高性能纤维及复合材料
T1000 级碳纤维及其复合材料研究与应用进展

摘要本文介绍了T1000 级碳纤维的发展历程,综述了T1000 级碳纤维及其复合材料的研究及应用情况,指出了国产T1000 级碳纤维应用研究需要关注的问题。
1引言碳纤维是一种碳元素组成占总质量90%以上,具有高强度、高模量、耐高温等优点的纤维材料。
最早可追溯至18 世纪的爱迪生和斯旺,1959年日本首先发明了聚丙烯腈(PAN)基碳纤维,而当下碳纤维的核心技术和产能被日本、美国以及一些欧洲发达国家和地区掌控。
T1000 级碳纤维作为碳纤维中的高端产品,在航空航天领域有着极大的用途。
高性能碳纤维的研究可以改善固体火箭发动机消极质量、提升载药量、提高质量比,对于先进武器的发展研究以及航天探索有重大意义。
目前国外已经大量使用T1000 级碳纤维的缠绕容器和固体火箭发动机壳体,因此开展国产T1000级碳纤维及其复合材料的应用研究迫在眉睫。
碳纤维的制备包括物理、化学、材料科学等多个领域的内容,总体分为纺丝原液的聚合、聚丙烯腈原丝的纺制、预氧化和碳化三个步骤,有众多因素需要调控。
根据缺陷理论和最弱连接理论,制备过程中产生的缺陷是影响碳纤维性能的主要因素,为保证碳纤维的性能,需要对每个工艺流程中工艺参数精准调控,由于加工过程中的各参数之间相互作用十分复杂,且目前一些工艺流程中的实际形成和演变机理不明,也使得高性能碳纤维,尤其是T1000 级碳纤维的研制有很大困难。
T1000 级碳纤维的研究主要包括碳纤维本身性能的研究、碳纤维复合材料的改性研究、碳纤维复合材料使用性能的研究几个方面。
由于T1000 级碳纤维本身的高性能、价格昂贵等原因,且国产T1000 级碳纤维还没有正式投入应用的报道,在实际应用方面主要介绍国外T1000 级碳纤维在航空航天以及其他领域的应用情况。
2T1000 级碳纤维性能研究现状1962 年正式开展PAN 基碳纤维的研制,1986 年研制出T1000G 碳纤维。
2014 年 3 月,通过碳化精细控制技术在纳米层级内控制纤维结构,成功研发出T1100G 碳纤维,2017 年 6 月强度由6600MPa 更新至7000MPa,目前东丽已完成了T1200 碳纤维的量产。
复合纤维的相关标准及鉴别技术进展

复合纤维的相关标准及鉴别技术进展摘要:近年来,经济快速发展,社会不断进步,作为我国核心战略材料不能够缺少的构成,高性能纤维和复合材料是国家重大战略实施以及高端装备发展不可缺少的物质基础,同时也是促进新材料产业持续发展不可忽视的力量。
本文针对其产生的问题给予有效分析,同时提出我国高性能纤维与复合材料发展的路径为“产品自主、技术自主、体系自主”。
并且在这样的一个基础上,基于提高复合材料设计和应用能力,以及处置产业化成套装备存在的问题和建设联合创新平台等几个方面提出具体的解决措施,希望能够为提升高性能纤维与其复合材料技术以及产业高质量发展提供有益的参考。
关键词:复合纤维;标准;鉴别技术;进展引言复合纤维是将两种(或两种以上)高聚物熔体或溶液分别输人同一个纺丝组件中,在组件适当部位汇合,通过同一个喷丝孔中喷出而成为一根纤维,称为复合纤维。
