三角恒等变换教案(优质课教案)
三角函数恒等变换教案

复杂恒等变换问题解析
01
ቤተ መጻሕፍቲ ባይዱ
02
03
多项式型恒等式
对于包含多个三角函数项 的多项式型恒等式,通过 分组、提取公因式、配方 等方法进行化简和证明。
分式型恒等式
对于分式形式的恒等式, 通过通分、约分、分子有 理化等手段进行化简和证 明。
含有参数的恒等式
对于含有参数的恒等式, 先对参数进行讨论,再根 据不同情况选择合适的方 法进行证明。
正弦为负,余弦、正切为 正。
诱导公式及周期性
诱导公式
通过加减整数倍的$pi/2$或$pi$,将任意角的三角函数值转化为锐角三角函数 值。例如,$sin(pi - x) = sin x$,$cos(pi - x) = -cos x$等。
周期性
正弦、余弦函数的周期为$2pi$,正切函数的周期为$pi$。即对于任意整数$k$, 有$sin(x + 2kpi) = sin x$,$cos(x + 2kpi) = cos x$,$tan(x + kpi) = tan x$。
05
典型例题解析与讨论
简单恒等变换问题解析
1 2
利用基本恒等式进行变换 通过观察和运用基本的三角函数恒等式,如正弦、 余弦、正切的和差公式,将表达式化简为更简单 的形式。
角度变换 利用角度的加减、倍角、半角等关系,将复杂的 三角函数表达式转换为更易于处理的形式。
3
引入辅助角 通过引入辅助角,将原表达式转换为与辅助角相 关的三角函数形式,从而简化计算过程。
角的变换技巧
利用$sin(A+B)$、$cos(A+B)$等公式将 复杂角拆分为简单角。
倍角公式
如$sin 2A = 2sin A cos A$,用于将倍 角转换为单角。
三角恒等变换备课教案

三角恒等变换备课教案备课教案:三角恒等变换一、引言三角恒等变换是高中数学中的重要内容,对于学生深入理解三角函数的性质和应用具有重要意义。
本教案将通过引导学生发现和探究三角恒等变换的规律,帮助学生理解和掌握相关的变换技巧。
二、知识背景1. 三角函数的基本关系:(1) 正弦函数:sinθ = 对边/斜边(2) 余弦函数:cosθ = 邻边/斜边(3) 正切函数:tanθ = 对边/邻边2. 三角函数的周期性:(1) 正弦函数、余弦函数的周期是2π(2) 正切函数的周期是π3. 三角函数的基本恒等式:(1) 余弦函数的平方与正弦函数的平方和为1:cos^2θ + sin^2θ = 1(2) 正切函数与余切函数的乘积始终等于1:tanθ · cotθ = 1(3) 正弦函数与余切函数、余弦函数与正切函数的关系:sinθ/cotθ = cosθcosθ/tanθ = sinθ三、教学过程1. 引入:通过提问的方式引导学生回顾三角函数的基本关系和周期性规律。
2. 发现:给出一个具体的三角函数等式,例如sinθ = cos(π/2 - θ),请学生尝试寻找与之相关的恒等式。
3. 探究:根据学生的发现,引导学生使用初等三角函数的定义和已知的三角函数恒等式,进行推导和证明,找出恒等式的变换规律。
4. 总结:整理学生的发现和推导过程,总结三角恒等变换的基本规律,并给出示例进行演示和讲解。
5. 练习:提供一些练习题,让学生运用所学的三角恒等变换规律,解决相关的三角函数等式和问题。
四、教学评价1. 通过观察学生的推导过程和解题思路,评价他们对三角恒等变换规律的理解和掌握情况。
2. 提供针对性的反馈和指导,帮助学生纠正错误和加深对知识点的理解。
3. 鼓励学生积极参与课堂讨论和解题过程,培养他们的合作和思考能力。
五、课后作业1. 题目一:证明sin(π/2 - θ) = cosθ。
2. 题目二:利用三角恒等变换,化简并求解tanθ + 1 = secθ的解。
三角恒等变换教案

