法拉第电磁感应定律及其应用

合集下载

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用电磁感应是一种重要的物理现象,它是基于法拉第电磁感应定律而产生的。

法拉第电磁感应定律表明,当导体中的磁通量变化时,导体两端会产生感应电动势,从而产生感应电流。

这一定律被广泛应用于各个领域,包括能源、工业和科学研究等。

在本文中,我们将探讨利用法拉第电磁感应定律解释电磁感应现象的现实应用。

1. 电力发电电力发电是法拉第电磁感应定律的一个典型应用。

发电机利用磁场与导体之间的相互作用来产生电动势。

当转子在磁场中旋转时,导线回路中的磁通量随之变化,从而产生感应电动势。

这个电动势可以被引导出来,用来驱动发电机产生电流。

电力发电是利用法拉第电磁感应定律进行实现的重要方法。

2. 变压器的工作原理变压器是电力系统中常见的设备,也是利用法拉第电磁感应定律的应用之一。

变压器通过改变电流的电压大小来实现能量的传输和转换。

它由两个线圈组成,一个是高压线圈,另一个是低压线圈。

当高压线圈中的电流变化时,会产生变化的磁场,从而在低压线圈中感应出电动势,实现电能的转换。

3. 感应加热感应加热是利用法拉第电磁感应定律来实现的一种加热方法。

通过在导体周围产生变化的磁场,可以感应出导体中的涡流,从而产生热量。

这种加热方法在工业生产中被广泛应用,特别是在金属加热和熔化的过程中。

4. 感应传感器和电磁测量利用法拉第电磁感应定律,我们可以设计出各种感应传感器和用于电磁测量的设备。

例如,感应传感器可以用于检测磁场、电流、位移和速度等物理量。

通过测量感应电动势或感应电流的大小,我们可以获取到所需的数据信息。

5. 磁悬浮列车技术磁悬浮列车技术是一项先进的交通运输技术,也是法拉第电磁感应定律的应用之一。

磁悬浮列车利用电磁感应产生的力来实现悬浮和推进。

当列车通过轨道时,轨道中的线圈会产生变化的磁场,从而引起列车上的磁体感应出电动势。

利用这种电动势产生的力,使列车浮在轨道上并推进。

总结:法拉第电磁感应定律作为一项重要的物理定律,具有广泛的应用领域。

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的。

该定律描述了磁场变化引起的感应电动势,并成为电磁学的基石之一。

本文将对法拉第电磁感应定律的原理进行简要介绍,并探讨其在实际应用中的作用。

法拉第电磁感应定律的表达式为:在闭合电路中,感应电动势的大小与磁场变化率成正比。

具体地说,当磁场通过一个线圈发生变化时,感应电动势会在线圈中产生。

这个电动势的大小取决于磁场变化的速率以及线圈的匝数。

根据法拉第电磁感应定律的原理,人们发明了许多基于磁感应原理的设备和技术。

下面,我们将介绍其中几个重要的应用。

1.发电机:发电机是一种利用法拉第电磁感应定律产生电能的装置。

它的基本原理是通过旋转磁场产生的感应电动势使电流产生,从而输出电能。

发电机广泛应用于电力、交通等领域,成为现代社会不可或缺的设备。

2.变压器:变压器也是利用法拉第电磁感应定律的重要应用之一。

它是将交流电压通过电磁感应原理转换为合适的电压,以便在输电和配电中使用。

变压器有助于提高电力传输的效率,同时也保证了电力系统的安全性。

3.感应炉:感应炉是利用法拉第电磁感应定律的热处理设备。

它利用高频交变磁场在导体中产生涡流,通过融化、加热和焊接等过程实现热处理的目标。

感应炉广泛应用于金属加工和冶炼等工艺中,为工业生产提供了高效、环保的解决方案。

4.电磁感应测量仪器:电磁感应定律的应用还包括各种测量技术。

例如,电磁感应测量仪器可以通过测量变化的磁场来确定物体的磁性、密度和位置等参数。

这些测量仪器在物理实验、地球物理勘探和医学设备中发挥着重要作用。

总之,法拉第电磁感应定律是电磁学研究的基础,其应用广泛涉及各个领域。

通过理解和应用这一定律,我们能够更好地利用磁场变化来产生电能、进行能量转换以及实现各种测量和热处理等过程。

在未来的发展中,法拉第电磁感应定律将继续发挥重要作用,并促进科学技术的进步。

