汇编延时小程序
单片机延时1小时的程序

单片机延时1小时的程序摘要:1.单片机延时程序背景及应用2.单片机延时1 小时的程序实现方法3.程序代码及注释4.程序测试与优化5.总结正文:1.单片机延时程序背景及应用单片机(Microcontroller Unit,简称MCU)是一种集成度较高的微处理器,广泛应用于嵌入式系统中。
在实际应用中,单片机往往需要执行一些耗时较长的操作,例如数据传输、通讯协议处理等。
为了保证系统的稳定运行,需要对这些操作进行延时处理。
本文将介绍一种实现单片机延时1 小时的程序。
2.单片机延时1 小时的程序实现方法实现单片机延时1 小时的程序,通常可以采用以下两种方法:方法一:使用定时器/计数器定时器/计数器是单片机内部的一种功能模块,可以实现对系统运行时间的测量和控制。
通过设置定时器/计数器的初值和计数周期,可以实现不同时间的延时。
方法二:利用软件循环在程序中通过无限循环实现延时,每循环一次,延时时间减少相应的执行时间。
这种方法的延时时间取决于循环次数,需要占用较多的CPU 资源。
3.程序代码及注释以下是一个使用定时器/计数器实现单片机延时1小时的程序代码示例(以STC89C52为例):```c#include <reg52.h>#include <intrins.h>sbit LED = P1 ^ 0; // 定义LED 端口void delay(unsigned int ms) // 延时函数原型声明{unsigned int i, j;for (i = ms; i > 0; i--)for (j = 114; j > 0; j--);}void main(){TMOD = 0x01; // 定时器方式1TH0 = (65536 - 45872) / 256;TL0 = (65536 - 45872) % 256;EA = 1; // 开总中断ET0 = 1; // 开定时器0 中断TR0 = 1; // 启动定时器0while (1){P1 = _crol_(P1, 1); // LED 左右移动delay(50000); // 延时50ms}}void timer0() interrupt 1 // 定时器0 中断服务函数{TH0 = (65536 - 45872) / 256;TL0 = (65536 - 45872) % 256;}```4.程序测试与优化将编写好的程序烧写到单片机中,通过观察LED 的状态变化,验证延时效果。
单片机延时500ms程序汇编

单片机延时500ms程序汇编一、概述在单片机编程中,延时操作是非常常见且重要的一部分。
延时可以使程序在执行过程中暂停一段时间,以确保输入输出设备能够正常工作,或者是为了保护其他设备。
本文将介绍如何使用汇编语言编写单片机延时500ms的程序。
二、延时原理在单片机中,延时操作通常通过循环来实现。
每个循环需要一定的时间,通过控制循环次数和循环体内的指令数量,可以实现不同长度的延时。
在汇编语言中,可以使用计数器来控制循环次数,从而实现精确的延时操作。
三、汇编语言编写延时程序接下来,我们将使用汇编语言编写延时500ms的程序。
1. 设置计数器初值在程序的开头我们需要设置计数器的初值,这个初值需要根据单片机的工作频率和所需的延时时间来计算。
假设单片机的工作频率为1MHz,那么在循环500次后,就能够达到500ms的延时。
我们需要将计数器的初值设为500。
2. 循环计数接下来,我们进入一个循环,在循环中进行计数操作。
每次循环结束时,都需要检查计数器的值,当计数器减至0时,表示已经达到了500ms的延时时间,可以退出循环。
3. 优化程序为了提高程序的执行效率,可以对计数器进行优化。
例如可以通过嵌套循环的方式,减少循环的次数,从而提高延时的精度和稳定性。
四、程序示例下面是一个简单的示例程序,演示了如何使用汇编语言编写延时500ms的程序。
```org 0x00mov r2, #500 ; 设置计数器初值为500delay_loop:djnz r2, delay_loop ; 进行计数ret ; 延时结束,退出程序```五、结语通过以上的示例程序,我们可以看到如何使用汇编语言编写单片机延时500ms的程序。
当然,实际的延时程序可能会更加复杂,需要根据具体的单片机型号和工作频率进行调整,但是思路是相似的。
在实际的编程中,需要根据具体的需求和硬件环境来进行调整和优化,以实现更加稳定和精确的延时操作。
希望本文对单片机延时程序的编写有所帮助,也欢迎大家在评论区提出宝贵意见和建议。
C51单片机的几种常用延时程序设计2024

引言概述:C51单片机是一种广泛应用于嵌入式系统中的微控制器,它具有高度集成化、易于编程和灵活性强等特点。
在C51单片机的软件开发过程中,延时程序设计是非常重要的一部分。
本文将介绍C51单片机中几种常用的延时程序设计方法,包括循环延时、定时器延时、外部中断延时等。
这些方法不仅可以满足在实际应用中对延时的需求,而且可以提高程序的稳定性和可靠性。