三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳三角恒等变换的规律;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和探究欲望;(2)培养学生的团队合作意识和克服困难的勇气。
二、教学内容1. 三角恒等变换的概念和意义;2. 三角恒等变换的基本公式;3. 三角恒等变换的运用。
三、教学重点与难点1. 教学重点:(1)三角恒等变换的概念和意义;(2)三角恒等变换的基本公式;(3)三角恒等变换的运用。
2. 教学难点:(1)三角恒等变换公式的灵活运用;(2)解决实际问题时的变形和计算。
四、教学方法1. 采用问题驱动法,引导学生主动探究三角恒等变换的规律;2. 通过示例讲解,让学生掌握三角恒等变换的基本公式;3. 利用练习题和小组讨论,提高学生的实际应用能力和团队合作意识。
五、教学过程1. 导入新课:(1)复习相关三角函数知识;(2)提问:什么是三角恒等变换?为什么学习三角恒等变换?2. 知识讲解:(1)讲解三角恒等变换的概念和意义;(2)介绍三角恒等变换的基本公式;(3)示例讲解:如何运用三角恒等变换解决实际问题。
3. 课堂练习:(1)布置练习题,让学生独立完成;(2)选取部分学生的作业进行讲解和评价。
4. 小组讨论:(1)让学生分组讨论,分享解题心得和经验;5. 课堂小结:(1)回顾本节课所学内容;(2)强调三角恒等变换在数学和实际生活中的重要性。
6. 课后作业:(1)布置巩固练习题;(2)鼓励学生自主学习,深入探究三角恒等变换的运用。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的正确性以及与同学的合作情况。
2. 练习作业评价:检查学生作业的完成质量,包括答案的正确性、解题方法的合理性以及书写的规范性。
高中必修第一册《55三角恒等变换》优质课教案

02
知识回顾与铺垫
Chapter
三角函数基本概念回顾
任意角的概念及弧度制
01
理解任意角、正角、负角、零角的概念,掌握弧度制与角度制
的换算。
三角函数的定义
02
回顾正弦、余弦、正切函数的定义,理解三角函数在各象限的
符号。
三角函数的诱导公式
03
掌握利用单位圆和周期性推导出的三角函数诱导公式。
三角函数性质及图像复习
指出了在应用三角恒等变换时需要注意的一些细节和易错点,如公式使用的条件、 符号的变换等。
布置针对性作业,要求学生按时完成并提交
针对本节课所学内容,布置了相应的 练习题和思考题,要求学生按时完成 并提交。
鼓励学生相互交流和讨论作业中遇到 的问题,促进彼此之间的学习和进步 。
提醒学生在完成作业时要注意细节和 规范性,如书写工整、步骤清晰等。
三角恒等变换的基本公式及其应用。
教学方法与手段
教学方法
本节课采用讲解、示范、练习相结合的教学方法。通过讲解 帮助学生理解三角恒等变换的基本公式和几何意义;通过示 范使学生掌握运用三角恒等变换解决三角函数问题的方法; 通过练习巩固所学知识,提高解题能力。
教学手段
使用多媒体辅助教学,展示三角恒等变换的公式推导过程、 几何意义以及典型例题的解析过程,增强教学的直观性和生 动性。
03
新课导入与探究
Chapter
两角和与差公式推导及应用举例
公式推导
通过向量的数量积和三角函数的 定义,推导两角和与差的余弦、 正弦公式。
应用举例
解决三角形中的角度问题,如已 知两边和夹角求第三边等。
倍角公式推导及应用举例
公式推导
利用三角函数的和差公式,推导二倍 角的正弦、余弦、正切公式。
第三章三角恒等变换教案

高中数学必修4 第3章 三角恒等变换 3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单使用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不但有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,使用已学知识和方法的水平问题,等等. 三、教学设想: (一)导入:问题1: 我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家能够猜测,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜测是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也能够用角α的余弦线来表示。
思考?.1角函数线来探求公式怎样联系单位圆上的三(1) 怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角βαβα-,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果? 两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=-(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 30222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活使用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.思考:此题中没有),2ππα⎝⎛∈,呢? (四)练习:不查表计算以下各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解: ︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒= (五)小结:两角差的余弦公式,首先要理解公式结构的特征,理解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活使用.(1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中灵活处理已、未知关系. (六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
三角恒等变换教案优质课教案

三角函数的图像与变换
三角函数的基本图像
01
正弦、余弦、正切函数在坐标系中的图像及其特点。
图像的平移与伸缩
02
通过平移和伸缩变换,可以得到不同振幅、周期和相位的三角
函数图像。
图像的对称与周期性
03
三角函数图像具有对称性和周期性,可以通过这些性质进行图
像分析和变换。
三角函数的和差化积与积化和差公式
和差化积公式
05
06
$tan(A - B) = frac{tan A - tan B}{1 + tan A tan B}$
倍角公式与半角公式
倍角公式 $sin 2A = 2sin A cos A$
$cos 2A = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A$
解释三角恒等变换在几何图形中的应用,如角度、边长等的计算。
02
三角恒等变换在物理中的应用
阐述三角恒等变换在物理学中的应用,如振动、波动等问题的分析。
03
三角恒等变换在工程学中的应用
介绍三角恒等变换在工程领域中的应用,如建筑设计、机械制造等。
拓展:三角恒等变换在其他领域的应用
三角恒等变换在数学分析中的应用
三角恒等变换在数学、物理、工程等领域具有广泛的应用,是解决实际问题的重要 工具之一。
掌握三角恒等变换的方法和技巧,对于提高学生的数学素养和解决问题的能力具有 重要意义。
课程目标与要求
知识与技能目标
掌握三角恒等变换的基本方法和技巧, 能够熟练地进行三角函数的化简和计 算。
过程与方法目标
情感态度与价值观目标
将两个角的三角函数和差转化为 单个角的三角函数形式,便于计
三角恒等变换教案

