汇编延时程序讲解

合集下载

单片机延时500ms程序汇编

单片机延时500ms程序汇编

单片机延时500ms程序汇编一、概述在单片机编程中,延时操作是非常常见且重要的一部分。

延时可以使程序在执行过程中暂停一段时间,以确保输入输出设备能够正常工作,或者是为了保护其他设备。

本文将介绍如何使用汇编语言编写单片机延时500ms的程序。

二、延时原理在单片机中,延时操作通常通过循环来实现。

每个循环需要一定的时间,通过控制循环次数和循环体内的指令数量,可以实现不同长度的延时。

在汇编语言中,可以使用计数器来控制循环次数,从而实现精确的延时操作。

三、汇编语言编写延时程序接下来,我们将使用汇编语言编写延时500ms的程序。

1. 设置计数器初值在程序的开头我们需要设置计数器的初值,这个初值需要根据单片机的工作频率和所需的延时时间来计算。

假设单片机的工作频率为1MHz,那么在循环500次后,就能够达到500ms的延时。

我们需要将计数器的初值设为500。

2. 循环计数接下来,我们进入一个循环,在循环中进行计数操作。

每次循环结束时,都需要检查计数器的值,当计数器减至0时,表示已经达到了500ms的延时时间,可以退出循环。

3. 优化程序为了提高程序的执行效率,可以对计数器进行优化。

例如可以通过嵌套循环的方式,减少循环的次数,从而提高延时的精度和稳定性。

四、程序示例下面是一个简单的示例程序,演示了如何使用汇编语言编写延时500ms的程序。

```org 0x00mov r2, #500 ; 设置计数器初值为500delay_loop:djnz r2, delay_loop ; 进行计数ret ; 延时结束,退出程序```五、结语通过以上的示例程序,我们可以看到如何使用汇编语言编写单片机延时500ms的程序。

当然,实际的延时程序可能会更加复杂,需要根据具体的单片机型号和工作频率进行调整,但是思路是相似的。

在实际的编程中,需要根据具体的需求和硬件环境来进行调整和优化,以实现更加稳定和精确的延时操作。

希望本文对单片机延时程序的编写有所帮助,也欢迎大家在评论区提出宝贵意见和建议。

汇编延时程序讲解

汇编延时程序讲解

延时程序在单片机编程中使用非常广泛,但一些读者在学习中不知道延时程序怎么编程,不知道机器周期和指令周期的区别,不知道延时程序指令的用法, ,本文就此问题从延时程序的基本概念、机器周期和指令周期的区别和联系、相关指令的用法等用图解法的形式详尽的回答读者我们知道程序设计是单片机开发最重要的工作,而程序在执行过程中常常需要完成延时的功能。

例如在交通灯的控制程序中,需要控制红灯亮的时间持续30秒,就可以通过延时程序来完成。

延时程序是如何实现的呢?下面让我们先来了解一些相关的概念。

一、机器周期和指令周期1.机器周期是指单片机完成一个基本操作所花费的时间,一般使用微秒来计量单片机的运行速度,51 单片机的一个机器周期包括12 个时钟振荡周期,也就是说如果51 单片机采用12MHz 晶振,那么执行一个机器周期就只需要1μs;如果采用的是6MHz 的晶振,那么执行一个机器周期就需要2 μs。

2 .指令周期是指单片机执行一条指令所需要的时间,一般利用单片机的机器周期来计量指令周期。

在51 单片机里有单周期指令(执行这条指令只需一个机器周期),双周期指令(执行这条指令只需要两个机器周期),四周期指令(执行这条指令需要四个机器周期)。

除了乘、除两条指令是四周期指令,其余均为单周期或双周期指令。

也就是说,如果51 单片机采用的是12MHz 晶振,那么它执行一条指令一般只需1~2 微秒的时间;如果采用的是6MH 晶振,执行一条指令一般就需2~4 微秒的时间。

现在的单片机有很多种型号,但在每个型号的单片机器件手册中都会详细说明执行各种指令所需的机器周期,了解以上概念后,那么可以依据单片机器件手册中的指令执行周期和单片机所用晶振频率来完成需要精确延时时间的延时程序。

二、延时指令在单片机编程里面并没有真正的延时指令,从上面的概念中我们知道单片机每执行一条指令都需要一定的时间,所以要达到延时的效果,只须让单片机不断地执行没有具体实际意义的指令,从而达到了延时的效果。

汇编延时程序算法详解

汇编延时程序算法详解

汇编延时程序算法详解摘要计算机反复执行一段程序以达到延时的目的称为软件延时,单片机应用程序中经常需要短时间延时,有时要求很高的精度,网上或书中虽然有现成的公式可以套用,但在部分算法讲解中发现有错误之处,而且延时的具体算法讲得并不清楚,相当一部分人对此仍很模糊,授人鱼,不如授之以渔,本文将以12MHZ晶振为例,详细讲解MCS-51单片机中汇编程序延时的精确算法。

关键词 51单片机汇编延时算法指令周期、机器周期与时钟周期指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。

时钟周期:也称为振荡周期,一个时钟周期=晶振的倒数。

MCS-51单片机的一个机器周期=6个状态周期=12个时钟周期。

MCS-51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1µs。

