化工原理、干燥实验资料

合集下载

化工原理实验—干燥

化工原理实验—干燥

流化干燥操作和干燥速度曲线的测定一、实验目的(1)掌握测定物料干燥速度曲线的工程意义;(2)熟悉流化干燥设备的流程、工作原理及特点;(3)了解影响干燥速度曲线的因素。

二、基本原理干燥过程是通过某种方式将热量传给含水物料,使含水物料中的水分蒸发分离的过程。

这一过程同时伴有传热和传质,比较复杂。

目前仍主要依赖于实验来解决干燥操作中的问题。

为了确定湿物料的干燥条件,例如已知干燥要求(即被干燥物料的最终湿含量),当干燥面积一定时,确定所需的干燥时间;或干燥时间一定时,确定所需的干燥面积,必须掌握湿物料的干燥特性即干燥速度曲线。

物料的含水量,可以用相对于物料总量的水分含量,即以湿物料为基准的水分含量、用符号w来表示。

但在干燥过程中,物料总量是随着水分的减少而不断减少,所以采用以绝对干物料量为基准的水分含量C表示更为方便。

在w和C之间有如下关系:C = w /( 1 - w )W = C /( 1 + C )1.干燥过程若将非常湿的物料置于一定的干燥条件下,例如在有一定湿度、温度和风速的大量热空气气流中,测定被干燥物料的湿含量和温度随时间的变化,可发现干燥过程分为如下三个阶段:(1)物料预热阶段;(2)恒速干燥阶段;(3)降速干燥阶段。

非常潮湿的物料因其表面有液态水存在,当它置于恒定条件的大量热空气气流中时,其温度逐渐升至热风的湿球温度,在达到湿球温度之前的阶段称为预热阶段。

在随后的第二阶段中,由于物料表面存有液态水,物料温度约等于空气的湿球温度,传入的热量只用于汽化物料表面水分。

此阶段中,物料的干基含水率C随时间线性地减少,因此其干燥速率不变,为恒速干燥阶段。

当物料表面已无液态水存在时,便进入第三阶段。

此时,传入的热量使湿物料的温度从湿球温度开始上升,物料温度的上升提高了其毛细孔中水份的汽化分压,但水份由物料内部扩散至表面后的蒸发慢于物料表面水份的蒸发,因此干燥速率很快降低,此为降速干燥阶段。

2.影响气流干燥过程的主要因素(1)气流条件 1) 气流的温度; 2) 气流的湿度;3) 气流的流速。

化工原理干燥实验

化工原理干燥实验

化工原理干燥实验化工原理中,干燥是一项重要的工艺过程,在化工生产中具有广泛的应用。

干燥是指将物料中的水分蒸发或者挥发出去的过程,以达到降低物料含水量的目的。

干燥实验是化工原理课程中的重要实践环节,通过干燥实验,可以了解不同干燥方法的原理和特点,掌握干燥过程中的关键参数及其影响规律,为工业生产中的干燥操作提供理论依据和实践指导。

