整体法及隔离法受力分析(答案解析版)
共点力平衡应用-隔离法、整体法解析

由平衡条件可得:
Fcosθ-f=0 Fsinθ+N-(M+m)g=0
∴ f=Fcos θ N=(M+m)g-Fsinθ
例3、如图所示,质量为m的木块静止在倾角为θ的直角 三角形的劈形木块上,劈形木块静止在粗糙的水平面上, 劈形木块与水平面间的静摩擦力大小是( ) (A)mgsin2θ (B)mgcos2θ (C)mgsinθcosθ (D)零
而处于静止状态,此时人对平台的压力大小为 。若
增加平台重力而仍要保持平衡,则平台的最大重力
为。
T
平台与人整体: 4T=G人+G台
T
2T
T=( G人+G台)/4=(600+400)/4N=250N
个体人:T+N=G人
GT人+N G台当 台间平的台弹重N=力力减增G人加小-时,T当,=弹绳60的力0-拉N2减力50小增N为=加零3,5时0则N,人拉与力平T 有max,为Tmax=G人=600N,
在“连接体运动”的问题中,比较常见的连接方式有:
①用细绳将两个物体连接,物体间的相互作用是通过 细绳的“张力”体现的。
②两个物体通过互相接触挤压连接在一起,它们间的 相互作用力是“弹力”、“摩擦力”连接在一起。
例1
隔离法
A
F
F=3N GA=GB=10N
B
1、地面对B有摩擦力吗?如果有是多大?
NBA=10N
3.如图,质量m=5 kg的木块置于倾角=37、质量M=10 kg的粗糙斜面上,用一平行于斜面、大小为50 N的力F推 物体,使木块静止在斜面上,求地面对斜面的支持力和静 摩擦力。
m F
M
FN=(M+m)g-Fsin370=120N Ff=Fcos370=40N
(完整版)整体法和隔离法专题(带答案)

n e i n g整体法和隔离法1、用轻质细线把两个质量未知的小球悬挂起来,如右图所示.今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大的恒力,最后达到平衡. 表示平衡状态的图可能是( A )2、如图<1>,在粗糙的水平面上放一三角形木块a ,若物体b 在a 的斜面上匀速下滑,则( A )A 、a 保持静止,而且没有相对于水平面运动的趋势;B 、a 保持静止,但有相对于水平面向右运动的趋势;C 、a 保持静止,但有相对于水平面向左运动的趋势;D 、因未给出所需数据,无法对a 是否运动或有无运动趋势作出判断;3、A 、B 、C 三物块质量分别为M 、m 和m 0,作图<2> 所示的联结. 绳子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计. 若B 随A 一起沿水平桌面作匀速运动,则可以断定( A )A 、物块A 与桌面之间有摩擦力,大小为m 0g ;B 、物块A 与B 之间有摩擦力,大小为m 0g ;C 、桌面对A ,B 对A ,都有摩擦力,两者方向相同,合力为m 0g ;D 、桌面对A ,B 对A ,都有摩擦力,两者方向相反,合力为m 0g ;4、质量为m 的物体放在质量为M 的物体上,它们静止在水平面上。
现用水平力F 拉物体M,它们仍静止不动。
如右图所示,这时m 与M 之间,M 与水平面间的摩擦力分别是( C ) A .F ,F B .F ,0 C .0,F D .0,05、如右图所示,物体a 、b 和c 叠放在水平桌面上,水平力F b =4N 、F c =10N 分别作用于物体b 、c 上,a 、b 和c 仍保持静止。
以f 1、f 2、f 3分别表示a 与b 、b 与c 、c 与桌面间的静摩擦力的大小。
则f 1= 0 ,f 2= 4N ,f 3= 6N 。
6、质量为m 的四块砖被夹在两竖夹板之间,处于静止状态,如右图所示,则砖2对砖1的摩擦力为 mg 。