程序分析例1 50ms 延时子程序:DEL:MOV R7,#200 ①DEL1:MOV R6,#125 ②DEL2:DJNZ R6,DEL2 ③DJNZ R7,DEL1 ④RET ⑤精确延时时间为:1+(1*200)+(2*125*200)+(2*200)+2=(2*125+3)*200+3 ⑥=50603µs≈50ms由⑥整理出公式(只限上述写法)延时时间=(2*内循环+3)*外循环+3 ⑦详解:DEL这个子程序共有五条指令,现在分别就每一条指令被执行的次数和所耗时间进行分析。

第一句:MOV R7,#200 在整个子程序中只被执行一次,且为单周期指令,所以耗时1µs第二句:MOV R6,#125 从②看到④只要R7-1不为0,就会返回到这句,共执行了R7次,共耗时200µs 第三句:DJNZ R6,DEL2 只要R6-1不为0,就反复执行此句(内循环R6次),又受外循环R7控制,所以共执行R6*R7次,因是双周期指令,所以耗时2*R6*R7µs。

C及汇编延时程序讲解

C及汇编延时程序讲解

有个好帖,从精度考虑,它得研究结果是:void delay2(unsigned char i){while(--i);}为最佳方法。

分析:假设外挂12M(之后都是在这基础上讨论)我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay2(0):延时518us 518-2*256=6delay2(1):延时7us(原帖写“5us”是错的,^_^)delay2(10):延时25us 25-20=5delay2(20):延时45us 45-40=5delay2(100):延时205us 205-200=5delay2(200):延时405us 405-400=5见上可得可调度为2us,而最大误差为6us。

精度是很高了!但这个程序的最大延时是为518us 显然不能满足实际需要,因为很多时候需要延迟比较长的时间。

那么,接下来讨论将t分配为两个字节,即uint型的时候,会出现什么情况。

void delay8(uint t){while(--t);}我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay8(0):延时524551us 524551-8*65536=263delay8(1):延时15usdelay8(10):延时85us 85-80=5delay8(100):延时806us 806-800=6delay8(1000):延时8009us 8009-8000=9delay8(10000):延时80045us 80045-8000=45delay8(65535):延时524542us 524542-524280=262如果把这个程序的可调度看为8us,那么最大误差为263us,但这个延时程序还是不能满足要求的,因为延时最大为524.551ms。

那么用ulong t呢?一定很恐怖,不用看编译后的汇编代码了。

那么如何得到比较小的可调度,可调范围大,并占用比较少得RAM呢?请看下面的程序:/*--------------------------------------------------------------------程序名称:50us 延时注意事项:基于1MIPS,AT89系列对应12M晶振,W77、W78系列对应3M晶振例子提示:调用delay_50us(20),得到1ms延时全局变量:无返回:无--------------------------------------------------------------------*/void delay_50us(uint t){uchar j;for(;t>0;t--)for(j=19;j>0;j--);}我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay_50us(1):延时63us 63-50=13delay_50us(10):延时513us 503-500=13delay_50us(100):延时5013us 5013-5000=13delay_50us(1000):延时50022us 50022-50000=22赫赫,延时50ms,误差仅仅22us,作为C语言已经是可以接受了。

mcs-51单片机中汇编程序延时的精确算法。

mcs-51单片机中汇编程序延时的精确算法。

MCS-51单片机中汇编程序延时的精确算法一、引言MCS-51单片机是一种常用的微控制器,其汇编程序编写对于工程师来说是极为重要的。

在MCS-51单片机中,延时是一种常见的需求,通过延时可以控制程序的执行速度和时间间隔。

而对于汇编程序中的延时算法,精确度的要求往往较高,特别是在一些实时系统中。

本文将针对MCS-51单片机中汇编程序延时的精确算法展开论述。

二、延时的需求在MCS-51单片机中,实现一定时间的延时是非常常见的需求。

在控制LED灯的闪烁过程中,需要一定的时间间隔来控制LED的亮灭频率;在读取传感器数据的过程中,需要一定的时间延时以确保传感器数据的准确性。