一、实验目的。

本次干燥实验的目的是通过对不同物料进行干燥实验,掌握不同干燥方法的原理和特点,了解干燥过程中的关键参数及其影响规律,提高学生对化工原理的理论认识和实践操作能力。

二、实验原理。

干燥是通过热量传递,使物料中的水分蒸发或者挥发出去的过程。

常见的干燥方法包括自然风干、日晒干、空气干燥、真空干燥、喷雾干燥等。

不同的干燥方法适用于不同的物料和工艺要求,具有各自的特点和适用范围。

三、实验步骤。

1. 准备不同物料样品,如粉状物料、颗粒状物料、纤维状物料等。

2. 分别采用自然风干、日晒干、空气干燥、真空干燥、喷雾干燥等不同干燥方法进行实验,记录每种干燥方法的操作步骤和关键参数。

3. 观察并记录不同干燥方法下物料的干燥效果,包括干燥时间、干燥后的含水量、物料的外观和质地等。

4. 分析比较各种干燥方法的优缺点,总结不同干燥方法适用的物料范围和工艺要求。

四、实验数据记录与分析。

在实验中,我们记录了不同干燥方法下物料的干燥效果数据,并进行了分析比较。

通过实验数据的记录与分析,我们可以得出不同干燥方法的优缺点,了解不同干燥方法适用的物料范围和工艺要求,为工业生产中的干燥操作提供理论依据和实践指导。

五、实验结论。

通过本次干燥实验,我们掌握了不同干燥方法的原理和特点,了解了干燥过程中的关键参数及其影响规律。

同时,我们也对不同干燥方法的优缺点有了更深入的理解,可以根据物料的特性和工艺要求选择合适的干燥方法。

这对于化工生产中的干燥操作具有重要的指导意义。

六、实验注意事项。

1. 在进行干燥实验时,应严格按照操作规程进行,注意安全防护。

化工原理、干燥实验

化工原理、干燥实验

实验洞道干燥实验一、实验目的1、了解气流常压干燥设备的基本流程和工作原理;2、掌握物料干燥速率曲线的测定方法;3、了解操作条件改变对不同的干燥阶段所产生的影响。

二、实验原理干燥是最常见的有效除湿的方法之一,干燥速率受众多因素的影响,主要与物料及其含水性质、干燥介质的性质、流速和干燥介质与湿物料接触方式等因素有关,一般由实验测定。

三、实验装置图1 实验装置流程图1.中压风机;2.孔板流量计;3. 空气进口温度计;4.重量传感器;5.被干燥物料;6.加热器;7.干球温度计;8.湿球温度计;9.洞道干燥器;10.废气排出阀;11.废气循环阀;12.新鲜空气进气阀;13.干球温度显示控制仪表;14.湿球温度显示仪表;15.进口温度显示仪表;16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。

四、实验步骤(一)实验前的准备工作1. 将被干燥物料试样进行充分的浸泡。

2. 向湿球温度湿度计的附加蓄水池内,补充适量的水,使池内水面上升至适当位置。

3. 将被干燥物料的空支架安装在洞道内。

4. 调节新空气入口阀到全开的位置。

(二) 装置的实验操作方法1. 按下电源开关的绿色按键,在按风机开关按钮,开动风机。

2. 调节三个蝶阀到适当的位置,将空气流量调至所需读数。

3. 在温度显示控制仪表上,利用(<,>,︿)键调节实验所需温度值,sv窗口显示,此时pv窗口所显示的即为干燥器的干球温度值,按下加热开关,让电热器通电。

4. 干燥器的流量和干球温度恒定达5分钟之后,即可开始实验。

此时,读)。

取数字显示仪的读数作为试样支撑架的重量(GD5. 将被干燥物料试样从水盆内取出,控去浮挂在其表面上的水份(使用呢子物料时,最好用力挤去所含的水分,以免干燥时间过长。

将支架从干燥器内取出,再将支架插入试样内直至尽头)。

6. 将支架连同试样放入洞道内,并安插在其支撑杆上。

注意:不能用力过大,使传感器受损。

7. 立即按下秒表开始计时,并记录显示仪表的显示值。

大学化工原理实验九 干燥实验

大学化工原理实验九 干燥实验

五、实验步骤
用纱布包裹温度计感湿球,用水润湿纱布, 尾部置于小水瓶中,使湿球温度计的纱布 始终保持湿润状态。将其安装到干燥器上, 观察并记录干、湿球温度。
接通电源,启动风机,观察并记录干、湿 球温度。此时测定空气湿度为加热前湿空 气状态。
五、实验步骤
接通电加热器电源,调节调压器,加入空 气,温度控制在40~50℃,观察记录干、湿 球温度。此时测定的即为空气加热后的状 态。气湿度显然是不变的。
1. 空气的干、湿球温度及湿度测量
由方程得 Q A(t tw ) (9-1)
由传质速率方程得 W khA HW H (9-2)
又据 Q Wrw (9-3)
二、实验原理
联立(9-1),(9-2)和(9-3),得
tw
t
kH rw
(Hw
H)
实验表明,对空气-水蒸气系统,在空 气速度范围3.8~10.2m/s内,α/kH是一常数, 因此空气的湿度H仅是t和tw的函数。
和速率曲线。 测定实验条件下恒速干燥阶段的传质系数RH
和表面传热系数a
二、实验原理
不饱和空气作为干燥介质与湿物料接触, 湿物料表面的湿分分压高于干燥介质的湿 分分压,湿物料湿分向气相转移,实现了 湿分和物料的分离。干燥过程极限是物料 表面湿分分压降到平衡分压,使传热、传 质过程达到平衡。
二、实验原理
Ad
以物料含水量对干燥速率R作图,得干燥速率曲线
二、实验原理
3. 表面传热系数α和传质系数kH的确定 物料干燥速率 R=W/A[kg/(m.s)] 以湿度差为推动力表示为
R kH (Hw H )
以干、湿球温度差为推动力,则表示为
R rw (t tw )
三、实验装置