探索法拉第电磁感应定律的实验及应用

探索法拉第电磁感应定律的实验及应用

探索法拉第电磁感应定律的实验及应用引言:法拉第电磁感应定律是电磁学的基本定律之一,它描述了导体中的电流随时间变化而产生的感应电动势。

本文将通过实验探索法拉第电磁感应定律,并阐述其在生活中的实际应用。

实验一:磁铁穿过线圈实验目的:验证法拉第电磁感应定律中的电磁感应现象。

实验原理:当磁铁穿过线圈时,由于磁感线的变化,线圈中的电流也发生了变化,从而产生了感应电动势。

实验步骤:1. 准备一根磁铁和一个线圈。

2. 将线圈接入一个示波器,调节示波器使其显示电压随时间的变化曲线。

3. 将磁铁快速穿过线圈的中心。

4. 观察示波器上电压随时间的变化曲线,并记录结果。

实验结果:在磁铁穿过线圈的瞬间,示波器上显示的电压出现了明显的变化,随后回归到零值。

实验分析:根据法拉第电磁感应定律,当磁场穿过线圈时,导体中的电流会随之产生。

因此,在磁铁穿过线圈的瞬间,线圈中会产生瞬时电流,进而产生感应电动势。

实验二:电磁感应的应用——发电机实验目的:探究法拉第电磁感应定律在发电机中的应用。

实验原理:发电机是利用导体在磁场中运动引起电磁感应的装置,通过转动磁铁和线圈的相对运动产生电能。

实验步骤:1. 准备一个磁铁和一个线圈。

2. 将线圈连接到一块电阻上,并将电阻接入电路中。

3. 保持磁铁静止,转动线圈。

4. 观察电路中电阻上的电压,并记录结果。

实验结果:当线圈转动时,电路中的电压明显升高,电阻上出现了电流。

实验分析:在发电机中,当磁铁通过线圈时,线圈会受到磁通量的变化,从而产生感应电动势。

将线圈连接到电路中,电流便会通过电阻产生功率,从而发电。

实际应用:1. 发电机:法拉第电磁感应定律的应用使得发电成为可能。

利用发电机,我们可以将机械能转化为电能,满足我们生活和工业上的用电需求。

2. 电磁感应传感器:电磁感应技术在温度计、压力传感器、位移传感器等多种传感器中广泛应用。

传感器中的线圈产生的感应电流和感应电压可以通过测量来得知温度、压力等物理量的变化。

高中物理精品课件:法拉第电磁感应定律及其应用

高中物理精品课件:法拉第电磁感应定律及其应用

H。
10-6
2.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这
种电流看起来像水的漩涡,所以叫涡流。
3.电磁阻尼
导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是
阻碍 导体的运动。
4.电磁驱动
如果磁场相对于导体转动,在导体中会产生
到安培力而运动起来。
感应电流
使导体受
第2节
法拉第电磁感应定律及其应用
一、法拉第电磁感应定律
1.法拉第电磁感应定律
(1)内容:感应电动势的大小跟穿过这一电路的 磁通量的变化率 成正比。
感应电动势与匝数有关
(2)公式:E=n

,其中n为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的
欧姆

定律,即I= + 。
2.导体切割磁感线的情形
场区内从b到c匀速转动时,回路中始终有电流,则此过程中,下列说法正确
的有(
) 答案 AD
A.杆OP产生的感应电动势恒定
B.杆OP受到的安培力不变
C.杆MN做匀加速直线运动
D.杆MN中的电流逐渐减小
6.如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应
强度为B,方向垂直于纸面向内。一根长度略大于导轨直径的导体棒MN以
B.金属框中电流的电功率之比为4∶1
C.金属框中产生的焦耳热之比为4∶1
D.金属框ab边受到的安培力方向相同
答案 B
素养点拨1.应用法拉第电磁感应定律解题的一般步骤
(1)分析穿过闭合电路的磁场方向及磁通量的变化情况;
(2)利用楞次定律确定感应电流的方向;
(3)灵活选择法拉第电磁感应定律的不同表达形式列方程求解。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用一、感应电动势:(1)在电磁感应现象中产生的电动势叫感应电动势。