精确和可控的延时算法对于MCS-51单片机的应用来说是至关重要的。

三、常见的延时算法在MCS-51单片机的汇编程序中,常见的延时算法包括循环延时、定时器延时和脉冲宽度调制(PWM)延时等。

这些延时算法各有优缺点,需要根据具体的应用场景选择合适的算法。

1. 循环延时循环延时是一种简单而粗糙的延时算法,其原理是通过空转循环来消耗一定的CPU周期来实现延时。

这种延时算法的缺点是精度较差,受到CPU主频和编译器优化等因素的影响较大,不适合对延时精度有较高要求的场景。

2. 定时器延时定时器延时是一种利用MCS-51单片机内部定时器来实现延时的算法。

通过设置定时器的初值和计数方式,可以实现一定范围内的精确延时。

定时器延时的优点是精度高,不受CPU主频影响,适用于对延时精度要求较高的场景。

3. 脉冲宽度调制(PWM)延时脉冲宽度调制(PWM)延时是一种通过调节脉冲信号的宽度来实现延时的算法。

这种延时算法在一些特定的应用场景中具有较高的灵活性和精度。

例如在直流电机的速度调节过程中常常会采用PWM延时算法来实现精确的速度控制。

四、精确延时算法针对MCS-51单片机中汇编程序延时的精确算法,我们可以结合定时器延时和脉冲宽度调制(PWM)延时的优点,设计一种精确度较高的延时算法。

C及汇编延时程序讲解

C及汇编延时程序讲解

有个好帖,从精度考虑,它得研究结果是:void delay2(unsigned char i){while(--i);}为最佳方法。

分析:假设外挂12M(之后都是在这基础上讨论)我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay2(0):延时518us 518-2*256=6delay2(1):延时7us(原帖写“5us”是错的,^_^)delay2(10):延时25us 25-20=5delay2(20):延时45us 45-40=5delay2(100):延时205us 205-200=5delay2(200):延时405us 405-400=5见上可得可调度为2us,而最大误差为6us。

精度是很高了!但这个程序的最大延时是为518us 显然不能满足实际需要,因为很多时候需要延迟比较长的时间。

那么,接下来讨论将t分配为两个字节,即uint型的时候,会出现什么情况。

void delay8(uint t){while(--t);}我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay8(0):延时524551us 524551-8*65536=263delay8(1):延时15usdelay8(10):延时85us 85-80=5delay8(100):延时806us 806-800=6delay8(1000):延时8009us 8009-8000=9delay8(10000):延时80045us 80045-8000=45delay8(65535):延时524542us 524542-524280=262如果把这个程序的可调度看为8us,那么最大误差为263us,但这个延时程序还是不能满足要求的,因为延时最大为524.551ms。

那么用ulong t呢?一定很恐怖,不用看编译后的汇编代码了。

那么如何得到比较小的可调度,可调范围大,并占用比较少得RAM呢?请看下面的程序:/*--------------------------------------------------------------------程序名称:50us 延时注意事项:基于1MIPS,AT89系列对应12M晶振,W77、W78系列对应3M晶振例子提示:调用delay_50us(20),得到1ms延时全局变量:无返回:无--------------------------------------------------------------------*/void delay_50us(uint t){uchar j;for(;t>0;t--)for(j=19;j>0;j--);}我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay_50us(1):延时63us 63-50=13delay_50us(10):延时513us 503-500=13delay_50us(100):延时5013us 5013-5000=13delay_50us(1000):延时50022us 50022-50000=22赫赫,延时50ms,误差仅仅22us,作为C语言已经是可以接受了。

用汇编语言编写1ms延时程序

用汇编语言编写1ms延时程序

用汇编语言编写1ms延时程序实验题目:设计延时时间1ms的程序实验目的:通过该延时时间程序的实验设计,了解运行程序时的我们可以通过该程序进行程序的延时操作,以便达到我们的操作目的。

实验设备:计算机一台。

实验程序:参考附录A实验内容:题目分析:题目是让计算机做一些无用的操作,来拖延时间。