复合纤维常用的聚合物材料主要包括聚乙烯(PE)、聚丙烯(PP)、聚酯、聚酰胺等。
常见的复合纤维有PE/PP复合纤维、PE/聚酰胺复合纤维、PE/聚酯复合纤维、聚酰胺/聚酯复合纤维、低熔点聚酯/普通聚酯复合纤维等。
随着纺丝技术的发展和纺织产品发展需求,目前越来越多的复合纤维被应用于纺织领域中,包括服装、医用和卫生用纺织品、各类揩布、纤维过滤材料、地毯、人造麂皮、保暖絮片、填充物、非织造布、特殊工作服和工业用纺织品等方面。
因此,研究并定性鉴别复合纤维具有重要的意义。
1我国高性能纤维及其复合材料的发展思路①需要保障核心品种。
需要对纤维材料的保障能力给予适当的提升,只有这样才能够填补高端品种在生产过程中存在的空缺,使我国纤维材料在核心产品上保持技术的安全。
②在产业生产上需要注重自主控制。
对于基础原材料以及所使用到的装备和机电产品等必备的产业链潜存的隐患与技术上存在的短板进行排查,保障产业基础发展和再造。
③需要注重体系自主发展的基础原则。
需要建立一个符合企业和项目建设要求的发展体系,除此之外还需要注重国内战略性的产业市场发展,使其能够成为一个具有发展特点和产业发展优势的竞争市场,建立协同发展的研究体系,只有这样才能够使高性能纤维与其复合材料技术之间实现本土的创新发展并对其给予适当的支撑。
高性能纤维及复合材料

高性能纤维及复合材料高性能纤维及复合材料是一种具有优异性能的材料,它们在航空航天、汽车、船舶、体育器材、军事装备等领域都有着广泛的应用。
高性能纤维及复合材料具有轻质、高强度、耐热、耐腐蚀等特点,因此备受青睐。
本文将从高性能纤维及复合材料的种类、特点以及应用领域展开阐述。
首先,高性能纤维及复合材料主要包括碳纤维、玻璃纤维、芳纶纤维等。
碳纤维具有高模量、高强度、低密度的特点,被广泛应用于航空航天、汽车、体育器材等领域。
玻璃纤维具有良好的绝缘性能和化学稳定性,常用于建筑、船舶、电子等领域。
芳纶纤维具有优异的耐热性和耐化学腐蚀性,广泛应用于防弹衣、航空发动机零部件等领域。
其次,高性能纤维及复合材料具有轻质、高强度、耐热、耐腐蚀等特点。
这些特点使得高性能纤维及复合材料在航空航天领域可以减轻飞机、航天器的重量,提高载荷能力和燃料效率;在汽车领域可以提高汽车的安全性能和燃油经济性;在船舶领域可以提高船舶的抗风浪能力和航行速度;在体育器材领域可以提高器材的性能和使用寿命;在军事装备领域可以提高装备的防护性能和机动性。
最后,高性能纤维及复合材料在航空航天、汽车、船舶、体育器材、军事装备等领域都有着广泛的应用。
在航空航天领域,高性能纤维及复合材料被用于制造飞机机身、航天器外壳等部件;在汽车领域,高性能纤维及复合材料被用于制造车身、发动机零部件等部件;在船舶领域,高性能纤维及复合材料被用于制造船体、船舶结构件等部件;在体育器材领域,高性能纤维及复合材料被用于制造滑雪板、自行车车架等器材;在军事装备领域,高性能纤维及复合材料被用于制造防弹衣、武器零部件等装备。