产生感应电动势的那部分导体相当于电源。

(2)当电路闭合时,回路中有感应电流;当电路断开时,没有感应电流,但感应电动势仍然存在。

(3)感应电动势的大小——法拉第电磁感应定律。

电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

即.t E ∆∆Φ=说明:(a )若穿过线圈的磁通量发生变化,且线圈的匝数为n ,则电动势表示式为.tnE ∆∆Φ= (b )E 的单位是伏特(V ),且.s /Wb 1V 1=证明:.V 1CJ1s A m N 1s m m A N1s m T 1s Wb 122==⋅⋅=⋅⋅=⋅=(c )区分磁通量Φ、磁通量的变化量∆Φ、磁通量的变化率t∆∆Φ。

2、导体运动产生的感应电动势: (1)导体垂直切割磁感线如图1所示,导体棒ab 在间距为L 的两导轨上以速度v 垂直磁感线运动,磁场的磁感强度为B 。

试分析导体棒ab 运动时产生的感应电动势多大?这属于闭合电路面积的改变引起磁通量的变化,进而导致感应电动势的产生。

由法拉第电磁感应定律知,在时间t 内,BLv B tLvt B t S t E =⋅⋅=⋅∆∆=∆∆Φ=即.BLv E =说明:BLv E =通常用来计算瞬时感应电动势的大小。

(2)导体不垂直切割磁感线若导体不是垂直切割磁感线,即v 与B 有一夹角θ,如图2所示,此时可将导体的速度v 向垂直于磁感线和平行于磁感线两个方向分解,则分速度θ=cos v v 2不使导体切割磁感线,使导体切割磁感线的是分速度θ=sin v v 1,从而使导体产生的感应电动势为:.sin BLv BLv E 1θ==上式即为导体不垂直切割磁感线时,感应电动势大小的计算式。

说明:在公式BLv E =或θ=sin BLv E 中,L 是指有效长度。

在图3中,半径为r 的关圆形导体垂直切割磁感线时,感应电动势BLv E =,.Brv 2E ≠ 3、运用电磁感应定律的解题思路: (1)磁通量变化型法拉第电磁感应定律是本章的核心,它定性说明了电磁感应现象的原因,也定量给出了计算感应电动势的公式:t nE ∆∆Φ=。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是电磁学的基础定律之一,它描述了导体中感应电动势与导体上的磁场变化之间的关系。

该定律由英国物理学家迈克尔·法拉第于1831年提出,经过实验证实并被广泛应用。

本文将介绍法拉第电磁感应定律的原理、公式以及实际应用。

一、定律原理法拉第电磁感应定律是指当导体中的磁通量发生变化时,导体中会感应出电动势和感应电流。

磁通量是一个衡量磁场穿过一个给定表面的大小的物理量。

当磁通量改变时,导体中的自由电子会受到磁力的作用而发生运动,从而产生电流。

这种现象被称为电磁感应。

二、定律公式根据法拉第电磁感应定律,感应电动势(ε)与磁通量变化速率(dΦ/dt)成正比。

其数学表达式如下:ε = -dΦ/dt其中,ε表示感应电动势,单位为伏特(V);dΦ/dt表示磁通量的变化速率,单位为韦伯/秒(Wb/s)。

根据右手定则,可以确定感应电动势的方向。

当磁场的变化导致磁通量增加时,感应电动势的方向与变化的磁场方向垂直且遵循右手定则;当磁通量减少时,感应电动势的方向与变化的磁场方向相反。

三、应用举例1. 电磁感应产生的电动势可用于发电机的工作原理。

发电机通过转动磁场与线圈之间的磁通量变化来产生感应电动势,最终转化为电能供应给电器设备。

2. 感应电动势也可以应用于感应加热。

感应加热是通过变化的磁场产生的感应电流在导体中产生焦耳热,实现对物体进行加热的过程。

这种方法广泛用于工业领域中的加热处理、熔化金属等。

3. 感应电动势还可以实现非接触的测量。

例如,非接触式转速传感器利用感应电动势来实现对机械设备转速的测量。

四、实验验证1831年,法拉第进行了一系列实验来验证他提出的电磁感应定律。

其中最著名的实验是在一个充满磁铁的线圈中将另一个线圈移动。

当第一个线圈移动时,第二个线圈中就会感应出电流。

这一实验结果验证了法拉第的理论,为电磁感应定律的确认提供了强有力的证据。

五、应用发展法拉第电磁感应定律为电磁学的发展奠定了基础。

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用电磁感应是电磁学中的一个基本现象,法拉第电磁感应定律是描述这一现象的重要定律之一。

