电磁感应切割问题

合集下载

高二物理电磁感应中切割类问题试题答案及解析

高二物理电磁感应中切割类问题试题答案及解析

高二物理电磁感应中切割类问题试题答案及解析1.(8分)如图所示,匀强磁场的磁感应强度B=0.1T,水平放置的框架宽度L=0.4m,框架电阻不计。

金属棒电阻R=0.8Ω,定值电阻R1=2Ω, R2=3Ω,当金属棒ab在拉力F的作用下以v=5m/s的速度向左匀速运动时,(1)金属棒ab两端的电压(2)电阻R1的热功率【答案】(1)0.12V;(2)0.0072W;【解析】(1)感应电动势E=BLv=0.2V电路中总电阻R=流过金属棒的电流0.1AU=E-Ir=0.12V (5分)(2)R1的热功率P=0.0072W (3分)【考点】闭合电路欧姆定律、电功率2.(15分)如图所示,一正方形线圈从某一高度自由下落,恰好匀速进入其下方的匀强磁场区域.已知正方形线圈质量为m,边长为L,电阻为R,匀强磁场的磁感应强度为B,高度为2L,求:(1)线圈进入磁场时回路产生的感应电流I1的大小和方向;(2)线圈离开磁场过程中通过横截面的电荷量q;(3)线圈下边缘刚离开磁场时线圈的速度v的大小.【答案】(1)逆时针(2)(3)【解析】(1)线圈进入磁场时匀速,有(2分)且(1分)所以(1分)方向:逆时针(1分)(2)在线圈离开磁场的过程中:(2分)又(2分)所以:(1分)(3)线圈刚进入磁场时:(1分)而:(1分)所以,线圈刚进入磁场时的速度 (1分)从线圈完全进入磁场到线圈下边缘刚离开磁场的过程中,线圈做匀加速运动 所以: (1分) 所以:(1分)【考点】本题考查电磁感应3. (11分)如下图所示,把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,一长度为2a ,电阻等于R ,粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触.当金属棒以恒定速度v 向右移动经过环心O 时,求:(1)棒上电流的大小和方向及棒两端的电压U MN ; (2)在圆环和金属棒上消耗的总热功率. 【答案】(1)(2)【解析】(1)导体棒运动产生电流,它相当于电源,内阻为R ,电动势为:E =Blv =2Bav ①(2分)画出等效电路图如图所示,根据右手定则,金属棒中电流从N 流向M ,所以M 相当于电源的正极,N 相当于电源的负极.外电路总电阻为②(1分)根据闭合电路欧姆定律,棒上电流大小为:③(2分棒两端电压是路端电压④(1分) 将数据代入④式解得:⑤(1分)(2)圆环和金属棒上的总热功率为: P =EI ⑥(3分) 由①⑥式解得:⑦(1分)【考点】 考查了电磁感应切割类问题综合应用4. 如图所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场.若第一次用0.2 s 时间拉出,外力做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.6 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则W 1 W 2, q 1 q 2 。

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

电磁感应中杠切割磁感线问题分类解析

电磁感应中杠切割磁感线问题分类解析

电磁感应中杠切割磁感线问题分类解析电磁感应问题是电磁学中较难的一部分,如何突破,如何分析,是文章的重点。

本文从切割入手,分别介绍了单杠与双杠切割问题,比较系统的解决了电磁与力学问题的综合问题。

标签:切割,电磁感应,磁感线电磁感应中切割磁感线问题是一种常见而又非常典型的题型,笔者结合多年教学经验,对其中三种常见题型进行了归纳。

一、單杠切割磁感线电磁感应中,“导体棒”切割磁感线问题是高考常见命题,解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

1、导体棒匀速运动。

导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1.如图所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3п的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.Oп/m 的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用下以速度v=4.Om/s向左做匀速运动时,试求:(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图所示。