化工原理实验一-干燥实验

化工原理实验一-干燥实验

化⼯原理实验⼀-⼲燥实验化⼯原理实验⼀-⼲燥实验实验⼋⼲燥实验⼀、实验⽬的1.了解洞道式循环⼲燥器的基本流程、⼯作原理和操作技术。

2.掌握恒定条件下物料⼲燥速率曲线的测定⽅法。

3.测定湿物料的临界含⽔量X C,加深对其概念及影响因素的理解。

4.熟悉恒速阶段传质系数K H、物料与空⽓之间的对流传热系数α的测定⽅法。

⼆、实验内容1.在空⽓流量、温度不变的情况下,测定物料的⼲燥速率曲线和临界含⽔量,并了解其影响因素。

2.测定恒速阶段物料与空⽓之间的对流传热系数α和传质系数K H。

三、基本原理⼲燥操作是采⽤某种⽅式将热量传给湿物料,使湿物料中⽔分蒸发分离的操作。

⼲燥操作同时伴有传热和传质,⽽且涉及到湿分以⽓态或液态的形式⾃物料内部向表⾯传质的机理。

由于物料含⽔性质和物料形状上的差异,⽔分传递速率的⼤⼩差别很⼤。

概括起来说,影响传递速率的因素主要有:固体物料的种类、含⽔量、含⽔性质;固体物料层的厚度或颗粒的⼤⼩;热空⽓的温度、湿度和流速;热空⽓与固体物料间的相对运动⽅式。

⽬前尚⽆法利⽤理论⽅法来计算⼲燥速率(除了绝对不吸⽔物质外),因此研究⼲燥速率⼤多采⽤实验的⽅法。

⼲燥实验的⽬的是⽤来测定⼲燥曲线和⼲燥速率曲线。

为简化实验的影响因素,⼲燥实验是在恒定的⼲燥条件下进⾏的,即实验为间歇操作,采⽤⼤量空⽓⼲燥少量的物料,且空⽓进出⼲燥器时的状态如温度、湿度、⽓速以及空⽓与物料之间的流动⽅式均恒定不变。

本实验以热空⽓为加热介质,⽢蔗渣滤饼为被⼲燥物。

测定单位时间内湿物料的质量变化,实验进⾏到物料质量基本恒定为⽌。

物料的含⽔量常⽤相对与物料总量的⽔分含量,即以湿物料为基准的⽔分含量,⽤ω来表⽰。

但因⼲燥时物料总量在变化,所以采⽤以⼲基料为基准的含⽔量X 表⽰更为⽅便。

ω与X 的关系为:X =-ωω1 (8—1)式中: X —⼲基含⽔量 kg ⽔/kg 绝⼲料;ω—湿基含⽔量kg⽔/kg湿物料。

物料的绝⼲质量G C是指在指定温度下物料放在恒温⼲燥箱中⼲燥到恒重时的质量。

干燥化工原理实验报告

干燥化工原理实验报告

干燥化工原理实验报告干燥化工原理实验报告一、引言干燥是化工过程中常见的操作,它的目的是将含有水分的物质去除,提高产品的稳定性和质量。

干燥过程涉及到一系列的化学原理和工程技术,本实验旨在探究干燥化工原理,并通过实验验证理论的可行性和有效性。

二、实验目的1. 理解干燥的基本原理和工艺流程;2. 掌握干燥设备的操作方法和注意事项;3. 研究不同干燥方法对物质性质的影响。

三、实验原理干燥是通过将物质与干燥介质接触,使水分从物质中蒸发出来的过程。

常用的干燥方法包括自然干燥、太阳干燥、热风干燥、真空干燥等。

本实验选取热风干燥作为研究对象。

热风干燥是利用热风将物质表面的水分蒸发掉的过程。

干燥设备通常由热风发生器、物料输送系统和干燥室组成。

热风发生器产生高温的热风,通过物料输送系统将物质送入干燥室,热风与物质接触使水分蒸发,然后通过排湿系统将湿气排出。

四、实验步骤1. 准备实验所需的设备和试剂;2. 将待干燥的物质放入干燥室中;3. 打开热风发生器,控制温度和风速;4. 观察干燥过程中物质的变化,并记录温度和湿度数据;5. 干燥结束后,关闭设备,取出干燥后的样品。

