参数范围,判断当前环境是否符合要求,如果不符合要求,可以发出报警或控制指令。

3)无线通信模块传输数据单片机处理后的数据通过无线通信模块传输到远程监控中心或用户手机、电脑上。

基于ZigBee的蔬菜大棚环境监控系统设计_李玮瑶

基于ZigBee的蔬菜大棚环境监控系统设计_李玮瑶

关键词:蔬菜大棚;环境监控;ZigBee;无线监测
中图分类号:TN911⁃34;TP393
文献标识码:A
文章编号:1004⁃373X(2015)12⁃0051⁃04
Design of ZigBee⁃based environment monitoring system for vegetable greenhouse
协调器节点、路由器节点和终端控制器的硬件和软件设计,结合 ZigBee 传感技术实现了对棚内空气土壤温湿度、CO2 浓度和 光照强度等参数的无线监测和控制。该系统很好地解决了传统蔬菜大棚管理中布线难、节点移动性差和系统可扩展性差等
问题,满足了蔬菜大棚中环境参数自动监测的需要,具有很强的应用推广价值。
图 3 路由器节点硬件结构框图
图 4 协调器节点硬件结构框图
2.2 监测终端硬件设计 为方便工作人员随时查看监测数据,在监测终端开
发时,除完成 PC 终端的硬件设计外,还重点进行了嵌入 式手持监测终端的设计。嵌入式手持监测终端主要由 32 位 ARM7 系 列 的 LPC2103 微 处 理 器 、负 责 人 机 交 互 的 按 键 电 路 、负 责 数 据 显 示 和 界 面 操 作 的 液 晶 显 示 屏 、 负责与传感器节点进行无线通信,获得采集参数数据的 CC2430 通信单元和负责为微处理器提供实时时钟信号 的晶振电路 5 个部分组成。手持终端的硬件结构如 图 5 所示。
其 中 ,信 息 采 控 模 块 由 传 感 器 和 微 处 理 器 组 成 ,通 过无线传感网进行采集信息的上传和控制指令的下达, 传 感 器 节 点 负 责 对 棚 内 土 壤 和 空 气 的 温 湿 度、光 照 强 度 、CO2 浓 度 等 数 据 进 行 采 集 ,微 处 理 器 负 责 执 行 控 制 指 令 对 卷 帘 电 机 、浇 灌 设 备 、通 风 设 备 和 照 明 设 备 等 调 控设施控制阀门进行相应启动。数据传输模块包括无 线传感网络、路由器节点和协调器节点 。 [7] 控制终端模 块包括 PC 控制终端和嵌入式手持监测终端。监控系统 硬件结构如图 1 所示。