在闭合回路中,金属棒cd部分相当于电源,内阻,电动势。

(1)根据欧姆定律,R中的电流强度为方向从N经R到Q。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为。

电磁感应定律应用之线框切割类问题

电磁感应定律应用之线框切割类问题

电磁感应定律应用之线框切割类问题TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-考点线框切割类问题1.线框的两种运动状态(1)平衡状态——线框处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.电磁感应中的动力学问题分析思路(1)电路分析:线框处在磁场中切割部分相当于电源,感应电动势相当于电源的电动势,感应电流I =Blv R. (2)受力分析:处在磁场中的各边都受到安培力及其他力,但是根据对称性,在与速度平行方向的两个边所受的安培力相互抵消。

安培力F 安=BIl =B 2l 2v R,根据牛顿第二定律列动力学方程:F 合=ma .(3)注意点:①线框在进出磁场时,切割边会发生变化,要注意区分;②线框在运动过程中,要注意切割的有效长度变化。

3. 电磁感应过程中产生的焦耳热不同的求解思路(1)焦耳定律:Q =I 2Rt ;(2)功能关系:Q =W 克服安培力(3)能量转化:Q =ΔE 其他能的减少量4. 电磁感应中流经电源电荷量问题的求解:(1)若为恒定电流,则可以直接用公式q =It ;(2)若为变化电流,则依据=N E t q I t t t N R R R ∆Φ∆Φ∆=∆=∆∆=总总总1. 如图所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( A )>Q 2,q 1=q 2>Q 2,q 1>q 2 =Q 2,q 1=q 2 =Q 2,q 1>q 22. 一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域继续下落,如图所示,则( C )A. 若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动B. 若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动C. 若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动D. 若线圈进入磁场过程是减速运动,则离开磁场过程是加速运动3. (多选)在平行于水平地面的有界匀强磁场上方有三个单匝线圈A 、B 、C ,从静止开始同时释放,磁感线始终与线圈平面垂直,三个线圈都是由相同的金属材料制成的正方形,A 线圈有一个小缺口,B 和C 都闭合,但B 的横截面积比C 的大,如下图所示,下列关于它们落地时间的判断,正确的是( BD )A .A 、B 、C 同时落地B .A 最早落地C .B 在C 之后落地D .B 和C 在A 之后同时落地 4. 如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,在磁场中运动时产生的热量分别为Q 1、Q 2.不计空气阻力,则( D )A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2 5. 如下图所示,在绝缘光滑水平面上,有一个边长为L 的单匝正方形线框abcd ,在外力的作用下以恒定的速率v 向右运动进入磁感应强度为B 的有界匀强磁场区域.线框被全部拉入磁场的过程中线框平面保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界.已知线框的四个边的电阻值相等,均为R .求:(1)在ab 边刚进入磁场区域时,线框内的电流大小;(2)在ab 边刚进入磁场区域时,ab 边两端的电压;(3)在线框被拉入磁场的整个过程中,线框中电流产生的热量. 【答案】(1)4BLv R (2)34Blv (3) 224B L vR6. 如图甲所示,空间存在一宽度为2L 的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L 的正方形金属线框,其质量m =1 kg 、电阻R =4 Ω,在水平向左的外力F 作用下,以初速度v 0=4 m/s 匀减速进入磁场,线框平面与磁场垂直,外力F 大小随时间t 变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)匀强磁场的磁感应强度B ;(2)线框进入磁场的过程中,通过线框的电荷量q ;(3)判断线框能否从右侧离开磁场?