五、实验结果与讨论在实验过程中,我们选取了不同初始含水率的物质进行干燥实验,并记录了干燥过程中的温度和湿度数据。

实验结果显示,随着干燥时间的增加,物质的含水率逐渐降低,直到达到一定的干燥程度。

通过对实验数据的分析,我们发现干燥速率与热风温度和风速有关。

当热风温度和风速增加时,物质表面的水分蒸发速度加快,干燥时间缩短。

同时,我们还发现不同物质的干燥速率存在差异,这与物质的性质有关。

六、实验结论通过本次实验,我们深入了解了干燥化工原理,掌握了热风干燥的基本操作方法和注意事项。

实验结果表明,热风干燥是一种有效的干燥方法,可以根据不同物质的性质和要求进行调整和优化。

然而,本实验仅仅是对干燥原理的初步探究,还有许多问题需要进一步研究和实践。

例如,如何提高干燥效率和降低能耗,如何解决干燥过程中可能出现的质量变化和损失等问题。

化工原理干燥实验报告

化工原理干燥实验报告

化工原理干燥实验报告化工原理干燥实验报告引言:干燥是化工过程中常见的操作,它是将物质中的水分或其他溶剂去除的过程。

在化工生产中,干燥技术广泛应用于原料处理、产品制造和储存等环节。

本实验旨在通过对不同干燥方法的比较研究,探讨干燥过程的原理及其影响因素。

一、实验目的本实验的主要目的是:1. 了解干燥的基本原理和常用方法;2. 掌握不同干燥方法的操作技巧;3. 分析干燥过程中的影响因素,并进行实验验证;4. 总结干燥过程中的注意事项和优化方法。

二、实验原理干燥是通过升高物体表面的温度,使其蒸发的水分达到饱和蒸汽压,从而实现水分的迁移和去除。

常用的干燥方法有自然风干、热风干燥、真空干燥等。

1. 自然风干自然风干是将湿物料暴露在自然环境中,利用自然风力和太阳辐射将水分蒸发。

这种方法简单易行,但速度较慢,适用于一些不急需干燥的物料。

2. 热风干燥热风干燥是通过加热空气,将热量传递给湿物料,使其水分蒸发。

热风干燥可以分为直接加热和间接加热两种方式。

直接加热是将热风直接接触物料,传热效率高,但易使物料变质。

间接加热是通过热交换器将热风间接传递给物料,避免了物料的变质问题。

3. 真空干燥真空干燥是将湿物料置于真空环境中,降低环境压力,使水分在低温下蒸发。

真空干燥适用于对物料质量要求较高的情况,但设备复杂且成本较高。

三、实验过程1. 实验准备准备不同湿度的物料样品,例如湿度分别为30%、50%、70%的物料样品。

2. 自然风干实验分别将不同湿度的物料样品放置在通风良好的环境中,观察并记录干燥时间和效果。

3. 热风干燥实验将不同湿度的物料样品放置在热风干燥设备中,设置适当的温度和时间,观察并记录干燥时间和效果。

4. 真空干燥实验将不同湿度的物料样品放置在真空干燥设备中,设置适当的真空度和时间,观察并记录干燥时间和效果。

四、实验结果与分析通过实验观察和记录,我们可以得到如下结果:1. 自然风干的干燥时间较长,效果一般;2. 热风干燥的干燥时间较短,效果较好;3. 真空干燥的干燥时间较长,但效果最佳。