正文内容:一、循环延时1. 使用循环控制语句实现延时功能,例如使用for循环、while循环等。
2. 根据需要设置延时的时间,通过循环次数来控制延时的时长。
3. 循环延时的精度受到指令执行时间的影响,可能存在一定的误差。
4. 循环延时的优点是简单易用,适用于较短的延时时间。
5. 注意在循环延时时要考虑其他任务的处理,避免长时间的等待造成程序卡死或响应延迟。
二、定时器延时1. 使用C51单片机内置的定时器模块来实现延时。
2. 配置定时器的工作模式,如工作方式、定时器精度等。
3. 设置定时器的初值和重装值,控制定时器中断的触发时间。
4. 在定时器中断服务函数中进行延时计数和延时结束标志的设置。
5. 定时器延时的优点是精确可控,适用于需要较高精度的延时要求。
三、外部中断延时1. 在C51单片机上配置一个外部中断引脚。
2. 设置外部中断中断触发条件,如上升沿触发、下降沿触发等。
3. 在外部中断中断服务函数中进行延时计数和延时结束标志的设置。
4. 外部中断延时的优点是能够快速响应外部信号,适用于实时性要求较高的场景。
5. 注意在外部中断延时时要处理好外部中断的抖动问题,确保延时的准确性。
四、内部计时器延时1. 使用C51单片机内部的计时器模块来实现延时。
2. 配置计时器的工作模式,如工作方式、计时器精度等。
3. 设置计时器的初值和重装值,使计时器按照一定的频率进行计数。
4. 根据计时器的计数值进行延时的判断和计数。
5. 内部计时器延时的优点是能够利用单片机内部的硬件资源,提高延时的准确性和稳定性。
51单片机延时程序

void delay1s(void)
{
unsigned char h,i,j,k;
for(h=5;h>0;h--)
for(i=4;i>0;i--)
for(j=116;j>0;j--)
for(k=214;k>0;k--);
//
void delay(uint t)
{
for (;t>0;t--);
}
1ms延时子程序(12MHZ)
void delay1ms(uint p)//12mhz
{ uchar i,j;
for(i=0;i<p;i++)
{
for(j=0;j<124;j++)
{;}
在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。
}
void Delay10us( ) //12mhz
{
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
}
/*****************11us延时函数*************************/
汇编延时程序讲解

延时程序在单片机编程中使用非常广泛,但一些读者在学习中不知道延时程序怎么编程,不知道机器周期和指令周期的区别,不知道延时程序指令的用法, ,本文就此问题从延时程序的基本概念、机器周期和指令周期的区别和联系、相关指令的用法等用图解法的形式详尽的回答读者我们知道程序设计是单片机开发最重要的工作,而程序在执行过程中常常需要完成延时的功能。
例如在交通灯的控制程序中,需要控制红灯亮的时间持续30秒,就可以通过延时程序来完成。
延时程序是如何实现的呢?下面让我们先来了解一些相关的概念。
一、机器周期和指令周期1.机器周期是指单片机完成一个基本操作所花费的时间,一般使用微秒来计量单片机的运行速度,51 单片机的一个机器周期包括12 个时钟振荡周期,也就是说如果51 单片机采用12MHz 晶振,那么执行一个机器周期就只需要1μs;如果采用的是6MHz 的晶振,那么执行一个机器周期就需要2 μs。
2 .指令周期是指单片机执行一条指令所需要的时间,一般利用单片机的机器周期来计量指令周期。
在51 单片机里有单周期指令(执行这条指令只需一个机器周期),双周期指令(执行这条指令只需要两个机器周期),四周期指令(执行这条指令需要四个机器周期)。
除了乘、除两条指令是四周期指令,其余均为单周期或双周期指令。
也就是说,如果51 单片机采用的是12MHz 晶振,那么它执行一条指令一般只需1~2 微秒的时间;如果采用的是6MH 晶振,执行一条指令一般就需2~4 微秒的时间。
现在的单片机有很多种型号,但在每个型号的单片机器件手册中都会详细说明执行各种指令所需的机器周期,了解以上概念后,那么可以依据单片机器件手册中的指令执行周期和单片机所用晶振频率来完成需要精确延时时间的延时程序。
二、延时指令在单片机编程里面并没有真正的延时指令,从上面的概念中我们知道单片机每执行一条指令都需要一定的时间,所以要达到延时的效果,只须让单片机不断地执行没有具体实际意义的指令,从而达到了延时的效果。
单片机延时500ms程序汇编 -回复

单片机延时500ms程序汇编-回复如何利用汇编语言编写一个单片机延时500ms的程序首先,我们需要明确一个目标:利用汇编语言编写一个单片机延时500ms 的程序。
在这个程序中,我们将使用一个经典的延时算法来实现。