本文将介绍法拉第电磁感应定律的基本原理及其应用。

法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的,他的实验成果在电磁学的发展中起到了重要的作用。

该定律阐述了电磁感应的原理,即当磁场的磁通量变化时,会在电路中产生感应电动势,并产生感应电流。

根据法拉第电磁感应定律,当磁场的磁通量发生变化时,电路中会产生感应电动势。

这个感应电动势的大小与磁动势的变化率成正比。

如果电路是闭合的,感应电流将在电路中产生。

法拉第电磁感应定律的公式表示为:ε = -dφ/dt其中,ε表示感应电动势,φ表示磁通量,dt表示时间的微小变化。

负号表示感应电动势的方向与磁通量的变化方向相反。

法拉第电磁感应定律的应用非常广泛,以下将介绍一些常见的应用。

一、发电机发电机是利用法拉第电磁感应定律来产生电能的装置。

在一个发电机中,可以通过转动一个闭合线圈或者一个磁场来改变磁通量的大小,进而在线圈中激发感应电动势,产生电流。

这个电流可以用来供电。

发电机在电力工业中起着重要的作用,它们被广泛应用于发电站、风力发电和太阳能发电等领域。

通过转动发电机,机械能转化为电能,为人们的生活和工业生产提供可靠的电力。

二、电感电感是典型的使用法拉第电磁感应定律的设备之一。

电感是由线圈组成的电子元件,当电流通过线圈时,会在周围产生磁场。

如果线圈中的电流发生变化,磁场的磁通量也会发生变化。

根据法拉第电磁感应定律,这种变化会引发线圈中产生感应电动势。

因此,电感可以用来储存和释放能量。

电感在电路中起着重要的作用,可以用来稳定电流、滤除高频噪声和提供电源稳定性。

电感还被广泛应用于无线通信、电源供应和电子设备制造等领域。

三、变压器变压器是利用法拉第电磁感应定律来调节电压的电子设备。

变压器通常由两个线圈组成,一个是输入线圈(即初级线圈),另一个是输出线圈(即次级线圈)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

法拉第电磁感应定律及其应用1.(法拉第电磁感应定律的应用)(优质试题·北京卷)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直。

磁感应强度B随时间均匀增大。

两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响。

下列说法正确的是()A.E a∶E b=4∶1,感应电流均沿逆时针方向B.E a∶E b=4∶1,感应电流均沿顺时针方向C.E a∶E b=2∶1,感应电流均沿逆时针方向D.E a∶E b=2∶1,感应电流均沿顺时针方向,感应电流产生的磁场方向垂直圆环所在平面向里,由右手定则知,两圆环中电流均沿顺时针方向。

圆环的半径之比为2∶1,则面积之比为4∶1,据法拉第电磁感应定律得E=为定值,故E a∶E b=4∶1,故选项B正确。

2.(法拉第电磁感应定律的应用)如图所示,在水平面内固定着U形光滑金属导轨,轨道间距为50 cm,金属导体棒ab质量为0.1 kg,电阻为0.2 Ω,横放在导轨上,电阻R的阻值是0.8 Ω(导轨其余部分电阻不计)。

现加上竖直向下的磁感应强度为0.2 T的匀强磁场。

用水平向右的恒力F=0.1 N拉动ab,使其从静止开始运动,则()A.导体棒ab开始运动后,电阻R中的电流方向是从P流向MB.导体棒ab运动的最大速度为10 m/sC.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1 V后保持不变D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R的发热功率之和R中的感应电流方向是从M流向P,A错;当金属导体棒受力平衡时,其速度将达到最大值,由F=BIl,I=可得总总,代入数据解得v m=10 m/s,B对;感应电动势的最大值E m=1 V,a、b F=总两点的电势差为路端电压,最大值小于1 V,C错;在达到最大速度以前,F所做的功一部分转化为内能,另一部分转化为导体棒的动能,D错。