化工原理 9沸腾干燥实验

化工原理 9沸腾干燥实验

实验九沸腾干燥实验一实验目的⒈熟悉单级流化床干燥设备的结构与操作。

⒉测定被干燥物料的床层压降与空塔气速的关系曲线。

⒊测定被干燥物料的含水量随干燥时间的变化曲线。

⒋测定干燥速度曲线、临界含水量、恒速干燥阶段的传质系数K H及降速干燥阶段的比例系数K X。

二实验原理气体通过颗粒床层的空塔气速小于颗粒的沉降速度时,颗粒床层为固定床。

此情况下床层压降随气速增大而增大。

气体空塔气速大于颗粒的沉降速度时,颗粒将悬浮于气流中并作上下运动,床层成为流化床,此时压降随空塔气速基本不变。

干燥速度曲线是干燥速度随物料的干基含水量变化的关系曲线。

干燥速度是物料单位面积单位时间除去的水分质量,用U表示,其单位为kg水分/(单位面积·单位时间)。

物料的含水量常用湿基含水量与干基含水量表示,分别用W与X表示,单位分别为kg水/kg湿物料与kg水/kg绝干物料。

三实验装置与流程本装置主要包括三部分:流化床干燥设备、调节仪表和控制系统。

下面分别加以说明:本装置的所有设备,除床身筒体一部分采用高温硬质玻璃外,其余均采用不锈钢制造,因此耐用、美观。

床身筒体部分由不锈钢段(内径100mm,高100mm)和高温硬质玻璃段(内径100mm,高400mm)组成,顶部有气固分离段(内径150mm,高250mm)。

不锈钢段筒体上设有物料取样器、放净口、温度计接口等,分别用于取样、放净和测温。

床身顶部气固分离段设有加料口、测压口,分别用于物料加料和测压。

空气加热装置由加热器和控制器组成,加热器为不锈钢盘管式加热器,加热管外壁设有1mm铠装热电偶,它与人工智能仪表、固态继电器等,实现空气介质的温度控制。

同时,计算机可实现对仪表的控制。

空气加热装置底部设有空气介质的干球温度和湿球温度接口,以测定空气的干、湿球温度。

本装置的旋风分离器,可除去干燥物料的粉尘。

沸腾干燥实验装置流程如图8―1所示。

图8―1 沸腾干燥实验装置流程图1、空气加热器2、放净口3、不锈钢筒体4、取样口5、玻璃筒体6、气固分离段7、加料口8、旋风分离器9、孔板流量计|1o、风机11、湿球温度水筒.每套装置设有7块仪表:加热器温控、床身温度、干球温度、湿球温度、空气流量、空气压力、床层压降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验洞道干燥实验
一、实验目的
1、了解气流常压干燥设备的基本流程和工作原理;
2、掌握物料干燥速率曲线的测定方法;
3、了解操作条件改变对不同的干燥阶段所产生的影响。

二、实验原理
干燥是最常见的有效除湿的方法之一,干燥速率受众多因素的影响,主要与物料及其含水性质、干燥介质的性质、流速和干燥介质与湿物料接触方式等因素有关,一般由实验测定。

三、实验装置
图1 实验装置流程图
1.中压风机;
2.孔板流量计;
3. 空气进口温度计;
4.重量传感器;
5.被干燥物料;
6.加热器;
7.干球温度计;8.湿球温度计;9.洞道干燥器;10.废气排出阀;11.废气循环阀;
12.新鲜空气进气阀;13.干球温度显示控制仪表;14.湿球温度显示仪表;
15.进口温度显示仪表;16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。

四、实验步骤
(一)实验前的准备工作
1. 将被干燥物料试样进行充分的浸泡。

2. 向湿球温度湿度计的附加蓄水池内,补充适量的水,使池内水面上升至
适当位置。

3. 将被干燥物料的空支架安装在洞道内。

4. 调节新空气入口阀到全开的位置。

(二) 装置的实验操作方法
1. 按下电源开关的绿色按键,在按风机开关按钮,开动风机。

2. 调节三个蝶阀到适当的位置,将空气流量调至所需读数。

3. 在温度显示控制仪表上,利用(<,>,︿)键调节实验所需温度值,sv窗
口显示,此时pv窗口所显示的即为干燥器的干球温度值,按下加热开关,让电热器通电。

4. 干燥器的流量和干球温度恒定达5分钟之后,即可开始实验。

此时,读
)。

取数字显示仪的读数作为试样支撑架的重量(G
D
5. 将被干燥物料试样从水盆内取出,控去浮挂在其表面上的水份(使用呢子
物料时,最好用力挤去所含的水分,以免干燥时间过长。