说明理由.【答案】(1)13T (2) C (3)不能 7. 如图所示,倾角为α的光滑固定斜面,斜面上相隔为d 的平行虚线MN 与PQ 间有大小为B 的匀强磁场,方向垂直斜面向下.一质量为m ,电阻为R ,边长为L 的正方形单匝纯电阻金属线圈,线圈在沿斜面向上的恒力作用下,以速度v 匀速进入磁场,线圈ab 边刚进入磁场和cd 边刚要离开磁场时,ab 边两端的电压相等.已知磁场的宽度d 大于线圈的边长L ,重力加速度为g .求(1)线圈进入磁场的过程中,通过ab 边的电量q ; (2)恒力F 的大小; (3) 线圈通过磁场的过程中,ab 边产生的热量Q .【答案】(1)2BL R (2)22sin B L v mg R α+(3)222()4B L v L d mv R +-8. 如图甲所示,abcd 是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m ,电阻为R .在金属线框的下方有一匀强磁场区域,MN 和M ′N ′是匀强磁场区域的水平边界,并与线框的bc 边平行,磁场方向与线框平面垂直.现金属线框由距MN 的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的v -t 图象,图象中坐标轴上所标出的字母均为已知量.求:(1)金属线框的边长.(2)磁场的磁感应强度.(3)金属线框在整个下落过程中所产生的热量.【答案】(1)v 1(t 2-t 1) (2)1v 1t 2-t 1mgR v 1(3)2mgv 1(t 2-t 1)+12m (v 22-v 23) 9. 如图所示,“凸”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一竖直平面内,ab 边长为l ,cd 边长为2l ,ab 与cd 平行,间距为2l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd 边到磁场上边界的距离为2l ,线框由静止释放,从cd 边进入磁场直到ef 、pq 边进入磁场前,线框做匀速运动,在ef 、pq 边离开磁场后,ab 边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q .线框在下落过程中始终处于原竖直平面内,且ab 、cd 边保持水平,重力加速度为g .求:(1) 线框ab 边将要离开磁场时做匀速运动的速度大小是cd 边刚进入磁场时的几倍;(2) 磁场上、下边界间的距离H .【答案】(1)4倍 (2)Qmg +28l 10. 如图所示,水平虚线L 1、L 2之间是匀强磁场,磁场方向水平向里,磁场高度为h .竖直平面内有一等腰梯形线框,底边水平,其上下边长之比为5:1,高为2h .现使线框AB 边在磁场边界L 1的上方h 高处由静止自由下落,当AB 边刚进入磁场时加速度恰好为0,在DC 边刚进入磁场前的一段时间内,线框做匀速运动.求:(1) 在DC 边进入磁场前,线框做匀速运动时的速度与AB 边刚进入磁场时的速度比是多少?(2)(3) DC 边刚进入磁场时,线框加速度的大小为多少?(4)(5) 从线框开始下落到DC 边刚进入磁场的过程中,线框的机械能损失和重力做功之比?(6)【答案】(1)1:4 (2)54g (3)47:4811. 如图所示,一质量m =的“日”字形匀质导线框“abdfeca ”静止在倾角α=37°的粗糙斜面上,线框各段长ab =cd =ef =ac =bd =ce =df =L =,ef 与斜面底边重合,线框与斜面间的动摩擦因数μ=,ab 、cd 、ef 三段的阻值相等、均为R =Ω,其余部分电阻不计。

高三物理电磁感应中切割类问题试题答案及解析

高三物理电磁感应中切割类问题试题答案及解析

高三物理电磁感应中切割类问题试题答案及解析1.(17分)如图所示,置于同一水平面内的两平行长直导轨相距,两导轨间接有一固定电阻和一个内阻为零、电动势的电源,两导轨间还有图示的竖直方向的匀强磁场,其磁感应强度.两轨道上置有一根金属棒MN,其质量,棒与导轨间的摩擦阻力大小为,金属棒及导轨的电阻不计,棒由静止开始在导轨上滑动直至获得稳定速度v。