高一物理整体法隔离法试题答案及解析

高一物理整体法隔离法试题答案及解析1. 如图所示,在粗糙水平面上放一质量为M 的斜面体,质量为m 的木块在竖直向上力F 作用下,沿斜面体匀速下滑,此过程中斜面体保持静止,则地面对斜面( )A .无摩擦力B .有水平向左的摩擦力C .支持力为(M+m )gD .支持力小于(M+m )g【答案】AD【解析】对物体M 和m 整体受力分析,受拉力F 、重力(M+m )g 、支持力F N ,根据共点力平衡条件竖直方向 F N +F-(M+m )g=0,解得:F N =(M+m )g-F <(M+m )g ;水平方向不受力,故没有摩擦力. 故选AD .【考点】整体法及隔离法。
2. 如图所示,两个等大的水平力F 分别作用在B 和C 上.A 、B 、C 都处于静止状态.各接触面与水平地面平行.A 、C 间的摩擦力大小为f 1,B 、C 间的摩擦力大小为f 2,C 与地面间的摩擦力大小为f 3,则( )A .f 1=0,f 2=0,f 3=0B .f 1=0,f 2=F ,f 3=0C .f 1=F ,f 2=0,f 3=0D .f 1=0,f 2=F ,f 3=F 【答案】B【解析】以ABC 整体为研究对象,分析整体在水平方向的受力易知,地面对C 的摩擦力为零,以A 为研究对象,A 处于平衡状态,故C 与A 之间无摩擦力,以B 为研究对象,易知C 与B 之间的摩擦力为F ,故选B 【考点】考查整体隔离法点评:本题难度较小,处理此类问题,研究对象的选择是灵活的,例如分析BC 间摩擦力时,可以以A 、C 整体为研究对象3. 如图水平向左的拉力F 作用在木块2上,三木块一起向左匀速运动,以下说法正确的是A .木块1受到了向左的摩擦力B .木块2受到了2对平衡力C .木块1、2间有2对作用力和反作用力D .木块2、3间有2对作用力和反作用力【答案】D【解析】三木块一起向左匀速运动,说明整体合外力为零。
将1物体隔离开,则水平方向静摩擦力为零,所以A错。
整体法与隔离法的应用(详解)

例1
A. F1
a
B. F2
C. (F1+ F2) / 2
F1
D. (F1- F2) / 2
A
B
F2
分析:
物体A和B加速度相同, 求它们之间的相互作用力, 采取先整体后隔离的方法, 先求出它们共同的加速度, 然后再选取A或B为研究对象, 求出它们之间的相互作用力.
选取A和B整体为研究对象, 共同加速度a为:
m
θ M
F
[解析]隔离m,由平行四边形定则可得: FN=mg/cosθ F合=mgtanθ 由牛顿第二定律可得:a= F合/m =gtanθ 对整体,由牛顿第二定律可得: F合 F=(M+m)a=(M+m)gtanθ [答案]BD F
FN θ
Hale Waihona Puke mF Mmg
θ
课程小结 (1)解答问题时,决不能把整体法和隔离法对立起来, 而应该把这两种方法结合起来,从具体问题的实际 情况出发,灵活选取研究对象,恰当选择使用隔离和 整体法. (2)在使用隔离法解题时,所选取的隔离对象可以使连接 体中的某一部分物体,也可以使连接体中的某一个物体(包 含两个或两个以上的单个物体),而这“某一部分”的选取, 也应根据问题的实际情况,灵活处理.
解:(1)由牛顿第二定律,
对整体可得:F=(M+m)a
F
m
M
F
隔离m可得:T=ma 联立解得:T=mF/(M+m)
T
(2)已知内力求外力。 先隔离分析计算加速度,然后 整体分析,计算外力。 例2 如图所示, A、B、C三物体
的质量分别为m1、m2、m3 , 带有 滑轮的 C 放在光滑的水平面上, 细绳质量及一切摩擦均不计, 为 使三物体无相对运动, 试求水平 推力F的大小?