将支架从干燥
器内取出,再将支架插入试样内直至尽头)。

6. 将支架连同试样放入洞道内,并安插在其支撑杆上。

注意:不能用力过大,
使传感器受损。

7. 立即按下秒表开始计时,并记录显示仪表的显示值。

然后每隔一段时间
记录数据一次( 记录总重量和时间 ),直至减少同样时间重量的减少是恒速阶段所用时间的8倍时,即可结束实验。

注意: 最后若发现时间已过去很长,但减少的重量还达不到所要求的克数,则可立即记录数据。

注意:放入物料后不要在点击〈读取操作条件〉,那样会使实验程序进入错误状态,无法正常数据的采集和处理。

五、实验数据记录与处理
表一:洞道干燥实验原始数据表
六、 实验注意事项
1. 在安装试样时,一定要小心保护传感器,以免用力过大使传感器造成机械性损伤。

2. 在设定温度给定值时,不要改动其它仪表参数,以免影响控温效果。

3. 为了设备的安全,开车时,一定要先开风机后开空气预热器的电热器。

停车时则反之。

4.突然断电后,在次开启实验时,检查风机开关、加热器开关是否已被按下,如果被按下,请再按一下使其弹起,不再处于导通状态。

附录:
(一) 调试实验的结果
1. 调试实验的数据见表2, 表中符号的意义如下: S ─干燥面积, [m 2
] G C ─绝干物料量, [g] R ─空气流量计的读数, [kPa] T o ─干燥器进口空气温度, [℃] t ─试样放置处的干球温度, [℃] t w ─试样放置处的湿球温度, [℃] G D ─试样支撑架的重量, [g]
G T ─被干燥物料和支撑架的"总重量", [g] G ─被干燥物料的重量, [g] T ─累计的干燥时间, [S]
X ─物料的干基含水量, [kg 水/kg 绝干物料]
X AV ─两次记录之间的被干燥物料的平均含水量, [kg 水/kg 绝干物料] U ─干燥速率, [kg 水/(s ·m 2
)] 2. 数据的计算举例
以表2所示的实验的第i 和i +1组数据为例 (1) 公式: 被干燥物料的重量 G:
D i T i G G G -=, ,[g] (1) D 1i T 1i G G G -=++, ,[g] (2)
被干燥物料的干基含水量 X:
c c
i i G G G X -=
, [kg 水/kg 绝干物料] (3) c
c
1i 1i G G G X -=
++ ,[kg 水/kg 绝干物料] (4)
两次记录之间的平均含水量 X AV
2
X X X 1
i i AV ++=
,[kg 水/kg 绝干物料] (5) 两次记录之间的平均干燥速率
I
1i i 1i 3C 3C T T X X S 10G dT dX S 10G U --⨯
⨯-=⨯⨯-=++-- ,[kg 水/(s ·m 2
)] (6) 干燥曲线X ─T 曲线,用X 、T 数据进行标绘,见图 2。

干燥速率曲线U ─X 曲线,用U 、X AV 数据进行标绘,见图 3 。

恒速阶段空气至物料表面的对流传热系数
tw
t 10U t S Q 3tw C -⨯γ=∆⨯=α ,[W/(m 2
℃)] (7)
流量计处体积流量∨t [m 3
/h]用其回归式算出。

由流量公式[1]计算 t
t P
A c V ρ∆⨯⨯
⨯=200
其中,c 0-孔板流量计孔流系数,c 0=0.65 A 0-孔的面积 m 2
d 0-孔板孔径 , d 0 =0.040 m
t V - 空气入口温度(及流量计处温度)下的体积流量,m 3
/h ;
P ∆-孔板两端压差,Kpa
t ρ-空气入口温度(及流量计处温度)下密度,Kg/m 3。

干燥试样放置处的空气流量
t 273t 273V V ++⨯
=试 ,[m 3
/h] (9)
干燥试样放置处的空气流速
A
3600V
u ⨯=
,[m /s] (10)
(2) 数据:以表1实验数据为例进行计算(见表2) i =1 i +1=2 G T ,i =185.6[g] G T ,i +1=184.1[g] G D =98.3[g]
由式(1)(2)得: G i =87.3[g], G i +1=85.8[g] G C =20.9[g]
由式(3)(4)得: X i =3.1770 [kg 水/kg 绝干物料]
X i +1=3.1053 [kg 水/kg 绝干物料]
由式(5)得: X AV =3.1411 [kg 水/kg 绝干物料] S =2×0.139×0.078=0.021684[m 2
] T i =0 [s], T i +1=180 [s]
由式(6)得: U =3.611×10-4
[kg 水/(s ·m 2
)]
七、思考题
预习报告思考题:
1. 在60~70℃的空气流中干燥,经过相当长的时间,能否得到绝干物料?为什
么?通常要获得绝干物料采用什么方法?
2. 干球温度和湿球温度有何区别?随着湿度的增加,干球温度与湿球温度差
值如何变化?它们之间关系如何表达?
3. 开车时,新空气入口阀、风机、空气加热器开启顺序如何?停车时,新空气
入口阀、风机、空气加热器关闭顺序如何?
实验报告思考题:
1. 本次实验中,阀门的变化与流量之间的关系如何?本次实验如何实现对废
气进行循环利用?
2. 测定干燥速率曲线有何意义?它对设计干燥器及指导生产有些什么帮助?
3. 临界含水量和平衡含水量如何定义?本次实验中临界含水量约为多少?平
衡含水量值为多少?。

相关文档
最新文档