求:(1)导体棒的稳定速度为多少?(2)当磁感应强度B为多大时,导体棒的稳定速度最大?最大速度为多少?(3)若不计棒与导轨间的摩擦阻力,导体棒从开始运动到速度稳定时,回路产生的热量为多少?【答案】(1)10m/s;(2);18m/s;(3)7J.【解析】(1)对金属棒,由牛顿定律得:①②③当a=0时,速度达到稳定,由①②③得稳定速度为:(2)当棒的稳定运动速度当时,即时,V最大.得(3)对金属棒,由牛顿定律得:得即得由能量守恒得:得【考点】牛顿定律;法拉第电磁感应定律以及能量守恒定律.2.如图甲所示是某人设计的一种振动发电装置,它的结构是一个套在辐向形永久磁铁槽中的半径为r=0.1 m、匝数n=20的线圈,磁场的磁感线均沿半径方向均匀分布(其右视图如图乙所示)。

在线圈所在位置磁感应强度B的大小均为0.2 T,线圈的电阻为2 Ω,它的引出线接有8 Ω的小电珠L(可以认为电阻为定值)。

外力推动线圈框架的P端,使线圈沿轴线做往复运动,便有电流通过电珠。

当线圈向右的位移x随时间t变化的规律如图丙所示时(x取向右为正),求:(1)线圈运动时产生的感应电流I的大小,并在图丁中画出感应电流随时间变化的图像(在图甲中取电流由C向上流过电珠L到D为正);(2)每一次推动线圈运动过程中作用力F的大小;(3)该发电机的输出功率P(摩擦等损耗不计);【答案】(1)见下图;(2)0.5 N;(3)0.32 W【解析】(1)从图可以看出,线圈往返的每次运动都是匀速直线运动,其速度为线圈做切割磁感线E=2n(rBv=2(20(3.14(0.1(0.2(0.8 V=2 V 感应电流电流图像如上图(2)于线圈每次运动都是匀速直线运动,所以每次运动过程中推力必须等于安培力。

电磁感应切割类问题

电磁感应切割类问题

电磁感应切割类问题一、单选题(注释)1、如图所示,先后以速度v1和v2匀速把一矩形线圈拉出有界匀强磁场区域,v1=2v2。

在先后两种情况下:A.线圈中的感应电流之比为I1∶I2=1∶2B.线圈中的感应电流之比为I1∶I2=2∶1C.通过线圈某截面的电荷量之比q1∶q2=1∶2D.通过线圈某截面的电荷量之比q1∶q2=2∶12、两个线圈A、B绕在一个铁芯的两侧,分别跟电流表和导轨相连,导轨上垂直搁置一根金属棒ab,垂直导轨平面有一个匀强磁场,如图7所示.在下列情况下能使电流计中有电流通过的是 ( )A.ab向右作匀速运动.B.ab向左作匀速运动.C.ab向右作加速运动.D.ab向左作加速运动.3、2.如图所示,平行金属导轨间距为d,一端跨接电阻为R,匀强磁场磁感强度为B,方向垂直平行导轨平面,一根长金属棒与导轨成θ角放置,棒与导轨的电阻不计,当棒沿垂直棒的方向以恒定速度v在导轨上滑行时,通过电阻的电流是A.Bdv/(Rsinθ) B.Bdv/RC.Bdvsinθ/R D.Bdvcosθ/R4、如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为El,若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。