3.(法拉第电磁感应定律的应用)(优质试题·海南文昌中学期中)关于电磁感应,下列说法正确的是()A.穿过回路的磁通量越大,则产生的感应电动势越大B.穿过回路的磁通量减小,则产生的感应电动势一定变小C.穿过回路的磁通量变化越快,则产生的感应电动势越大D.穿过回路的磁通量变化越大,则产生的感应电动势越大正比,与磁通量大小、磁通量的变化量都没有关系,A、B、D错,C正确。

4.(导体棒切割磁感线产生感应电动势)(优质试题·广东广州月考)如图所示,半径为r的金属圆盘在垂直于盘面的匀强磁场B中,绕O轴以角速度ω沿逆时针方向匀速转动,则通过电阻R的电流的大小和方向是(金属圆盘的电阻不计)()A.由c到d,I=B.由d到c,I=C.由c到d,I=D.由d到c,I=R的电流的方向是由d到c,金属圆盘产生的感应电动势E=Br2ω,所以通过电阻R的电流大小是I=。

选项D正确。

5.(自感)(优质试题·河北模拟)如图所示的电路中,A、B、C是三个完全相同的灯泡,L是一个自感系数较大的线圈,其直流电阻与灯泡电阻相同。

下列说法正确的是()A.闭合开关S,A灯逐渐变亮B.电路接通稳定后,流过B灯的电流是流过C灯电流的C.电路接通稳定后,断开开关S,C灯立即熄灭D.电路接通稳定后,断开开关S,A、B、C灯过一会儿才熄灭,且A灯亮度比B、C灯亮度高A灯与线圈并联后与B灯串联,再与C灯并联。

S闭合时,线圈的自感系数较大,自感电动势很大,故三个灯同时立即发光,由于线圈的电阻与灯泡电阻相同,电路稳定后,流过A灯的电流是流过C灯电流的,A灯逐渐变暗,故A、B错误。

电路接通稳定后,断开开关S,由于线圈中电流减小,产生自感电动势,阻碍电流的减小,线圈中电流不会立即消失,这个自感线圈与A、B、C三灯构成闭合回路,三灯都要过一会儿再熄灭。

由于断开开关S后,B、C串联再同A并联,流过A灯的电流大于流过B、C两灯的电流,故A灯比B、C两灯的亮度高,所以D正确,C错误。

6.(自感)(优质试题·河北石家庄调研)如图所示电路中,A、B、C为完全相同的三个灯泡,L是一直流电阻不可忽略的电感线圈。

a、b为线圈L的左右两端点,原来开关S是闭合的,三个灯泡亮度相同。

将开关S断开后,下列说法正确的是()A.a点电势高于b点,A灯闪亮后缓慢熄灭B.a点电势低于b点,B、C灯闪亮后缓慢熄灭C.a点电势高于b点,B、C灯闪亮后缓慢熄灭D.a点电势低于b点,B、C灯不会闪亮只是缓慢熄灭,三个完全相同的灯泡亮度相同,说明流经三个灯泡的电流相等。

某时刻将开关S断开,流经电感线圈的磁通量减小,其发生自感现象,相当于电源,产生和原电流方向相同的感应电流,故a点电势低于b点电势,三个灯不会闪亮只是缓慢熄灭,选项D正确。

7.(法拉第电磁感应定律的应用)(优质试题·山东德州期末)如图所示,长为l的金属导线弯成一圆环,导线的两端接在电容为C的平行板电容器上,P、Q为电容器的两个极板,磁场方向垂直于环面向里,磁感应强度以B=B0+Kt(K>0)随时间变化。

t=0时,P、Q两极板电势相等,两极板间的距离远小于环的半径。

经时间t,电容器的P极板()A.不带电B.所带电荷量与t成正比C.带正电,电荷量是D.带负电,电荷量是,回路中产生的感应电动势的方向为逆时针方向,Q板带正电,P板带负电,A、C错误;E=·S=K·πR2,l=2πR,R=,解得E=,电容器上的电荷量Q=CE=,B错误,D正确。

8.(多选)(法拉第电磁感应定律的应用)(优质试题·江西南昌摸底)如图甲所示,圆形闭合线圈内存在方向垂直纸面向外的磁场,磁感应强度随时间变化如图乙所示,则下列说法正确的是()A.0~1 s内线圈的磁通量不断增大B.第4 s末的感应电动势为0C.0~1 s内与2~4 s内的感应电流大小相等D.0~1 s内感应电流方向为顺时针方向E=,得出各段时间内的感应电动势的大小由图象的斜率决定。