综上所述,高性能纤维及复合材料具有广泛的应用前景,其轻质、高强度、耐热、耐腐蚀等特点使其在各个领域都有着重要的地位。
随着科技的不断进步,相信高性能纤维及复合材料会有更加广阔的发展空间。
建筑材料的高性能复合材料有哪些

建筑材料的高性能复合材料有哪些在现代建筑领域,高性能复合材料的应用越来越广泛,它们为建筑的设计和建造带来了诸多创新和突破。
高性能复合材料具有优异的性能,能够满足各种复杂的建筑需求。
接下来,让我们一起了解一下建筑材料中常见的高性能复合材料。
碳纤维增强复合材料(CFRP)是一种备受瞩目的高性能复合材料。
碳纤维具有高强度、高模量和轻质的特点,与树脂基体结合后,形成的 CFRP 具有出色的力学性能。
在建筑中,CFRP 可用于加固混凝土结构,如桥梁、梁柱等。
它能够显著提高结构的承载能力和耐久性,延长建筑的使用寿命。
此外,CFRP 还可用于制造新型的建筑构件,如预制板、屋面板等,其轻质的特性有助于减轻建筑的自重,降低基础造价。
玻璃纤维增强复合材料(GFRP)也是常见的高性能复合材料之一。
玻璃纤维成本相对较低,且具有良好的耐腐蚀性和绝缘性。
GFRP 在建筑中的应用十分广泛,如用于制作通风管道、水箱、遮阳板等。
它能够在恶劣的环境条件下保持稳定的性能,减少维护成本。
同时,GFRP 还可用于建筑外立面的装饰,赋予建筑独特的外观效果。
芳纶纤维增强复合材料(AFRP)具有高韧性和抗冲击性的特点。
在建筑抗震领域,AFRP 可用于加固结构节点和关键部位,提高建筑在地震作用下的安全性。
此外,AFRP 还可用于制造防弹和防爆建筑构件,保障特殊场所的安全。
除了纤维增强复合材料,聚合物基复合材料也在建筑中发挥着重要作用。
例如,聚碳酸酯板具有良好的透光性和耐冲击性,常用于建筑的采光顶和幕墙。
它能够让自然光线充分进入室内,减少人工照明的需求,同时提供有效的防护。
另外,热塑性复合材料在建筑中的应用也逐渐增多。
这类材料具有可回收、加工性能好等优点。
比如,它们可以被用于制造建筑模板,提高施工效率和降低成本。
金属基复合材料在一些特殊建筑中也有应用。
铝基复合材料具有轻质、高强的特点,可用于制造高层建筑的幕墙框架,减轻结构自重的同时保证结构的稳定性。
国外高性能纤维及其复合材料在高速列车的应用

种新 设计车 厢 与原铝质 车 体相 比 ,可 减重4 %,制 0 程也 缩短 了5 % 。这种 新研 发 的车体 已于2 0 年4 0 07
月在普 通铁轨 线上 试运行 ,截 止2 0 年 底 已运 行2 07 0
1 6 超细 纤维 毡 .
熔 喷 法 超 细 纤 维 毡 具 有 表 面 积 大 和 微 孔 均 匀 性 高 的特 点 ,适 宜用 作 飞机 和 高速 列车 的空 调 精 密 过滤 滤 材 。纤 维 品种 可 根 据 需 要选 用 聚 丙 烯 纤 维 ( 价 ,但 不 耐 热和 不 阻燃 )、氧 化 铝 纤 维 廉 ( 高温 和 不 燃 )、 活性 碳 纤 维 ( 效和 阻燃 ) 耐 高
13 对 位芳 酰胺 (P A . P T )纤维
1 高速列 车用 高科 技纤维 新材料简介
11 碳 纤维 .