基于ZigBee的蔬菜大棚无线监控系统设计

基于ZigBee的蔬菜大棚无线监控系统设计
关 键 词 :监 控 系统 ;蔬 菜 大棚 ;无 线传 感 器 网络 ;Z i g B e e ;C C1 1 1 0
中图法分类号 : T P 3 9 3 文献标识号 : A 文章编号 : 1 0 0 0 — 7 0 2 4( 2 0 1 3 )0 3 — 1 1 2 6 — 0 6
De s i g n o f wi r e l e s s mo n i t o r i n g a n d c o n t r o l s y s t e m b a s e d o n Z i g Be e f o r v e g e t a b l e s g r e e n h o u s e
2 0 1 3年 3月
计算机 工程与设 计
COM PUTER ENGI NE ERI NG பைடு நூலகம்AND DES I GN
Ma r . 2 01 3
第 3 4卷
第 3期
Vo 1 . 3 4 NO . 3
基于 Z i g B e e 的蔬 菜大 棚 无 线 监控 系统设 计
王 军 ,孙 健程 ,曾 静 ( 1 . 沈 阳化 工大 学 计 算机 科 学与技 术 学院 ,辽 宁 沈 阳 1 1 0 1 4 2 ;
W ANG J u n ,S UN J i a n - c h e n g ,Z ENG J i n g
( 1 .Co l l e g e o f o mp C u t e r S c i e n c e a n d T e c h n o l o g y,S h e n y a n g Un i v e r s i t y o f C h e mi c a l T ch e no l o g y,S h e n y a n g 1 1 0 1 4 2 ,Ch i n a ; 2 .C o l l e g e o f I n f o r ma t i o n En g i n e e r i n g,S h e n y a n g Un i v e r s i t y o f Ch e mi c a l Te c h n o l o g y,S h e n y a n g 1 1 0 1 4 2,Ch i n a ) Ab s t r a c t :Be c a u s e o f d i f f i c u l t b u i l d i n g ,ma i n t e n a n c e a n d h i g h c o s t o f t h e a g r i c u l t u r a l v e g e t a b l e g r e e n h o u s e mo n i t o r i n g s y s t e m b a s e d o n c a b l e ,a d e s i g n me t h o d o f mo n i t o r i n g a n d c o n t r o l s y s t e m b a s e d o n wi r e l e s s s e n s o r i s p r o p o s e d .Th e mo n i t o r i n g a n d c o n — t r o l s y s t e m a c c o r d s wi t h Z i g Be e s t a n d a r d .An d t h i s me t h o d i s s i mp l e ,l o w c o s t ." Wh a t ’S mo r e ,t h e s y s t e m b a s e d o n t h e me t h o d c o u l d a c h i e v e t o c o l l e c t t h e p a r a me t e r s o f t h e g r e e n h o u s e t h r o u g h wi r e l e s s s e n s o r n o d e .At t h e s a me t i me ,t h e d a t a c a n b e t r a n s f e r r e d t O t h e s e r v e r , s t o r a g e a n d a n a l y s i s b y wi r e l e s s mu l t i - h o p n e t wo r k .An d i t wi l l p r o v i d e b a s i s d e c i s i o n - ma k i n g f o r c o n t r o l l i n g t e mp e r a t u r e a n d h u mi d i t y . Ul t i ma t e l y ,t h e r e a l d e v i c e b a s e d o n t h e s y s t e m i s d e v e l o p e d,a n d t h e o v e r a l l t e s t i s c o mp l e t e d ,a n d t h e r e s u l t o f s p o t t e s t p r o v e t h a t mo n i t o r i n g a n d c o n t r o l r e s u l t s a r e i n g o o d e f f e c t ,a n d t h e s y s t e m a c h i e v e s t h e e x p e c t e d g o a 1 . Ke y wo r d s :mo n i t o r i n g a n d c o n t r o l s y s t e m;v e g e t a b l e g r e e n h o u s e ; wi r e l e s s s e n s o r n e t wo r k ;Z i g B e e ;C C1 1 1 0

基于-ZigBee的农业大棚光照环境监控系统设计

基于-ZigBee的农业大棚光照环境监控系统设计

毕业设计(报告)课题:基于ZigBee的农业大棚光照环境监控系统设计学生:雪系部:物联网班级:物联网1203班学号:2012270051 指导教师:靖装订交卷日期:2015.04.28毕业设计(报告)成绩评定记录表2.平时成绩占20%、卷面评阅成绩占50%、答辩成绩占30%,在上面的评分表中,可分别按20分、50分、30分来量化评分,三项相加所得总分即为总评成绩,总评成绩请转换为优秀、良好、中等、及格、不及格五等级计分。

教务处制毕业设计(报告)成绩评定记录表2.平时成绩占40%、卷面评阅成绩占60%,在上面的评分表中,可分别按40分、60分来量化评分,二项相加所得总分即为总评成绩,总评成绩请转换为优秀、良好、中等、及格、不及格五等级计分。