可以根据一条指令执行时间需要几个时钟周期,即几个微妙,来编程延时程序,也就可以利用循环程序结构。

由查表可得,我们可以用PUSHF和POPF指令来进行编程。

而延时的时间主要取决于循环体及循环次数。

而PUSHF和POPF指令分别为10和8个时钟节拍,LOOP BX指令为3.4个时钟节拍,即此循环体需要用10+8+3.4=21.4拍,而每个时钟节拍是根据此系统的晶振频率而定的。

假设系统用的是8Mhz的晶振,则每个时钟节拍需要0.125μs,因此我们可以根据下列公式算出循环次数:换算成十六进制数为176H。

下图为程序流程图:六、实验总结:此程序中内循环是1ms时间,而在外循环中的两条控制指令DEC和JNZ所对应的时钟节拍分别为2个和4个,一共只需0.75μs,与1ms比较极短,所以我们在外循环里忽略不计了,外循环的循环初值为1000次,对应的十六进制为3E8H。

有时候我们需要计算机为我们“空”一点时间来进行空操作,即什么也不用做,我们可以通过上述的延时时间子程序来达到目的。

附录A延时1ms的程序如下:START: MOV CX,176H ;初始化,设定循环次数CX=376LP1:PUSHF ;循环体POPFLOOP LP1 ; CX CX-1,若CX0转LP1HLT ;暂停延时1s的程序如下:MOV BX,3E8H ; BX 1000LP2:MOV CX,176HLP1: PUSHFPOPF 延时1ms程序段LOOP LP1DEC BXDEC BX ; BX BX-1JNZ LP2 ;ZF=0时,转至LP2,即BX0时转HLT ;暂停参考文献郑学坚,周斌编著.微型计算机原理及应用(第三版).清华大学出版社.2001。

单片机汇编语言设计软件延时程序

单片机汇编语言设计软件延时程序

单片机汇编语言设计软件延时程序【摘要】在单片机控制系统中,常用到软件延时程序,其原理是利用CPU 执行指令消耗时间来实现的。

本文以单片机I/O口控制LED灯闪烁为例,介绍汇编语言设计软件延时程序的方法,同时讲解延时时间的估算方法。

【关键词】单片机;汇编语言;软件延时程序延时程序是单片机中一个很重要的部分,通常有两种方法实现:一是,定时器定时实现延时;二是,软件延时程序。

本文要介绍的是软件延时程序。

这种方法是通过CPU执行指令消耗时间来实现延时,其内容虽然简单,应用却极其广泛,比如跑马灯,多位数码管的动态显示,键盘扫描等等都需要用到软件延时。

本文介绍要介绍单片机里用汇编语言设计软件延时程序及其延时时间的估算方法,这也是循环结构的一个典型程序。

1 指令周期、机器周期和时钟周期软件延时程序是通过CPU执行指令消耗时间来实现的,首先要了解单片机CPU在执行一条指令时所需要的时间,即指令周期。

指令周期是以机器周期为单位,MCS51单片机通常把指令分为单周期指令、双周期指令和四周期指令三种;而机器周期是指CPU完成某一个规定操作所需要的时间,它是由12个时钟周期组成;时钟周期又叫振荡周期,是由单片机内部振荡电路产生的,是时钟频率的倒数。

以时钟频率12MHz(后面的均以这个频率来计算)为例,计算如下:1)时钟周期Tosc=1/时钟频率=1/12M=1/12us2)机器周期T=12个时钟周期=12Tosc=1us3)指令周期=(1~4)个机器周期=(1~4)T=(1~4)us软件延时程序常用的指令如下所示,计算其指令周期。

2 软件延时程序以及时间计算方法从指令周期的概念得知,单片机CPU执行一条指令花(1~4)us,若想得到一定时间t的延时,则需要执行指令次数n=t/指令周期,我们可采用循环结构来实现。

2.1 短暂延时程序——单循环设计在循环入口设置循环次数n0,执行减1条件转移指令n0次来实现短暂延时程序,程序如下所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

延时程序在单片机编程中使用非常广泛,但一些读者在学习中不知道延时程序怎么编程,不知道机器周期和指令周期的区别,不知道延时程序指令的用法, ,本文就此问题从延时程序的基本概念、机器周期和指令周期的区别和联系、相关指令的用法等用图解法的形式详尽的回答读者我们知道程序设计是单片机开发最重要的工作,而程序在执行过程中常常需要完成延时的功能。

例如在交通灯的控制程序中,需要控制红灯亮的时间持续30秒,就可以通过延时程序来完成。

延时程序是如何实现的呢?下面让我们先来了解一些相关的概念。

一、机器周期和指令周期1.机器周期是指单片机完成一个基本操作所花费的时间,一般使用微秒来计量单片机的运行速度,51 单片机的一个机器周期包括12 个时钟振荡周期,也就是说如果51 单片机采用12MHz 晶振,那么执行一个机器周期就只需要1μs;如果采用的是6MHz 的晶振,那么执行一个机器周期就需要2 μs。

2 .指令周期是指单片机执行一条指令所需要的时间,一般利用单片机的机器周期来计量指令周期。

在51 单片机里有单周期指令(执行这条指令只需一个机器周期),双周期指令(执行这条指令只需要两个机器周期),四周期指令(执行这条指令需要四个机器周期)。