则通过电阻R的电流方向及E1与E2之比El∶E2分别为A.c→a,2∶1 B.a→c,2∶1 C.a→c,1∶2 D.c→a,1∶25、如图所示,平行导轨a、b和平行导轨c、d在同一平面内,两导轨分别和两线圈相连接,匀强磁场的方向垂直两导轨所在的平面.金属棒L1和L2可在两导轨上沿导轨自由滑动,棒L2原来静止,用外力使L1向左运动,下列说法中正确的是A.当L1向左匀速运动时,L2将向左运动B.当L1向左匀速运动时,L2将向右运动C.当L1向左加速运动时,L2将向左运动D.当L1向左加速运动时,L2将向右运动6、图中回路竖直放在匀强磁场中,磁场的方向垂直于回路平面向外,导体AC可以贴着光滑竖直长导轨下滑.设回路的总电阻恒定为R,当导体AC从静止开始下落后,下面叙述中正确的说法有 ( )A.导体下落过程中,机械能不守恒B.导体加速下落过程中,导体减少的重力势能全部转化为在电阻上产生的热量C.导体加速下落过程,导体减少的重力势能转化为导体增加的动能和回路中增加的内能D.导体达到稳定速度后的下落过程中,导体减少的重力势能全部转化为回路中增加的内能7、如图所示,导体棒长为,匀强磁场的磁感应强度为,导体绕过点垂直纸面的轴以角速度匀速转动, .则端和端的电势差的大小等于A.B.C.D.8、在匀强磁场中有两条平行的金属导轨,磁场方向与导轨平面垂直,导轨上有两条可以沿导轨自由移动的导电棒ab、cd,这两根导电棒的速度分别为v1、v2,如图所示,ab棒上有感应电流通过,则不能有()A.v1>v2 B.v1<v2C.v1≠v2 D.v1=v29、用同样粗细的铜、铝、铁做成三根相同长度的直导线,分别放在电阻不计的光滑水平导轨上,使导线与导轨保持垂直,匀强磁场方向如图所示。

电磁感应强度与切割速度的关系

电磁感应强度与切割速度的关系

电磁感应强度与切割速度的关系
电磁感应强度与切割速度之间存在着密切的关系,这涉及到电磁感应在切割加工中的应用。

在切割加工过程中,电磁感应强度可以影响切割速度的稳定性、精确度和效率。

以下从几个角度来分析这种关系:
首先,电磁感应强度对切割速度的影响主要体现在热影响区的控制上。

通过调节电磁感应强度,可以改变切割区域的热量分布,从而影响材料的熔化和气化情况,进而影响切割速度。

较高的电磁感应强度可以提高切割区域的热量集中度,有利于提高切割速度,但需要注意控制好热影响区的范围,避免过度加热造成材料变形或者裂纹。

其次,电磁感应强度还可以影响切割过程中的材料去除效率。

通过调节电磁感应强度,可以改变切割区域内的熔融金属和气化物的排出速度,从而影响切割速度。

合适的电磁感应强度可以促进熔融金属和气化物的快速排出,提高切割效率,但是如果电磁感应强度过大或者过小都会影响切割速度和质量。

此外,电磁感应强度还对切割工具的磨损和寿命有一定影响。

适当的电磁感应强度可以减少切割过程中的磨损,延长切割工具的寿命,从而间接影响切割速度。

然而,过高或者过低的电磁感应强度都可能导致切割工具的异常磨损,影响切割速度和加工质量。

综上所述,电磁感应强度与切割速度之间的关系是一个复杂的系统工程问题,需要综合考虑材料特性、切割工艺、设备性能等多个因素。

合理的电磁感应强度可以提高切割速度和加工质量,但需要在实际应用中进行综合考虑和调整。

高二物理电磁感应中切割类问题试题答案及解析

高二物理电磁感应中切割类问题试题答案及解析

高二物理电磁感应中切割类问题试题答案及解析1.(15分)光滑的平行金属导轨长x=2 m,两导轨间距L=0.5 m,轨道平面与水平面的夹角θ=30°,导轨上端接一阻值为R=0.6 Ω的电阻,轨道所在空间有垂直轨道平面向上的匀强磁场,磁场的磁感应强度B=1 T,如图所示.有一质量m=0.5 kg、电阻r=0.4 Ω的金属棒ab,放在导轨最上端,其余部分电阻不计.已知棒ab从轨道最上端由静止开始下滑到最底端脱离轨道的过程中,电阻R上产生的热量Q1=0.6 J,取g=10 m/s2,试求:(1)当棒的速度v1=2 m/s时,电阻R两端的电压;(2)棒下滑到轨道最底端时速度的大小;(3)棒下滑到轨道最底端时加速度a的大小.【答案】⑴ 0.6V ⑵ 4m/s ⑶【解析】(1) E=Blv=1 VI==1 A,U=IR=0.6 V.(2)根据Q=I2Rt得,金属棒中产生的热量Q2= Q1=0.4 J设棒到达最底端时的速度为v2,根据能的转化和守恒定律,有:mgLsin θ=+Q1+Q2,解得:v2=4 m/s。