教务处目录第一章绪论 (4)1.1 论文背景 (4)1.2 主要需求 (5)第二章系统分析 (6)2.1 设计原理 (6)2.2 系统节点设计 (7)2.3 系统总体架构 (9)第三章系统硬件设计 (12)3.1 Zigbee节点硬件设计 (12)3.2 传感器节点硬件设计 (13)3.3 光照数据采集节点设计 (15)第四章基站节点设计 (18)4.1 ZigBee技术概述 (18)4.2 ZigBee技术优缺点 (18)4.3 ZigBee网络配置 (20)4.4 ZigBee工作模式 (23)第五章系统测试 (25)5.1系统测试步骤 (25)5.2 系统测试结果 (25)5.2.1 系统硬件测试 (25)5.2.2 协议栈测试 (27)5.2.3 上位机测试 (27)5.3系统测试结果分析 (28)总结 (30)参考文献 (31)摘要随着农业应用技术及科技的发展,温室大棚已经成为农业的一个重要组成部分,而且能带动农业高效的发展。

因此,对于农业生产环境来说,对一些重要参数进行检测与控制就显得十分重要且必要,这些参数包括光照强度、温度、湿度、二氧化碳浓度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(报告)课题:基于ZigBee的农业大棚光照环境监控系统设计学生:杨雪系部:物联网班级:物联网1203班学号:****:**装订交卷日期:毕业设计(报告)成绩评定记录表注:1.此表适用于参加毕业答辩学生的毕业设计(报告)成绩评定;.平时成绩占20%、卷面评阅成绩占50%、答辩成绩占30%,在上面的评分表中,可分别按20分、50分、30分来量化评分,三项相加所得总分即为总评成绩,总评成绩请转换为优秀、良好、中等、及格、不及格五等级计分。

教务毕业设计(报告)成绩评定记录表注:1.此表适用于不参加毕业答辩学生的毕业设计(报告)成绩评定;2.平时成绩占40%、卷面评阅成绩占60%,在上面的评分表中,可分别按40分、60分来量化评分,二项相加所得总分即为总评成绩,总评成绩请转换为优秀、良好、中等、及格、不及格五等级计分。

教务处目录摘要随着农业应用技术及科技的发展,温室大棚已经成为农业的一个重要组成部分,而且能带动农业高效的发展。

因此,对于农业生产环境来说,对一些重要参数进行检测与控制就显得十分重要且必要,这些参数包括光照强度、温度、湿度、二氧化碳浓度等。

这些参数控制得当,就改变了植物的生长环境,为植物创造了最佳的生长环境,而且避免了外界四季变化和恶劣气候对植物生长的影响。

目前,ZigBee技术已经广泛应用于近距离传输的无线通信领域,尤其是在工农业控制、医疗卫生方面日益起着越来越重要的作用。

本设计意在通过ZigBee 无线通信技术构建一个无线传感器网络(WSN),采用树型网络拓扑结构,对加入该网络的传感器节点进行温度、湿度、光照强度和二氧化碳浓度的数据进行采集和分析,将此应用于对农业里温室的环境检测和控制当中,避免了有线网络的布线问题和成本问题。

本设计利用了一个结构合理的Web应用程序,搭建Web服务器来动态显示传感终端所采集的温室数据。

关键词:ZigBee;CC2530;无线传感器网络;光照传感器第一章绪论1.1 论文背景近几年来,随着物联网、传感器、电子标签、智能装备等技术的重大突破及广泛应用,也渐渐改变了农业传统的生产经营方法,扩大了农业的发展空间。

近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。

种植环境中的温度、湿度、光照度、CO2浓度等环境因子对作物的生产有很大的影响。

传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。

根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。

基于GPRS的智能大棚监控系统使这些成为可能。

图1-1 农业大棚智能化监控1.2 主要需求在每个智能农业大棚内部署无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等,分别用来监测大棚内空气温湿度、土壤温度、土壤水分、光照度、CO2浓度等环境参数。