除了乘、除两条指令是四周期指令,其余均为单周期或双周期指令。

也就是说,如果51 单片机采用的是12MHz 晶振,那么它执行一条指令一般只需1~2 微秒的时间;如果采用的是6MH 晶振,执行一条指令一般就需2~4 微秒的时间。

现在的单片机有很多种型号,但在每个型号的单片机器件手册中都会详细说明执行各种指令所需的机器周期,了解以上概念后,那么可以依据单片机器件手册中的指令执行周期和单片机所用晶振频率来完成需要精确延时时间的延时程序。

二、延时指令在单片机编程里面并没有真正的延时指令,从上面的概念中我们知道单片机每执行一条指令都需要一定的时间,所以要达到延时的效果,只须让单片机不断地执行没有具体实际意义的指令,从而达到了延时的效果。

1.数据传送指令 MOV数据传送指令功能是将数据从一个地方复制、拷贝到另一个地方。

如:MOV R7,#80H ;将数据80H 送到寄存器R7,这时寄存器R7 里面存放着80H,就单这条指令而言并没有任何实际意义,而执行该指令则需要一个机器周期。

2.空操作指令 NOP空操作指令功能只是让单片机执行没有意义的操作,消耗一个机器周期。

3.循环转移指令 DJNZ循环转移指令功能是将第一个数进行减1 并判断是否为0,不为0 则转移到指定地点;为0 则往下执行。

如:DJNZ R7,KK ;将寄存器R7 的内容减1 并判断寄存器R7 里的内容减完1 后是否为0,如果不为0 则转移到地址标号为KK 的地方;如果为0 则执行下一条指令。

这条指令需要2 个机器周期。

利用以上三条指令的组合就可以比较精确地编写出所需要的延时程序。

三、1 秒延时子程序、流程图及时间计算(以单片机晶振为12MHz 为例,1 个机器周期需要1μs)了解了以上的内容,现在让我们来看看程序总共所需时间:1+10+2560+330240+660480+5120+20+2=998433 μs≈1S在这里运行这段程序共需998433 μs,还差1567μs 才达到1S 的,所以想要达到完美的1S 延时,需要在返回指令RET 前再添加一些指令让它把1567μs 的延时完成。

有兴趣的读者可以自己试着添加完成。

最后补充一点,编写程序时一般将延时程序编写成独立的子程序,而所谓子程序也就是一个实现某个功能的小模块。

这样在主程序中就可以方便地反复调用编写好的延时子程序。

小提示:循环转移指令(DJNZ )除了可以给定地址标号让其跳转外,还可以将地址标号改成$,这样程序就跳回本指令执行。

例如:DJNZ R7,$ ;R7 内容减1 不为0,则再次执行本指令;为0 则往下执行,当R7 的值改为10时,则执行完该条程序所需的时间为2*10=20 μs。

51单片机汇编延时程序算法详解将以12MHZ晶振为例,详细讲解MCS-51单片机中汇编程序延时的精确算法。

指令周期、机器周期与时钟周期指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。

时钟周期:也称为振荡周期,一个时钟周期=晶振的倒数。

MCS-51单片机的一个机器周期=6个状态周期=12个时钟周期。

MCS-51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1μs。

程序分析例1 50ms 延时子程序:DEL:MOV R7,#200 ①DEL1:MOV R6,#125 ②DEL2:DJNZ R6,DEL2 ③DJNZ R7,DEL1 ④RET ⑤精确延时时间为:1+(1*200)+(2*125*200)+(2*200)+2=(2*125+3)*200+3 ⑥=50603μs≈50ms由⑥整理出公式(只限上述写法)延时时间=(2*内循环+3)*外循环+3 ⑦详解:DEL这个子程序共有五条指令,现在分别就每一条指令被执行的次数和所耗时间进行分析。

第一句:MOV R7,#200 在整个子程序中只被执行一次,且为单周期指令,所以耗时1μs第二句:MOV R6,#125 从②看到④只要R7-1不为0,就会返回到这句,共执行了R7次,共耗时200μs第三句:DJNZ R6,DEL2 只要R6-1不为0,就反复执行此句(内循环R6次),又受外循环R7控制,所以共执行R6*R7次,因是双周期指令,所以耗时2*R6*R7μs。

例2 1秒延时子程序:DEL:MOV R7,#10 ①DEL1:MOV R6,#200 ②DEL2:MOV R5,#248 ③DJNZ R5,$ ④DJNZ R6,DEL2 ⑤DJNZ R7,DEL1 ⑥RET ⑦对每条指令进行计算得出精确延时时间为:1+(1*10)+(1*200*10)+(2*248*200*10)+(2*200*10)+(2*10)+2=[(2*248+3)*200+3]*10+3 ⑧=998033μs≈1s由⑧整理得:延时时间=[(2*第一层循环+3)*第二层循环+3]*第三层循环+3 ⑨此式适用三层循环以内的程序,也验证了例1中式⑦(第三层循环相当于1)的成立。

注意,要实现较长时间的延时,一般采用多重循环,有时会在程式序里加入NOP指令,这时公式⑨不再适用,下面举例分析。