⑶棒到达最底端时,回路中产生的感应电流为:根据牛顿第二定律:mgsinθ-BI2d="ma"解得:a=3m/s2【考点】本题考查电磁感应的力电综合问题。

2.如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO′为其对称轴.一导线折成边长为l的正方形闭合回路abcd,回路在纸面内以恒定速度v向右运动,当运动到关于OO′对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为2Blv0C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同【答案】ABD【解析】根据磁通量的定义可以判断此时磁通量的大小,如图所示时刻,有两根导线切割磁感线,根据右手定则可判断两根导线切割磁感线产生电动势的方向,求出回路中的总电动势,然后即可求出回路中的电流和安培力变化情况.A、此时线圈中有一半面积磁场垂直线圈向外,一半面积磁场垂直线圈向内,因此磁通量为零,故A正确;B、ab切割磁感线形成电动势b端为正,cd切割形成电动势c端为负,因此两电动势串联,故回路电动势为E=2BLv0,故B正确;C、根据右手定则可知,回路中的感应电流方向为逆时针,故C错误;D、根据左手定则可知,回路中ab边与cd边所受安培力方向均向左,方向相同,故D正确.故选ABD.【考点】磁通量,导体切割磁感线产生电流和所受安培力情况3.如图所示,两根光滑平行的金属导轨,放在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身电阻不计,斜面处在一匀强磁场中,方向垂直斜面向上,一质量为m、电阻不计的金属棒,在沿斜面并与棒垂直的恒力F作用下沿导轨匀速上滑,并上升了h高度,则在上滑h的过程中A.金属棒所受合外力所做的功等于mgh与电阻R上产生的热量之和B.恒力F与重力的合力所做的功等于电阻R上产生的热量C.金属棒受到的合外力所做的功为零D.恒力F与安培力的合力所做的功为mgh【答案】BCD【解析】以金属棒为研究对象分析受力可知,其受到恒力F、重力、安培力,由合外力做的功就为三力做功之和,有外力做功、克服重力做功mgh、克服安培力做的功(即电路产生的焦耳热),由能量守恒合功可知,所以选项BCD正确;【考点】能量守恒、功、动能定理4.如图所示,半径为 r、电阻不计的两个半圆形光滑导轨并列竖直放置,导轨端口所在平面刚好水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b a电磁感应切割及能量问题1.物理实验中常用一种叫做"冲击电流计"的仪器测定通过电路的电量.如图所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R .若将线圈放在被测匀强磁场中,开始线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电量为q ,由上述数据可测出磁场的磁感应强度为( )A.S qRB. nS qR C . nS qR 2 D. S qR 22、图为地磁场磁感线的示意图在北半球地磁场的坚直分量向下。

飞机在我国上空匀逐巡航。

机翼保持水平,飞行高度不变。

由于地磁场的作用,金属机翼上有电势差设飞行员左方机翼未端处的电势为U 1,右方机翼未端处的电势力U 2则:A .若飞机从西往东飞,U 1比U 2高 B.若飞机从东往西飞,U 2比U 1高 C .若飞机从南往北飞,U 1比U 2高 D.若飞机从北往南飞,U 2比U 1高3.一直升飞机停在南半球某处上空。