第21讲 整体法和隔离法在平衡中的应用(解析版)

第21讲整体法和隔离法在平衡中的应用如图所示,质量为m的木块A放在质量为M的三角形斜劈上,现用大小均为F、方向相反的水平力分别推A和B,它们均静止不动,则(重力加速度取g)()A.A与B之间一定存在摩擦力B.B与地面之间可能存在摩擦力C.B对A的支持力可能小于mgD.地面对B的支持力为Mg【答案】C【解析】对A、B整体受力分析,如图所示,受到重力(M+m)g、支持力F N和已知的两个推力F,对于整体,由于两个推力刚好平衡,故整体与地面间没有摩擦力,且有F N=(M+m)g,故B、D错误;对A受力分析,A至少受重力mg、推力F、B对A的支持力F N′,当推力F沿斜面的分力大于重力沿斜面的分力时,摩擦力的方向沿斜面向下,当推力F沿斜面的分力小于重力沿斜面的分力时,摩擦力的方向沿斜面向上,当推力F沿斜面的分力等于重力沿斜面的分力时,摩擦力为零,A错误;在垂直斜面方向上,有F N′=mg cos θ+F sin θ(θ为斜劈倾角),故F N′可能小于mg,C正确。
一、整体法和隔离法在受力分析中的应用1.分析物体受力的方法(1)条件法:根据各性质力的产生条件进行判断.注意:①有质量的物体在地面附近一定受到重力的作用.②弹力的产生条件是相互接触且发生弹性形变.③摩擦力的产生条件是两物体相互接触、接触面粗糙、相互挤压、有相对运动或相对运动的趋势,以上几个条件缺一不可.(2)假设法:假设法是判断弹力和摩擦力有无的常用方法.(3)状态法:由物体所处的状态分析,若物体静止或做匀速直线运动,可根据平衡条件判断弹力、摩擦力存在与否.(4)相互作用法:若甲物体对乙物体有弹力或摩擦力的作用,则乙物体对甲物体一定有弹力或摩擦力的作用.2.整体法、隔离法的比较项目整体法隔离法概念将加速度相同的几个物体作为一个整体来分析的方法将研究对象与周围物体分隔开的方法选用原则研究系统外的物体对系统整体的作用力或系统整体的加速度研究系统内物体之间的相互作用力注意问题受力分析时不要再考虑系统内物体间的相互作用一般隔离受力较少的物体二、整体法和隔离法在平衡问题中的应用当系统处于平衡状态时,组成系统的每个物体都处于平衡状态,选取研究对象时要注意整体法和隔离法的结合.一般地,当求系统内部间的相互作用力时,用隔离法;求系统受到的外力时,用整体法,具体应用中,应将这两种方法结合起来灵活运用.例题1. 将重为4mg的均匀长方体物块切成相等的A、B两部分,切面与边面的夹角为45°,如图所示叠放并置于水平地面上,现用弹簧测力计竖直向上拉物块A的上端,弹簧测力计示数为mg,整个装置保持静止,则()A.地面与物块间可能存在静摩擦力B.物块对地面的压力大于3mgC.A对B的压力大小为mgD.A、B之间静摩擦力大小为22mg【答案】D【解析】对A、B整体受力分析,在水平方向上不受地面的摩擦力,否则不能平衡,在竖直方向上受力平衡,则有F N+F=4mg,解得F N=3mg,则物块对地面的压力等于3mg,故A、B 错误。
高中物理整体法、隔离法受力分析专题讲解

受力分析、物体的平衡1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。
隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。
当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。
2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。
整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a =0)时,命题要研究的是外力,而非内力时,选整体为研究对象。
(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。
(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。
3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。
考点二:共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件 在共点力作用下物体的平衡条件是合力为零,即0F =合。
3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。
(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。
(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。
(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。
应用整体法和隔离法的解题技巧—内力公式(解析版)

高中物理题型解题技巧之力学篇03内力公式一、必备知识1.连接体问题母模型如图1所示,光滑地面上质量分别为m 1、m 2的两物体通过轻绳连接,水平外力F 作用于m 2上,使两物体一起加速运动,此时轻上的拉力多大?整体由牛顿第二定律求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F二:应用技巧(1).物理场景:轻绳或轻杆或轻弹簧等相连加速度相同的连接体,如下情形求m 2、m 3间作用力,将m 1和m 2看作整体F 23=m 1+m 2m 1+m 2+m 3F整体求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g (sin θ+μcos θ)隔离求内力T -m 1g (sin θ-μcos θ)=m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g隔离求内力T -m 1g =m 1a得T =m 1m 1+m 2Fa =F 2-F 1m 1+m 2−μg隔离T -F 1-μm 1g =m 1a得T =m 1F 2+m 2F 1m 1+m 2(2)方法总结:(内力公式)如上图所示,一起加速运动的物体系统,若力作用于m 1上,则m 1和m 2间的相互作用力为F 12=m 不m 1+m 2F (其中m 不即为外力不作用的物体的作用)此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。