其 特 点 是 高 强 度 、 高 模 量 、 耐 高 温 、 耐 腐
其 特 点 是 高 强 度 、 高 模 量 、 耐 高温 和 抗 腐
蚀 ,但 不抗 燃 ,耐 紫 外光 性 略 差 。其 复 合 材料 具
( 国特种合 成纤维信 息 中心 ,北京 10 2 ) 全 008
摘 要: 简述 了数种 高性能纤维 的特性 ,并列举韩 国铁道研 究所和韩国纤维玻璃公 司承建  ̄CF 车厢 、 日本新干线N7 0 . RP 0 ,  ̄
列 高速列车 、意 大利E R50 T 0  ̄速列车车头 、法 国国营铁路公 司的T V 速 列车所使 用的高性能纤维复合材料 情 T 和E R1 0 0 0 G r  ̄ 况。最后 ,列举 了国 内外 专利所发表 的有 关 高速 列车所用的各种部件的材料 。
情 景 ,该罐 长3 I 01、直径 5i,操 作温 度 范 围从室 T n
纤维增强复合材料

通过添加填料、改性剂等对基体材料进行改性,改善基体材料的性能,提高复合 材料的综合性能。
界面设计与优化
界面设计原则
设计良好的界面结构,确保纤维与基体材料之间有足够的粘 结力和剪切力,提高复合材料的力学性能。
界面优化技术
采用涂层技术、表面处理等方法对界面进行优化,改善界面 相容性,提高复合材料的整体性能。
纤维浸润
预浸料制备
将浸润后的纤维进行连续化或裁剪, 制备成一定规格的预浸料。
将纤维(如玻璃纤维、碳纤维等)浸 入树脂中,使纤维表面均匀涂覆树脂。
纤维铺层与成型
01
02
03
铺层设计
根据产品结构和性能要求, 进行铺层设计,确定纤维 的铺设方向、层数和顺序。
定位与固定
将预浸料按照设计要求铺 设在模具上,并进行定位 和固定,确保纤维位置准 确。
通过改进生产工艺和设备, 降低生产成本,提高生产 效率。
原材料国产化
推动原材料的国产化进程, 降低原材料成本,提高供 应链的稳定性。
规模化生产
通过扩大生产规模,实现 规模经济效应,降低单位 产品的成本。
环境友好性与可持续发展
环保生产工艺
采用环保型的生产工艺和设备, 降低生产过程中的环境污染。
可循环利用
认证与评价机制
建立认证和评价机制,对复合材料的质量和性能进行评估和认证, 提高市场竞争力。
05 纤维增强复合材料的应用 案例
航空航天领域的应用
飞机结构
纤维增强复合材料因其高强度、轻质和耐腐蚀的特性,广泛应用于 飞机结构,如机翼、尾翼和机身。
航天器结构
在航天器设计中,纤维增强复合材料用于制造卫星平台、火箭发动 机壳体和航天飞机隔热罩。
土木工程用高性能纤维复合材料制备及应用关键技术项目简介

附件1《土木工程用高性能纤维复合材料制备及应用关键技术》项目简介土木工程用高性能纤维增强复合材料(High Performance Fiber Reinforced Polymer,简称HP-FRP)主要指以碳纤维、高性能玻璃纤维增强的树脂基复合材料(即CFRP和HP-GFRP),具有高强、轻质、耐久、可设计等优点,能满足土木工程提高结构的安全性与耐久性、延长使用寿命的迫切需求。
上世纪90年代,在我国土木工程用HP-FRP的技术领域,缺少满足要求的产品、缺少专用技术装备、缺少相关标准。
1996年,本项目组率先在国内开展了CFRP加固混凝土结构关键技术的研究,并先后承担完成了863计划、国家科技支撑计划、国家自然科学基金重点项目等11项国家级科技项目。
1998年完成了国内首个应用示范项目,并开始编制首部FRP材料及应用技术标准,1999年率先研发成功了具有自主知识产权的结构加固补强用织物及配套树脂,2000年率先研发成功了第一代土木工程用HP-FRP板、筋成套技术装备,填补了国内空白。
随后,项目组持续开展土木工程用HP-FRP 的相关制备技术、产品和装备的研发,不断更新换代;2005年,研发出了拉挤-缠绕装备,能生产2600MPa级CFRP筋材;2012年,在国际上首创了拉挤-缠绕-绞合一体化连续生产装备,能高效、稳定、低成本的生产CFRP绞线产品。