设该处地磁场的方向竖直向上,磁感应强度为B 。

直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f 。

顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。

螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示。

如果忽略到转轴中心线的距离,用E 表示每个叶片的感应电动势,则 A .E =πfl 2B ,且a 点电势低于b点电势 B .E =2πfl 2B ,且a 点电势低于b点电势C .E =πfl 2B ,且a 点电势高于b点电势D .E =2πfl 2B ,且a 点电势高于b 点电势4.有一矩形线圈在竖直平面内,从静止开始下落,磁场水平且垂直于线圈平面,当线圈的下边进入磁场,而上边未进入匀强磁场的过程中,由于下落高度的不同,线圈的运动状态可能是(设线圈一直在竖直平面内运动,且没有发生转动):( )A .一直匀速下落B .匀减速下落C .加速度减小的加速运动D .加速度减小的减速运动 5.如图有两根和水平方向成α角的光滑平行的金属轨道,端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B 质量为m 杆的速度会趋近于一个最大速度Vm ,则( )A. 如果B 增大,Vm 将变大B. 如果 α 增大,Vm 将变小 C . 如果R 增大,Vm 将变大 D. 如果m 增大,Vm 将变小 6.如图所示,粗糙水平桌面上有一质量为m 的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB 正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力F N 及在水平方向运动趋势的正确判断是 ( ) A .F N 先小于mg 后大于mg ,运动趋势向左B .F N 先大于mg 后小于mg ,运动趋势向左C .F N 先大于mg 后大于mg ,运动趋势向右D .F N 先大于mg 后小于mg ,运动趋势向右7.图中回路竖直放在匀强磁场中,磁场的方向垂直于回路平面向内。

导线AC 可以贴着光滑竖直长导轨下滑。

设回路的总电阻恒定为R ,当导线AC 从静止开始下落后,下面有关回路能量转化的叙述中正确的是( )A.导线下落过程中机械能守恒;B.导线加速下落过程中,导线减少的重力势能全部转化为回路产生的热量;C.导线加速下落过程中,导线减少的重力势能全部转化为导线增加的动能;D .导线加速下落过程中,导线减少的重力势能转化为导线增加的动能和回路增加的内能8.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。

一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。

现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。

则此过程 ( )A.杆的速度最大值为B.流过电阻R 的电量为C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D .恒力F 做的功与安倍力做的功之和大于杆动能的变化量9.如图,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则( )A 、线圈恰好在完全离开磁场时停下B 、线圈在未完全离开磁场时即已停下C 、线圈能通过场区不会停下D 、线圈在磁场中某个位置停下10.光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x 2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a 的直线(图中虚线所示).一个小金属块从抛物线上y=b (b >a )处以速度v 沿抛物线下滑,假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是A .mgbB .21mv 2BC .mg(b-a) D.mg(b-a)+21mv211.如图,两光滑平行金属导轨AB相距为L,固定在竖直平面上,上端用电阻相连,下端足够长.放在一匀强磁场中,磁场方向垂直纸面向外,质量为m的金属棒CD跨接在导轨上.当CD由静止释放后在AB上匀速滑动时,闭合电键,则CD的运动为:( )A.继续向下匀速运动B.向下减速运动到速度为零C.向下加速运动到速度为原来匀速运动的速度2倍D.向下减速运动到速度为原来匀速运动的速度的一半12.如图所示,相距为d的两水平线L1和L2分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(L<d)、质量为m。

将线框在磁场上方高h处由静止开始释放,当ab边进入磁场时速度为V0,cd边刚穿出磁场时速度也为V0。

从ab边刚进入磁场到cd边刚穿出磁场的整个过程中( )A.线框一直都有感应电流B.线框有一阶段的加速度为gC.线框产生的热量为mg(d+h+L)D.线框做过减速运动13.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,受到安培力的大小为F.此时( )(A)电阻R1消耗的热功率为Fv/3.(B)电阻R。

消耗的热功率为Fv/6.(C)整个装置因摩擦而消耗的热功率为μmgvcosθ.(D)整个装置消耗的机械功率为(F+μmgcosθ)v·14.如图所示,一导线弯成半径为a的半圆形闭合回路。