为了方便部署和调整位置,所有传感器均应采用电池供电、无线数据传输。

大棚内仅需在少量固定位置提供交流220V市电(如:风机、水泵、加热器、电动卷帘)。

每个农业大棚园区部署1套采集传输设备(包含路由节点、长距离无线网关节点、Wi-Fi无线网关等),用来覆盖整个园区的所有农业大棚,传输园区内各农业大棚的传感器数据、设备控制指令数据等到Internet上与平台服务器交互。

在每个需要智能控制功能的大棚内安装智能控制设备(包含一体化控制器、扩展控制配电箱、电磁阀、电源转换适配设备等),用来接受控制指令、响应控制执行设备。

实现对大棚内的电动卷帘、智能喷水、智能通风等行为的实现[1]。

第二章系统分析2.1 设计原理该检测系统充分利用ZigBee技术的软、硬件资源,辅以相应的测量电路和SHT10数字式集成温湿度传感器等智能仪器,能实现多任务、多通道的检测和输出。

并且通过RS232接口实现与上位PC机的连接,进行数据的分析、处理和存储及打印输出等。

它具有测量范围广、测量精度高等特点,前端测量用的传感器类型可在该基础上修改为其他非电量参数的测量系统。

温湿度检测系统采用SHT10为温湿度测量元件。

系统在硬件设计上充分考虑了可扩展性,经过一定的添加或改造,很容易增加功能。

根据温室大棚内的温湿度、土壤水分、土壤温度等传感器采集到的信息,利用串口通信RS-232将传感器信息发送给上位计算机,然后再接到上位计算机上进行显示,报警,查询。

监控中心将收到的采样数据以表格形式显示和存储,然后将其与设定的报警值相比较,若实测值超出设定范围,则通过屏幕显示报警或语音报警,并打印记录。

与此同时,监控中心可向现场控制器发出控制指令,监测仪根据指令控制风机、水泵、等设备进行降温除湿,以保证大棚内作物的生长环境。

监控中心也可以通过报警指令来启动现场监测仪上的声光报警装置,通知大棚管理人员采取相应措施来确保大棚内的环境正常[2]。

图2-1 总线型架构图2.2 系统节点设计数据采集节点及其基站节点是一组安放在蔬菜大棚实地内的传感器和无线通信模块的终端集合。

主要是负责大棚内空气的温湿度的数据采集,并接收从基站发来的指令,定时通过无线模块将本节点采集到的温湿度数据传输给基站节点。

图2-2 采集节点结构1、数据采集节点是定时的(默认设置成10S采集一次温湿度数据)采集数据,个时间间隔可以是网络中的基站向温湿度传感器节点发送重新设置时间间隙控制命令来完成设置的。

PPP(Point-to-Point Protocol)协议是在设计和实现络中基站节点功能所要用到的技术。

PPP协议是为在同等单元之间传输数据包样的简单链路设计的链路层协议。

这种链路提供全双工操作,并按照顺序传递据包。

设计目的主要是用来通过拨号或专线方式建立点对点连接发送数据,使成为各种主机、网桥和路由器之间简单连接的一种共通的解决方案。

传感器应了其技术从而实现了数据的接力传送,从而提高了网络通信的效率。

数据采集节点主要由电源模块、处理器模块、温湿度传感器收集模块和无线通信模块4个模块构成的:(1)电源:采用两节1.5V的纽扣电池组成的3V直流电为整个系统供电。

(2)处理器模块和无线通信模块:采用增强型工业标准的CC2530核心板,它是加强版的Zigbee模块。

(3)温湿度传感器收集模块:采用CC2530核心板集成光照传感器SHT10。

2、温湿度采集节点也是基于Zigbee通信协议的终端设备。

Zigbee的基础是IEEE 802.15.4,但IEEE仅处理低级MAC层和物理层协议,因此Zigbee联盟扩展了IEEE,对其网络层协议和API进行了标准化。