两物体的连接物为轻弹簧、轻杆时,此结论不变。
注意:若整体受到多个外力时,可先将多点个外力分别应用内力公式a .两外力相反时,绳中的拉力为T =m 2m 1+m 2F 1+m 1m 1+m 2F2b .两外力相同时绳中的拉力为T =m 2m 1+m 2F 1-m 1m 1+m 2F2三、实战应用(应用技巧解题,提供解析仅供参考)一、单选题1如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。
1.相互作用点点清专题之受力分析 整体法隔离法

1.相互作用点点清专题 受力分析 整体法隔离法一 知能掌握(一)接触力和非接触力 1.接触力--弹力(1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解.(2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向.2.接触力--摩擦力(1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力的增大有一个限度,具体值根据牛顿运动定律或平衡条件来求.(2)方向:沿接触面的切线方向,并且跟物体的相对运动或相对运动趋势的方向相反. 3.非接触力---电场力(1)大小:F =qE .若为匀强电场,电场力则为恒力;若为非匀强电场,电场力则与电荷所处的位置有关.点电荷间的库仑力F =kq 1q 2r 2. (2)方向:正电荷所受电场力方向与场强方向一致,负电荷所受电场力方向与场强方向相反. 4.非接触力---安培力(1)大小:F =BIL ,此式只适用于B ⊥I 的情况,且L 是导线的有效长度,当B ∥I 时F =0. (2)方向:用左手定则判断,安培力垂直于B 、I 决定的平面. 5.非接触力---洛伦兹力(1)大小:F =qvB ,此式只适用于B ⊥v 的情况.当B ∥v 时F =0.(2)方向:用左手定则判断,洛伦兹力垂直于B 、v 决定的平面,洛伦兹力不做功. (二)受力分析的方法 (1)隔离法和整体法将研究对象与周围物体分隔或将相对位置不变的物体系作为一个整体来分析。
在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析。
采用整体法进行受力分析时,要注意系统内各个物体的状态应该相同。
(2)假设法在判断某力是否存在时,可先对其作出存在或不存在的假设,然后再就该力存在与不存在对物体运动状态是否产生影响来判断该力是否存在,在判断弹力或摩擦力是否存在以及确定它们的方向时常用假设法. (3)状态法(力平衡和力加速)在难以确定物体的某些受力情况时,可先根据(或确定)物体的运动状态进行分析,再运用平衡条件或牛顿运动定律判定未知力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三 整体法和隔离法选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。
合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。
隔离法与整体法都是物理解题的基本方法。
隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。
整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。
隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。
这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。
对于连结体问题,通常用隔离法,但有时也可采用整体法。
如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。
对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。
一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D .【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么?【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。
现将P环向左移一小段距离,两环再A O BP Q次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小【解析】隔离法:设PQ 与OA 的夹角为α,对P 有:mg +Tsin α=N对Q 有:Tsin α=mg所以 N=2mg , T=mg/sin α 故N 不变,T 变大.答案为B整体法:选P 、Q 整体为研究对象,在竖直方向上受到的合外力为零,直接可得N=2mg ,再选P 或Q 中任一为研究对象,受力分析可求出T=mg/sin α【点评】为使解答简便,选取研究对象时,一般优先考虑整体,若不能解答,再隔离考虑.【例3】如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动?【解析】(1)设A 、B 恰好滑动,则B 对地也要恰好滑动,选A 、B 为研究对象,受力如图,由平衡条件得:F=f B +2T选A 为研究对象,由平衡条件有T=f A f A =0.1×10=1N f B =0.2×30=6N F=8N 。
(2)同理F=11N 。