虚线MN右侧有磁感应强度为B的匀强磁场。

方向垂直于回路所在的平面。

回路以速度v向右匀速进入磁场,直径CD始络与MN垂直。

从D点到达边界开始到C点进入磁场为止,下列结论正确的是()A.感应电流方向不变B.CD段直线始终不受安培力C.感应电动势最大值E=Bav D.感应电动势平均值14E Bav=π15.一电阻为R的金属圆环,放在匀强磁场中,磁场与圆环所在平面垂直,如图(a)所示,已知通过圆环的磁通量随时间t的变化关系如图(b)所示,图中的最大磁通量φ和变化周期T 都是已知量,求:(1)在t=0到t= T/4的时间内,通过金属圆环横截面的电荷量q(2)在t=0到t=2T的时间内,金属环所产生的电热Q.θ16.如图所示,足够长的光滑金属框竖直放置,框宽L =0.5 m ,框的电阻不计,匀强磁场磁感应强度B =1 T ,方向与框面垂直,金属棒MN 的质量为100 g ,电阻为1 Ω.现让MN 无初速地释放并与框保持接触良好的竖直下落,从释放到达到最大速度的过程中通过棒某一横截面的电量为2 C ,求此过程中回路产生的电能.(空气阻力不计,g =10 m/s 2)17. 如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距m 1,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为W 8,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向. (g 取10rn /s 2,sin37°=0.6, cos37°=0.8)18. 如图所示,一个很长的竖直放置的圆柱形磁铁,产生一个中心辐射的磁场(磁场水平向外),其大小为rkB(其中r 为辐射半径),设一个与磁铁同轴的圆形铝环,半径为R (大于圆柱形磁铁的半径),而弯成铝环的铝丝的横截面积为S ,圆环通过磁场由静止开始下落。

下落过程中圆环平面始终水平,已知铝丝的电阻率为ρ,密度为ρ0。

求:(1)圆环下落的速度为时的电功率. (2)圆环下落的最终速度 (3)当下落高度为时,圆环速度最大。

从开始下落到此时圆环消耗的电能。

19.如图,光滑斜面的倾角 = 30°,在斜面上放置一矩形线框abcd,ab边的边长l1 = l m,bc边的边长l2= 0.6 m,线框的质量m = 1 kg,电阻R= 0.1Ω,线框通过细线与重物相连,重物质量M = 2 kg,斜面上ef线(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B = 0.5 T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s = 11.4 m,(取g = 10.4m/s2),求:(1)线框进入磁场前重物M的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh线处所用的时间t;(4)ab边运动到gh线处的速度大小和在线框由静止开始到运动到gh线的整个过程中产生的焦耳热。

20、如图所示,一边长L = 0.2m,质量m1 = 0.5kg,电阻R = 0.1Ω的正方形导体线框abcd,与一质量为m2 = 2kg的物块通过轻质细线跨过两定滑轮相连。

起初ad边距磁场下边界为d1=0.8m,磁感应强度B=2.5T,磁场宽度d2 =0.3m,物块放在倾角θ=53°的斜面上,物块与斜面间的动摩擦因数μ=0.5。

现将物块由静止释放,经一段时间后发现当ad边从磁场上边缘穿出时,线框恰好做匀速运动。

(g取10m/s2,sin53°=0.8,cos53°=0.6)求:(1)线框ad边从磁场上边缘穿出时绳中拉力的功率;(2)线框刚刚全部进入磁场时速度的大小;(3)整个运动过程中线框产生的焦耳热。

21、如图甲,相距为L 的光滑平行金属导轨水平放置,导轨一部分处在垂直导轨平面的匀强磁场中,oo /为磁场边界,磁感应强度为B ,导轨右侧接有定值电阻R ,导轨电阻忽略不计。

相关文档
最新文档