在单片机编程中,延时是一个非常常见和重要的操作。
通过延时操作,我们可以在单片机程序中创建指定时间间隔的暂停。
这对于控制外部设备或者程序运行过程中的等待时间非常有用。
接下来,我们将按照以下步骤一步一步地回答如何利用汇编语言编写一个单片机延时500ms的程序。
步骤1:选择合适的单片机和汇编语言首先,我们需要选择一个合适的单片机来进行编程。
不同的单片机可能使用不同的指令集和编程方式。
在这里,我们将选择一种常见的单片机,例如8051系列。
其次,我们需要选择一种适合我们的单片机的汇编语言。
例如,8051单片机通常使用Assembly language(汇编语言)编程。
这种语言能够直接与单片机的底层硬件进行交互,从而实现我们的延时操作。
步骤2:了解定时器和计数器的工作原理在单片机编程中,延时操作通常与定时器和计数器模块一起工作。
这两个模块能够提供精确的计时和计数功能,可以帮助我们实现所需的时间延迟。
在了解定时器和计数器的工作原理之后,我们可以开始编写延时程序。
步骤3:编写汇编程序首先,我们需要初始化定时器和计数器模块。
这可以通过设置相应的寄存器来完成。
我们需要选择一个合适的时钟源,并设置合适的预分频和计数器的初始值。
这样,我们就可以开始计时了。
接下来,我们需要编写一个循环来实现延时操作。
这个循环将会不断地检查计数器的值,直到达到所需的延时时间为止。
在每次循环中,我们需要使用条件语句来判断计数器是否达到目标时间。
如果达到了目标时间,我们就可以退出循环并继续执行程序的其他部分。
此外,我们还需要考虑溢出情况。
当计数器的值超出了其最大范围时,它将重新从零开始计数。
我们可以利用这一点来实现更长的延时。
例如,在每次检查之前,我们可以记录计数器的溢出次数。
延时程序设计

延时程序设计什么是延时程序设计延时程序设计是指在编程中设置延时来控制程序执行的一种技术。
在很多情况下,我们需要程序在执行过程中等待一段时间,例如在控制器中控制LED灯闪烁、在游戏中实现动画效果等。
延时程序设计允许我们控制程序的执行时间,以实现这些要求。
延时程序设计的原理和方法延时程序设计的原理基于计算机的时钟频率和指令周期。
计算机中的时钟负责产生一个稳定的脉冲信号,通过计算时钟信号的周期和指令的执行时间,可以实现程序的延时。
延时程序设计的方法有多种,包括软件延时和硬件延时。
软件延时软件延时是通过循环执行一段空指令或者非常简单的指令来实现的。
通过控制循环次数和指令的执行时间,可以实现不同长度的延时。
cvoid delay(int ms) {int i, j;for (i = 0; i < ms; i++) {for (j = 0; j < 3000; j++) {// 空指令,用于增加循环时间}}}上述代码是使用C语言实现的软件延时函数。
通过控制循环次数和空指令的执行时间,可以实现延时ms毫秒。
硬件延时硬件延时是通过使用定时器和中断来实现的。
定时器可以产生一个固定时间间隔的中断信号,通过设置定时器的参数,可以实现不同长度的延时。
硬件延时的实现需要了解硬件平台的特性和使用相应的寄存器来控制定时器。
延时程序设计的应用延时程序设计在很多领域都有广泛的应用。
在嵌入式系统中,延时程序设计常用于控制设备的操作和时序控制。
例如,控制器中的时序控制、传感器数据采集、的动作控制等。
在游戏开发中,延时程序设计可以用于实现动画效果、特殊效果和游戏逻辑控制等。
在网络通信中,延时程序设计可以用于控制数据包的传输和处理。
延时程序设计的注意事项在进行延时程序设计时,需要注意以下几点:1. 延时时间的选择:根据具体需求选择合适的延时时间,避免过长或过短的延时对系统性能造成影响。
2. 不要过度依赖延时程序:在一些实时系统中,过多的延时程序可能导致系统响应不及时,需要谨慎使用。
KeilC51精确延时程序执行时间

Keil C51精确延时程序执行时间引言单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。
单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。
有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差围在十几微秒以[2],否则,芯片无法工作。
用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。
因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。
实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。
1使用定时器/计数器实现精确延时单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。
第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。
