第一点是相似三角形面积比等于对应边长比的平方
苏科版数学九年级下册6.5《相似三角形的性质》教学设计

苏科版数学九年级下册6.5《相似三角形的性质》教学设计一. 教材分析苏科版数学九年级下册6.5《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个进一步学习的课题。
这部分内容主要让学生掌握相似三角形的性质,包括相似三角形的对应边成比例,对应角相等,以及相似三角形的面积比等于相似比的平方。
通过这部分的学习,学生可以更好地理解相似三角形的性质,并为后续的解三角形和不规则图形的面积计算打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但部分学生对相似三角形的性质理解不够深入,容易与全等三角形的性质混淆。
因此,在教学过程中,需要针对这部分学生进行重点讲解和引导。
三. 教学目标1.理解相似三角形的性质,包括对应边成比例,对应角相等。
2.能够运用相似三角形的性质解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.相似三角形的性质的理解和运用。
2.相似三角形的面积比的计算。
五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。
通过设置问题,引导学生思考和探索相似三角形的性质;通过案例分析,让学生理解和运用相似三角形的性质;通过小组合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和问题。
2.准备教学PPT和板书设计。
3.准备相关的练习题和作业。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:相似三角形的性质。
例如,已知两个相似三角形的边长比例为2:3,求这两个三角形的面积比。
2.呈现(10分钟)讲解相似三角形的性质,包括对应边成比例,对应角相等。
通过PPT和板书,展示相似三角形的性质及其证明过程。
3.操练(10分钟)让学生通过PPT上的练习题进行自主训练,巩固相似三角形的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一组案例分析,让学生运用相似三角形的性质解决问题。
北师大版数学九年级上册4.7.2相似三角形的性质面积之比教学设计

2.创设生活情境,将几何知识与实际应用相结合,提高学生的应用意识。
-结合现实生活中的实例,如地图、照片等,让学生感受相似三角形面积比在实际中的应用。
-设计相关例题,让学生运用相似三角形面积比解决实际问题,提高学生的应用能力。
3.注重启发式教学,激发学生的思维能力和创新意识。
-学生代表汇报:“我们小组发现,在地图上,两个相似地区的面积比等于它们的比例尺的平方。”
-教师点评,给予肯定和鼓励。
(四)课堂练习
1.设计练习题:根据相似三角形面积比的知识点,设计具有代表性的练习题。
-练习题:“已知三角形ABC与三角形A'B'C'相似,相似比为3:2,求它们的面积比。”
-学生独立完成练习题,教师进行辅导。
北师大版数学九年级上册4.7.2相似三角形的性质面积之比教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的定义及判定方法,理解相似比的概念。
2.引导学生通过探究发现相似三角形面积的性质,能够运用面积比计算方法解决实际问题。
3.培养学生运用几何图形的性质和定理进行推理、论证的能力,提高几何直观和空间想象能力。
-示例:假设有两块相似的地块,已知它们的相似比为5:3,求这两块地块的面积比。
3.提高拓展题:挑选一道具有一定难度的相似三角形面积比问题,鼓励学生挑战自我,培养他们的逻辑思维和解决问题的能力。
-示例:已知三角形ABC与三角形A'B'C'相似,且三角形ABC的面积为24平方单位,求三角形A'B'C'的面积。
4.小组合作题:以小组为单位,共同探讨相似三角形面积比在生活中的其他应用,并撰写一篇小报告,分享学习心得。
4.7.2相似三角形的性质面积之比(教案)

1.教学重点
a.理解并掌握相似三角形的面积比等于相似比的平方这一核心性质。
-通过实际图形的观察和比较,让学生感受面积比与相似比之间的关系。
-用具体的数字例证,强化学生对面积比等于相似比平方的理解。
b.学会应用相似三角形的面积比解决实际问题。
-结合实际情境,设计具有挑战性的问题,引导学生运用面积比知识解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的性质面积之比的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形面积比的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,实践活动环节,学生们在操作过程中对实验数据的处理和归纳总结能力还有待提高。针对这一点,我打算在后续的教学中,加强学生对实验数据的分析和总结,让他们在实践中学会如何提炼关键信息,提高归纳总结能力。
在课堂总结环节,虽然大部分学生能够跟随我的思路回顾所学内容,但仍有个别学生显得心不在焉。为了提高课堂总结的效果,我考虑在今后的课程中,尝试让学生自己来总结所学知识点,以此来检验他们对课堂内容的掌握程度。
3.重点难点解析:在讲授过程中,我会特别强调相似三角形面积比的概念和计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形面积比相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形面积比的基本原理。
几何形的相似性质与计算方法