例3仍以1秒延时为例DEL:MOV R7,#10 1指令周期1DEL1:MOV R6,#0FFH 1指令周期10DEL2:MOV R5,#80H 1指令周期255*10=2550KONG:NOP 1指令周期128*255*10=326400DJNZ R5,$ 2指令周期2*128*255*10=652800DJNZ R6,DEL2 2指令周期2*255*10=5110DJNZ R7,DEL1 2指令周期2*10=20RET 2延时时间=1+10+2550+326400+652800+5110+20+2 =986893μs约为1s整理得:延时时间=[(3*第一层循环+3)*第二层循环+3]*第三层循环+3 ⑩结论:针对初学者的困惑,对汇编程序的延时算法进行了分步讲解,并就几种不同写法分别总结出相应的计算公式,只要仔细阅读例1中的详解,并用例2、例3来加深理解,一定会掌握各种类型程序的算法并加以运用。

单片机延时子程序1)延时为:20ms 晶振12M1+(1+2*248+2)*4+1+1+1=20000US=20MS用汇编..优点就是精确...缺点就是算有点复杂.DELAY20MS:MOV R7,#4D1:MOV R6,#248DJNZ R6,$DJNZ R7,D1NOPNOPRET2)一些通过计算51汇编指令得出的软延时子程序;**************************************************************** *;延时10uS;**************************************************************** *time10us: mov r5,#05h ;11usdjnz r5,$ret;**************************************************************** *;延时50uS;**************************************************************** *time50us: mov r5,#19h ;51us djnz r5,$ret;**************************************************************** *;延时100uS;**************************************************************** *time100us: mov r5,#31h ;99.6us djnz r5,$ret;**************************************************************** *;延时200uS;**************************************************************** *time200us: mov r5,#64h ;201usdjnz r5,$ret;**************************************************************** *;延时250uS;**************************************************************** *time250us: mov r5,#7ch ;249.6us djnz r5,$ret;**************************************************************** *;延时350uS;**************************************************************** *time350us: mov r5,#0afh ;351us time350us_1: djnz r5,time350us_1ret;**************************************************************** *;延时500uS;**************************************************************** *time500us: mov r5,#0fah ;501us time500us_1: djnz r5,time500us_1ret;**************************************************************** *;延时1mS;**************************************************************** *time1ms: mov r5,#0fah ;1001us time1ms_1: nopnopdjnz r5,time1ms_1ret;**************************************************************** *;延时2.5mS;**************************************************************** *time2_5ms: mov r5,#05h ;2.496mstime2_5ms_1: mov r6,#0f8h ;497usdjnz r6,$djnz r5,time2_5ms_1ret;**************************************************************** *;延时10mS;**************************************************************** *time10ms: mov r5,#14h ;10.262mstime10ms_1: mov r6,#0ffh ;511usdjnz r6,$djnz r5,time10ms_1ret;**************************************************************** *;延时50mS;**************************************************************** *time50ms: mov r5,#63h ;49.996mstime50ms_1: mov r6,#0fbh ;503usdjnz r6,$djnz r5,time50ms_1ret;**************************************************************** *;延时100mS;**************************************************************** *time100ms: mov r5,#0c3h ;100.036mstime100ms_1: mov r6,#0ffh ;511usdjnz r6,$djnz r5,time100ms_1ret;**************************************************************** *;延时200mS;**************************************************************** *time200ms: mov r5,#02h ;250.351mstime200ms_1: mov r6,#0f4h ;125.173mstime200ms_2: mov r7,#0ffh ;511usdjnz r7,$djnz r6,time200ms_2djnz r5,time200ms_1ret;**************************************************************** *;延时500mS;**************************************************************** *time500ms: mov r5,#04h ;500.701mstime500ms_1: mov r6,#0f4h ;125.173mstime500ms_2: mov r7,#0ffh ;511usdjnz r7,$djnz r6,time500ms_2djnz r5,time500ms_1ret;**************************************************************** *;延时1S;**************************************************************** *time1s: mov r5,#08h ;1001.401mstime1s_1: mov r6,#0f4h ;125.173mstime1s_2: mov r7,#0ffh ;511usdjnz r7,$djnz r6,time1s_2djnz r5,time1s_1ret12M晶振机器周期为1USNOP为单周期指令DJNZ为双周期指令.3);;晶振12MHZ,延时1秒DELAY:MOV 72H,#100LOOP3:MOV 71H,#100LOOP1:MOV 70H,#47LOOP0:DJNZ 70H,LOOP0NOPDJNZ 71H,LOOP1MOV 70H,#46LOOP2:DJNZ 70H,LOOP2NOPDJNZ 72H,LOOP3MOV 70H,#48LOOP4:DJNZ 70H,LOOP44);延时1分钟子程序,F=6MHz;程序已测过,延时时间60,000,000.0uSdelay60s:mov r3,#228mov r2,#253mov r1,#219loop1: djnz r1,$djnz r2,loop1djnz r3,loop1nopret5)计算机反复执行一段程序以达到延时的目的称为软件延时,单片机程序中经常需要短时间的延时,但是相当一部分人对延时程序很模糊,对延时程序的算法不够了解,在这里我以12MHz晶振和两个经典延时子程序为例,详细分析单片机汇编延时程序。

相关文档
最新文档