项目组在HP-FRP制品与制造装备方面实现重大突破,产品出口到20多个国家和地区,技术水平和市场占有率均居国内首位。
此外,在HP-FRP结构加固技术和新型结构技术的研究中取得新突破,相继建成国内首座CFRP拉索斜拉桥、国内首栋CFRP悬挂建筑、国内首个万米级全FRP工业防腐平台、国内首个全FRP桁架桥,为HP-FRP在土木工程中应用起到了重要的示范作用,奠定了其大规模工程应用的技术基础。
在中国有3000多家专业公司采用了本项目的研究成果。
项目组研发了5类HP-FRP材料、3大系列6个品种65个型号的专用制造装备,获得9件国内发明专利、31件实用新型专利、1项国家级工法,3项专有技术;主编国家标准4部、行业标准6部;出版专著5部,发表论文254篇,其中SCI收录11篇,EI收录57篇,中文核心180篇,研究论著在国内外主要期刊数据库中被他人引用共5001次,得到国内外同行的高度评价,并被美国国家标准引用,取得了多项国际领先水平的技术成果。
纤维增强复合材料

纤维增强复合材料在工程结构中的应用一、FRP材料简介:纤维增强复合材料(fiber reinforced polymer/plastic,简称FRP) 是由纤维材料与基体材料按一定定工艺复合形成的高性能新型材。
初期主要应用于航空、航天、国防等高科技领域,广泛应用于航天飞机、军舰、潜艇等军事装备上。
20世纪下半叶,随着FRP材料制造成本的降低,又因其轻质、高强、耐腐蚀等优点,成为土木工程的一种新型结构材料。
目前,在土木工程中应用的FRP材料主要有碳纤维增强复合材料(cFRP)、玻璃纤维增强复合材料(GFRP)和芳纶纤维增强复合材料(AFRP)三种。
近年来,PBO纤维和玄武岩纤维也开始应用于土建工程中,并取得了良好的效果。
目前,FRP材料在我国土木工程中应用最多的是用于结构加固补强。
FRP加固修复技术的研究和应用已在我国逐渐展开,且正在以高速度发展。
在新建工程结构中,FRP结构和FRP组合结构的应用也日益受到工程界的重视。
FRP材料在土木工程中的应用和研究已成为了一个新的热点。
二、FRP材料的优点:1、有很高的比强度,即通常所说的轻质高强,因此采用FRP材料可减轻结构自重。
在桥梁工程中,使用FRP结构或FRP组合结构作为上部结构可使桥梁的极限跨度大大增加。
理论上,用传统结构材料桥梁的极限跨度在5000 m以内,而上部结构使用FRP结构可达8000 m以上,有学者已经对主跨长达5000 m的FRP悬索桥进行了方案设计和结构分析E8]。
在建筑工程中,采用FRP材料的大跨空间结构体系的理论极限跨度要比传统材料结构大2~3倍,因此,FRP结构和FRP组合结构是获得超大跨度的重要途径。
在抗震结构中,FRP 材料的应用可以减轻结构自重,减小地震作用。
另外,FRP材料的应用也能使结构的耐疲劳性能显著提高。
2、有良好耐腐蚀性,FRP可以在酸、碱、氯盐和潮湿的环境中长期使用,这是传统结构材料难以比拟的。
在美国每年因钢材腐蚀造成的工程结构损失高达700亿美元,近1/6的桥梁因钢筋锈蚀而严重损坏;加拿大用于修复因老化损坏的工程结构的费用达490亿加元;我国目前因钢材锈蚀而造成的损失也在逐年增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高性能纤维及复合材料
新材料全球交易网
(新材料全球交易网提供)高性能纤维及复合材料属于高分子复合材料,它是由各种高性能纤维作为增强体置于基体材料复合而成。
其中高性能纤维是指有高的拉伸强度和压缩强度、耐磨擦、高的耐破坏力、低比重(g/m3) 等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维。
高分子复合材料与传统材料相比,具有更高的比强度、耐化学品和耐热冲击性,以及更大的设计灵活性。
按照合成的原料不同,高性能纤维主要分为碳纤维、芳纶纤维、特殊玻璃纤维、超高分子聚乙烯纤维等,其中碳纤维、芳纶纤维、超高分子量聚乙烯纤维是当今世界三大高性能纤维。