根据Φ=BS可知,在0~1 s内线圈的磁通量不断增大,故A正确;第4 s末的感应电动势等于2~4 s内的感应电动势,故B错误;根据公式E=,在0~1 s内与2~4 s内的磁通量的变化率不同,所以感应电动势大小不同,则感应电流大小也不相等,故C错误;0~1 s内,磁场垂直纸面向外,大小在增加,根据楞次定律,感应电流方向为顺时针方向,故D正确。

〚导学号06400476〛能力提升组9.(多选)如图所示,两根足够长、电阻不计且相距l=0.2 m的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U=4 V的小灯泡,两导轨间有一磁感应强度B=5 T、方向垂直斜面向上的匀强磁场。

今将一根长为2l、质量m=0.2 kg、电阻r=1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒始终与导轨垂直,金属棒与导轨接触良好,金属棒始终与导轨垂直,金属棒与导轨间的动摩擦因数μ=0.25。

已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g取10 m/s2,sin37°=0.6,cos 37°=0.8,则()A.金属棒刚开始运动时的加速度大小为3 m/s2B.金属棒刚开始运动时的加速度大小为4 m/s2C.金属棒稳定下滑时的速度大小为9.6 m/sD.金属棒稳定下滑时的速度大小为4.8 m/s,不受安培力作用,由牛顿第二定律得mg sin θ-μmg cos θ=ma,代入数据得a=4 m/s2,故选项A错误,选项B正确;设金属棒稳定下滑时速度为v,感应电动势为E(金属棒的有效长度为l),回路中的电流为I,由平衡条件得mg sin θ=BIl+μmg cos θ,由闭合电路欧姆定律得I=-,由法拉第电磁感应定律得E=Blv,联立解得v=4.8 m/s,故选项C错误,选项D正确。

10.(多选)(优质试题·四川资阳模拟)如图所示,用一根横截面积为S、电阻率为ρ的硬质导线做成一个半径为r的圆环,ab为圆环的一条直径。

在ab的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,磁感应强度大小随时间的变化率=k(k<0)。

则()A.圆环中产生逆时针方向的感应电流B.圆环具有扩张的趋势C.圆环中感应电流的大小为D.图中a、b两点间的电势差U ab=,根据楞次定律可知,圆环中产生顺时针方向的感应电流,选项A错误;由于磁通量减小,根据“增缩减扩”的原理,线圈有扩张的趋势,选项B正确;根据法拉第电磁感应定律可得圆环产生的感应电动势大小为,则圆环中的电流大小为I=,选项C错误;由于内电路和外电路电阻等大,所以U ab=,选项D正确。

11.(优质试题·北京海淀区模拟)如图所示,在光滑水平面上有一长为l1、宽为l2的单匝矩形闭合导体线框abcd,处于磁感应强度为B的有界匀强磁场中,其ab边与磁场的边界重合。

线框由同种粗细均匀的导线制成,总电阻为R。

现用垂直于线框ab边的水平拉力,将线框以速度v向右沿水平方向匀速拉出磁场,此过程中保持线框平面与磁感线垂直,且ab边与磁场边界平行。

在线框被拉出磁场的过程中,求:(1)通过线框的电流大小;(2)线框中产生的焦耳热;(3)线框中a、b两点间的电压。

(1)(2)(3)线框产生的感应电动势E=Bl2v通过线框的电流I=。

(2)线框被拉出磁场所需时间t=此过程中线框中产生的焦耳热Q=I2Rt=。

(3)线框ab边的电阻R ab=R线框中a、b两点间电压U=IR ab=。

〚导学号06400477〛12.(优质试题·四川新津县月考)轻质细线吊着一质量为m=0.42 kg、边长为l=1 m、匝数n=10的正方形线圈,其总电阻为r=1 Ω。

在线圈的中间位置以下区域分布着磁场,如图甲所示。

磁场方向垂直纸面向里,磁感应强度大小随时间变化关系如图乙所示,整个过程线圈不翻转,重力加速度g取10 m/s2。

(1)判断线圈中产生的感应电流的方向是顺时针还是逆时针;(2)求线圈的电功率;。

相关文档
最新文档