本程序中假设使用频率为12 MHz的晶振。
最长的延时时间可达216=65 536 μs。
若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。
在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。
使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。
但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。
这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。
2软件延时与时间计算在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汇编延时程序算法详解
电子设计资料2010-05-07 15:28:10 阅读26 评论0 字号:大中小订阅
汇编延时程序算法详解
摘要计算机反复执行一段程序以达到延时的目的称为软件延时,单片机应用程序中经常需要短时间延时,有时要求很高的精度,网上或书中虽然有现成的公式可以套用,但在部分算法讲解中发现有错误之处,而且延时的具体算法讲得并不清楚,相当一部分人对此仍很模糊,授人鱼,不如授之以渔,本文将以12MHZ晶振为例,详细讲解MCS-51单片机中汇编程序延时的精
确算法。
关键词51单片机汇编延时
算法
指令周期、机器周期与时钟周期
指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周
期也不同。
时钟周期:也称为振荡周期,一个
时钟周期=晶振的倒数。
MCS-51单片机的一个机器周期=6个状态周期=12个时钟周期。
MCS-51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1μs。
程序分析
例1 50ms 延时子程序:
DEL:MOV R7,
#200 ①
DEL1:MOV R6,
#125 ②
DEL2:DJNZ R6,
DEL2 ③
DJNZ R7,DEL1 ④
RET ⑤精确延时时间为:1+(1*200)
+(2*125*200)+(2*200)+2
=(2*125+3)
*200+3 ⑥
=50603μs
≈50ms
由⑥整理出公式(只限上述写法)延时时间=(2*内循环+3)*外循环
+3 ⑦
详解:DEL这个子程序共有五条指令,现在分别就每一条指令被执行的次数和所耗时间进行分析。
第一句:MOV R7,#200 在整个子程序中只被执行一次,且为单周期
指令,所以耗时1μs
第二句:MOV R6,#125 从②看到④只要R7-1不为0,就会返回到这句,共执行了R7次,共耗时200μs 第三句:DJNZ R6,DEL2 只要R6-1不为0,就反复执行此句(内循环R6次),又受外循环R7控制,所以共执行R6*R7次,因是双周期指令,所以耗时2*R6*R7μs。
例2 1秒延时子程序:
DEL:MOV R7,#10 ①
DEL1:MOV R6,
#200 ②
DEL2:MOV R5,
#248 ③
DJNZ R5,$ ④
DJNZ R6,DEL2 ⑤
DJNZ R7,DEL1 ⑥RET ⑦对每条指令进行计算得出精确延时
时间为:
1+(1*10)+(1*200*10)
+(2*248*200*10)+(2*200*10)+(2*10)+2
=[(2*248+3)
*200+3]*10+3 ⑧
=998033μs≈1s
由⑧整理得:延时时间=[(2*第一层循环+3)*第二层循环+3]*第三层循环+3 ⑨此式适用三层循环以内的程序,也验证了例1中式⑦(第三层
循环相当于1)的成立。
注意,要实现较长时间的延时,一般采用多重循环,有时会在程式序里加入NOP指令,这时公式⑨不再适用,
下面举例分析。
例3仍以1秒延时为例
DEL:MOV R7,#10 1指
令周期1
DEL1:MOV R6,#0FFH 1
指令周期10
DEL2:MOV R5,#80H 1
指令周期255*10=2550
KONG:NOP 1指令周期128*255*10=326400
DJNZ R5,$ 2指令周期2*128*255*10=652800
DJNZ R6,DEL2 2指令
周期2*255*10=5110
DJNZ R7,DEL1 2指令
周期2*10=20
RET 2
延时时间
=1+10+2550+326400+65280 0+5110+20+2 =986893μs约为
1s
整理得:延时时间=[(3*第一层循环+3)*第二层循环+3]*第三层循
环+3 ⑩
结论:论文针对初学者的困惑,对汇编程序的延时算法进行了分步讲解,并就几种不同写法分别总结出相应的计算公式,只要仔细阅读例1中的详解,并用例2、例3来加深理解,一定会掌握各种类型程序的算法并加以运用。