与其他无线标准802.11或802.16不同,Zigbee以250Kbps的最大传输速率承载有限的数据流量。

它满足国际标准组织(ISO)开放系统互连(OSI)参考模型,主要包括物理层、数据链路层。

3、Zigbee是一种新兴的短距离、低速率、低功耗的无线可自组的网络技术。

主要用于近距离无线连接。

在数千个微小的传感器之间相互协调实现通信,这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。

图2-3 混搭型架构图2.3 系统总体架构无线传感器网络终端节点主要由数据采集模块、数据处理模块、数据传输模块和电源管理模块组成。

数据采集模块负责通过各种类型的传感器采集物理信息;数据处理模块负责控制整个节点的处理操作、功耗管理以及任务管理等;数据通信模块负责与其他节点进行无线通信,它通过ZigBee无线电波将数据传送到路由节点或主协调器节点,路由节点再将数据转送到主协调器节点或经过上级路由节点转给主协调器节点,主协调器节点通过RS 232串口将所有信息汇集传至PC机或服务器。

本系统的模型主要分为四块:光照的数据采集节点、负责从节点接收数据并向主机发送数据的系统节点、主机(服务器)以及最终的用户。

图2-4 系统模型框架该系统由上位机(PC)监控端和下位机ZigBee网络两部分组成。

下位机ZigBee网络系统负责采集温室大棚内的光照数据,上位机负责显示光照数据并进行实时监控。

下位机ZigBee网络系统由光照传感器模块、路由器模块和协调器模块组成。

光照传感器模块主要负责采集、存储和上传光照信息。

路由器模块主要负责转发光照信息。

协调器模块主要完成光照数据的汇聚。

下位机ZigBee 网络系统和上位机之间通过RS-232串口进行通信。

当监测大棚光照信息时,首先通过上位机端监控软件设置好波特率和串口号等参数,然后协调器开始组建ZigBee网络,这时路由器节点和光照传感器节点开始加入ZigBee网络。

分布在各个大棚内的光照传感模块开始采集光照信息,并存储在Flash中,通过单跳或者多跳的方式发送到上位机,上位机监控端接收到温湿度信息后,把各个大棚内的光照信息显示出来。

ZigBee组网流程如下图2-5。

图2-5 无线网络形成流程第三章系统硬件设计3.1 Zigbee节点硬件设计ZigBee节点硬件主要由CC2530射频芯片和传感器构成。

CC2430芯片整合了高性能2.4 GHz DSSS(直接序列扩频)射频收发器内核和工业标准的增强型8051 MCU,还包括了8 KB的SDRAM、128 KB的Flash,是一种片上系统(SOC)解决方案。

将相应的传感器与CC2530的I/O引脚连接,可测得所需的温室环境参数,并通过ZigBee无线网络进行传输。

本文总体硬件设计是实现针对主协调器节点的设计与开发。

主协调器的硬件系统中包括CC2530通信模块、键盘电路模块、串口转USB模块、液晶显示模和电源电路模块等。

主协调器节点的主要功能是负责接收和存储传感器节点发送来的消息,并向传感器节点发布网络控制信息,同时与PC机进行数据交换。

其中串口转USB模块负责转换CC2530模块与PC机的通信信号;液晶显示模块负责节点工作状态的指示;电源模块通常采用持续电力供电,为主协调器节点提供运行所需的能量。

根据气象采集系统的需求设计硬件结构,并设计各部分电路,包括无线传输模块、CC2530接口模块、复位电路模块、电源电路模块、数据采集模块、扩展电路模块及外围电路。

图3-1 数据采集结构图3.2 传感器节点硬件设计传感器节点是由无线收发器CC2530、射频天线RFID、电源模块、晶振电路和串口电路组成。

由于CC2530芯片本身带有温度传感器,因而本实验直接采用了CC2530的内置温度传感器监测温度。

但是该温度传感器的精度有限,如果要求更高的精度,可以扩展出一个温湿度传感器,如SHT10。

相关文档
最新文档