三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。
2. 过程与方法:(1)通过观察和分析,培养学生的逻辑思维能力;(2)通过练习和应用,提高学生解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生的团队合作意识和解决问题的自信心。
二、教学内容1. 三角恒等变换的概念和意义(1)引入三角函数的定义和图像;(2)解释三角恒等变换的含义和作用。
2. 三角恒等变换的基本公式(1)sin(α±β)的公式;(2)cos(α±β)的公式;(3)tan(α±β)的公式。
三、教学过程1. 导入(1)复习相关三角函数的定义和图像;(2)提出问题,引导学生思考三角恒等变换的必要性。
2. 新课讲解(1)讲解三角恒等变换的概念和意义;(2)引导学生推导三角恒等变换的基本公式。
3. 练习与应用(1)布置相关的练习题,巩固学生对三角恒等变换的理解;(2)引导学生运用三角恒等变换解决实际问题。
四、教学评价1. 课堂讲解的评价:(1)观察学生在课堂上的参与度和理解程度;(2)通过提问和回答,检查学生对三角恒等变换的理解。
2. 练习题的评价:(1)检查学生完成练习题的情况和答案的正确性;(2)分析学生在解题过程中存在的问题和错误,及时进行反馈和指导。
五、教学资源1. 教学PPT:包含三角恒等变换的概念、意义和基本公式的讲解;2. 练习题:提供相关的练习题,供学生巩固和应用所学知识;3. 教学参考书:提供详细的三角恒等变换的讲解和例题。
六、教学策略1. 案例分析:通过分析具体的三角函数例子,让学生理解恒等变换的应用。
2. 小组讨论:让学生分组讨论三角恒等变换的性质,促进学生之间的交流和合作。
3. 问题解决:设计一些实际问题,让学生运用所学的三角恒等变换知识去解决,提高学生的应用能力。
三角恒等变换教案(教师用)

(2)若 且 , ,求 的值。
(答: ).
例9、【给值求取值范围】
1.若 求 的取值范围。
2. ห้องสมุดไป่ตู้求 的取值范围
针对性练习二
1、已知 则 的值等于()
(A) (B) (C) (D)
2、已知 则 值等于()
(A) (B) (C) (D)
3、化简:
答案:1·B 2·C
知识框架
一、两角和与差的正弦、余弦、正切公式
二、倍角的正弦、余弦、正切公式
1、二倍角公式:
2、二倍角公式的变形
(1)升幂:(2)降幂:
三、三角恒等变换的常见形式
1、三角恒等变换中常见的三种形式:化简、求值、证明
(1)三角函数式的化简常见的方法为化切为弦、利用诱导公式、同角三角函数的基本关系及和(差)角公式、倍角公式等进行转化求解。
巩固作业
1、若 ,求 的值。
2、已知在 中, ,求cosA的值。
3、已知 的最值。
4、已知 , ,则 的最大值为______,最小值为______.
5、若 的取值范围是
[0 , ]
难题、易错题部分
1、 中, ,则 =_______
2、已知函数y=sin( x+ )与直线y= 的交点中距离最近的两点距离为 ,那么此函数的周期是()
三角恒等变换
课题
三角恒等变换
教学目标
1、掌握和差角公式、二倍角公式的推导方法与记忆技巧,并能熟练运用此类公式。
2、能够熟练进行三角恒等变换(如:化简、求值)
重点、难点
重点:三角恒等变换;难点:三角恒等变换的应用
考点及考试要求
1、两角和与差的正弦、余弦、正切公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型1 三角函数式的化简、求值
给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.
【例1】(1)(2015年课标全国Ⅰ)=- 10sin 160cos 10cos 20sin ( )
A.23-
B.23
C.21-
D.2
1 (2)计算
155
sin 155cos 20sin 110sin 22-的值为( ) A.23- B.23 C.21- D.2
1 (3)化简
40sin 125cos 40cos -等于( )
A.1
B.3
C.2
D.2
(4)()
=+ 10tan 3150sin 【规律方法】
三角函数式的化简要遵循“三看”原则
(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;
(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;
(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.
题型2 给值求值问题(已知某角的三角函数值,求另一角的三角函数值)
“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键。