高性能纤维的发展是一个国家综合实力的体现,是建设现代化强国的重要物资基础。
高性能纤维及复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在建筑、通信、机械、环保、海洋开发、体育休闲等国民经济领域具有广泛的用途。
中国高性能纤维及复合材料自动铺带机工程化研制取得进展
人工、半自动人工铺放与自动铺放对比(资料图)
先进复合材料因比模量、比强度高,抗疲劳、耐腐蚀、可设计和工艺性好,成为飞机结构重要发展方向之一。
轻质、高强、性能优异的高性能纤维及复合材料成为理想的结构用材,并逐渐从小型、简单、次承力结构向大型、复杂、主承力结构过渡。
国外军机上复合材料用量普遍占结构重量的25%~50%;在民用领域,波音公司787飞机的复合材料用量达到50%,而A350XWB复合材料用量达到了创纪录的52%。
用于高性能纤维及复合材料结构制造的先进专用工艺装备在国外迅速发展,特别是基于预浸料的复合材料自动铺放设备,包括自动铺带机和铺丝机,已在国外最先进的战机和民机制造中得到广泛应用。
这些先进铺放装备具有人工/半自动人
工铺放所不可比拟的优点(对比如表1所示)。
复合材料铺放制造技术包括铺放装备技术、铺放CAD/CAM技术、铺放工艺技术、预浸料制备技术、铺放质量控制、一体化协同数字化设计等一系列技术,主要是自动铺放装备技术、应用软件技术以及材料工艺技术的融合集成。
其中自动铺放装备技术是整个技术的基础和核心,而铺放装备技术中最关键的是铺放头多功能集成技术和多坐标、多系统运动协同控制技术。
复合材料铺放制造过程为铺放头在多坐标联动控制下,快速准确地运动到复合材料将要铺放的模具表面,并按照铺放程序的指令准确、无误、高效、自动地完成装在专用卷轴上的预浸料(带或丝束)的铺放,包括完成送料、定位、切割、加热、压紧、回收等动作,保证铺放质量满足工艺要求。
欧美少数几个国家已具有较为成熟的复合材料自动铺放设备设计制造能力,研制了立式、卧式、龙门式、集成工业机器人等各种结构形式的复合材料自动铺带机和铺丝机,在机身、机翼、进气道等飞机大型复杂复材结构制造中得到应用,为提升高性能纤维及复合材料在军机和民机中的用量做出了重要贡献。
国内在该设备研制方面尚处于原理性研究和工程样机研制阶段。
国内航空企业陆续进口了几台复合材料自动铺带机,但适合复杂复合材料结构制造的铺丝机尚未实现零的突破。
中航工业制造所通过国际合作、集成创新,先后开展了高性能纤维及复合材料自动铺带机和自动铺丝机工程化研制,已取得阶段性成果和进展。
自动铺带机是小曲率、翼面结构的典型制造装备。
中航工业制造所研制成功的大型复合材料自动铺带机(如图1所示)由多坐标铺带头、高速移动横梁、高架桥式支撑平台等组成,配备X、Y、Z、A、C坐标轴,具有五轴联动功能,以满足自动铺带的基本运动要求。
图1 大型复合材料自动铺带机
设备关键精度指标达到国际先进水平,可适用于宽度75mm/150mm/300mm三种规格复合材料预浸带的两步法自动铺叠,加工范围可达到20000mm×6500mm×1200mm,最大直线坐标运动速度为40000mm/min。
该设备为国
内首台工程化应用级别的适合于飞机翼面类高性能纤维及复合材料结构制造的自动铺带机,已在部分新机复材机构研制中得到应用。
与人工铺叠相比,自动铺带机可提高效率、降低成本,通过对成形参数和技术指标的精确控制,保障构件质量的可靠性和稳定性。
但其存在不能实现大曲率结构铺叠、复杂曲面结构铺叠等局限。
针对该局限,中航工业制造所采取国际合作和自主创新两步走的技术路径,启动了复合材料丝束自动铺放机(铺丝机)研制进程。
通过进行国际合作开展集成创新,研制了国内第一台适合飞机大曲率复杂复合材料结构制造的自动铺丝机,现已在用户现场基本完成主体装配和调整。
后续将重点解决丝束铺放头、预浸丝束、铺放工艺等关键技术,突破设备、材料以及工艺技术,全面解决高性能纤维及复合材料铺放制造问题。
更多高性能纤维及复合材料资讯,请继续关注新材料全球交易网。