【例4】将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少?【解析】以整体为研究对象,木块平衡得F=f 合又因为 m A =2m B =2m C 且动摩擦因数相同,所以 f B =F/4再以B 为研究对象,受力如图所示,因B 平衡,所以F 1=f B sin θ 即:F 1=Fsin θ/4【点评】本题也可以分别对A 、B 进行隔离研究,其解答过程相当繁杂。
【例5】如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为B f1A .4mg 、2mgB .2mg 、0C .2mg 、mgD .4mg 、mg【解析】设左、右木板对砖摩擦力为f1,第 3块砖对第2块砖摩擦为f2,则对四块砖作整体有:2f1=4mg ,∴ f1=2mg 。
对1、2块砖平衡有:f1+f2=2mg ,∴ f2=0,故B 正确。
【例6】如图所示,两个完全相同的重为G 的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。
问当F 至少多大时,两球将发生滑动?【解析】首先选用整体法,由平衡条件得F +2N=2G ①再隔离任一球,由平衡条件得Tsin(θ/2)=μN ② 2·Tcos(θ/2)=F ③①②③联立解之。
【例7】如图所示,重为8N 的球静止在与水平面成370角的光滑斜面上,并通过定滑轮与重4N 的物体A 相连,光滑挡板与水平而垂直,不计滑轮的摩擦,绳子的质量,求斜面和挡板所受的压力(sin370=0.6)。
【解析】分别隔离物体A 、球,并进行受力分析,如图所示:由平衡条件可得: T=4NTsin370+N 2cos370=8N 2sin370=N 1+Tcos370得 N 1=1N N 2=7N 。
【例8】如图所示,光滑的金属球B 放在纵截面为等边三角形的物体A 与坚直墙之间,恰好匀速下滑,已知物体A 的重力是B 重力的6倍,不计球跟斜面和墙之间的摩擦,问:物体A 与水平面之间的动摩擦因数μ是多少?【解析】首先以B 为研究对象,进行受力分析如图由平衡条件可得: N 2=m B gcot300 ①再以A 、B 为系统为研究对象.受力分析如图。
由平衡条件得:N 2=f , f=μ(m A +m B )g ②解得 μ=√3/7【例9】如图所示,两木块的质量分别为m1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为【分析】本题主要是胡克定律的应用,同时要求考生能形成正确的物理图景,合理选择研究对象,并能进行正确的受力分析。
求弹簧2原来的压缩量时,应把m1、m2看做一个整体,2的压缩量x1=(m1+m2)g/k2。
m1脱离弹簧后,把m2作为对象,2的压缩量x2=m2g/k2。
d=x1-x2=m1g/k2。
答案为C。
【例10】如图所示,有两本完全相同的书A、B,书重均为5N,若将两本书等分成若干份后,交叉地叠放在一起置于光滑桌面上,并将书A固定不动,用水平向右的力F 把书B匀速抽出。
观测得一组数据如下:根据以上数据,试求:(1)若将书分成32份,力 F应为多大?(2)该书的页数。
(3)若两本书任意两张纸之间的动摩擦因数μ相等,则μ为多少?【解析】(l)从表中可看出,将书分成 2,4,8,16,…是2倍数份时,拉力F将分别增加6N,12N,24N,…,增加恰为2的倍数,故将书分成32份时,增加拉力应为 48N,故力 F=46.5+48=94.5N;(2)逐页交叉时,需拉力F=190.5N,恰好是把书分成 64份时,增加拉力 48×2=96N,需拉力 F=94.5+96=190.5N可见,逐页交叉刚好分为64份,即该书有64页;(3)两张纸之间动摩擦因数为μ,则F=190.5=μG/64+μ2G/64+μ3G/64+……+μ128G/64=μG/64·(1+2+3+……+128)= 129μ×5∴μ=190.5/(129×5)=0.3。
【点评】请注意,将书分成份数不同,有所不同。
二、牛顿运动定律中的整体与隔离当系统内各物体具有相同的加速度时,应先把这个系统当作一个整体(即看成一个质点),分析受到的外力及运动情况,利用牛顿第二定律求出加速度.如若要求系统内各物体相互作用的内力,则把物体隔离,对某个物体单独进行受力分析,再利用牛顿第二定律对该物体列式求解.隔离物体时应对受力少的物体进行隔离比较方便。
【例11】如图所示的三个物体A、B、C,其质量分别为m1、m2、m3,带有滑轮的物体B放在光滑平面上,滑轮和所有接触面间的摩擦及绳子的质量均不计.为使三物体间无相对运动,则水平推力的大小应为F=__________。
【解析】以F1表示绕过滑轮的绳子的张力,为使三物体间无相对运动,则对于物体C 有:F 1=m 3g ,以a 表示物体A 在拉力F 1作用下的加速度,则有g m m m F a 1311==,由于三物体间无相对运动,则上述的a 也就是三物体作为一个整物体运动的加速度,故得F =(m 1+m 2+m 3)a =13m m (m 1+m 2+m 3)g【例12】如图,底座A 上装有一根直立竖杆,其总质量为M ,杆上套有质量为m 的环B ,它与杆有摩擦。
当环从底座以初速向上飞起时(底座保持静止),环的加速度为a ,求环在升起的过程中,底座对水平面的压力分别是多大?【解析】采用隔离法:选环为研究对象,则 f+mg=ma (1)选底座为研究对象,有F+f ’-Mg=0 (2)又f=f ’ (3)联立(1)(2)(3)解得:F=Mg-m(a-g)采用整体法:选A 、B 整体为研究对象,其受力如图,A 的加速度为a ,向下;B 的加速度为0.选向下为正方向,有:(M+m)g-F=ma解之:F=Mg-m(a-g)【例13】如图,质量M=10kg 的木楔ABC 静置于粗糙水平地面上,与地面动摩擦因数μ=0.02.在木楔的倾角θ为300的斜面上,有一质量为m=1.0kg 的物块由静止开始沿斜面下滑。
当滑行路程s=1.4m 时,其速度v=1.4m/s 。
在这个过程中木楔没有动。
求地面对木楔的摩擦力的大小和方向。
(重力加速度g=10m/s 2) 【解析】由匀加速运动的公式v 2=v o 2+2as ,得物块沿斜面下滑的加速度为7.04.124.1222=⨯==s v a m/s 2 (1)由于θsin g a <=5m/s 2,可知物块受到摩擦力作用。