几何形的相似性质与计算方法几何形的相似性质是指在形状上相似的图形,在某些性质上也具有相似的特点。
相似性质的存在使得我们可以通过已知的几何形来推导出其他几何形的信息,从而简化几何问题的解决过程。
本文将介绍几何形的相似性质以及相似形计算方法的应用。
一、几何形的相似性质1. 边长比例相似形的边长比例是相等的,即对于两个相似的三角形,其对应边长之比相等。
例如,若三角形ABC和三角形DEF为相似三角形,则有AB/DE = BC/EF = AC/DF。
2. 角度相等相似形的对应角度是相等的,即对于两个相似的三角形,其对应角度相等。
例如,若三角形ABC和三角形DEF为相似三角形,则∠A = ∠D,∠B = ∠E,∠C = ∠F。
3. 面积比例相似形的面积比例等于对应边长的平方比例。
例如,若三角形ABC 和三角形DEF为相似三角形,则有面积(△ABC)/面积(△DEF) =(AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2。
二、相似形的计算方法1. 相似三角形的计算对于已知的相似三角形,我们可以利用已知的信息计算未知的边长和角度。
a. 已知边长比例和一个角度:若知道两个对应边长的比例以及一个对应角度,可以利用正弦定理或余弦定理来计算未知边长或角度。
b. 已知两个角度:若知道两个对应角度,则可以通过求和或差的方法计算第三个对应角度,再利用正弦定理或余弦定理计算未知边长或角度。
c. 已知面积比例和一个边长比例:若知道两个对应边长比例以及面积比例,可以利用边长比例得到未知边长的比例,再利用面积比例计算未知边长。
2. 相似多边形的计算对于相似的多边形,可以利用比例关系和面积比例来计算未知边长和面积。
a. 边长比例:若知道两个相似多边形的对应边长比例,则可以通过边长比例计算未知边长的长度。
b. 面积比例:若知道两个相似多边形的面积比例,则可以通过面积比例计算未知多边形的面积。
三、相似性质的应用举例1. 测量高楼高度当无法直接测量高楼的高度时,可以利用相似性质来计算。
2023年中考数学必考特色题型讲练【选择题】必考重点09 相似三角形的判定与性质

【填空题】必考重点09 相似三角形的判定与性质相似三角形的判定与性质一直是江苏省各地市考查的重点,难度中等或较难,常作为压轴题考查。
在解相似三角形的判定与性质的有关题目时,首先要求考生掌握证明三角形相似的条件和方法,相似三角形的对应边成比例、对应角相等,对应角平分线、中线、高的比等于相似比,相似三角形的周长之比等于相似比,面积之比等于相似比的平方。
其次要能够运用相似三角形的性质,列出方程,求出相应线段的长度或者探索各线段之间的数量关系。
【2022·江苏苏州·中考母题】如图,在平行四边形ABCD 中,AB AC ⊥,3AB =,4AC =,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AEC F 的周长为______.【考点分析】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.【思路分析】根据作图可得MN AC ⊥,且平分AC ,设AC 与MN 的交点为O ,证明四边形AECF 为菱形,根据平行线分线段成比例可得AE 为ABC 的中线,然后勾股定理求得BC ,根据直角三角形中斜边上的中线等于斜边的一半可得AE 的长,进而根据菱形的性质即可求解.【2022·江苏常州·中考母题】如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部..被染色的区域面积是______.【考点分析】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.【思路分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【2022·江苏宿迁·中考母题】如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点H 所经过的路径长是_____.【考点分析】本题主要考查了相似三角形的判定与性质,勾股定理,圆周角定理,以及弧长等知识,判断出点H 运动的路径长为PN 长是解答本题的关键.【思路分析】根据题意知EF 在运动中始终与MN 交于点Q ,且AQM FQN ∆∆, :1:2,NQ MQ =点H 在以BQ 为直径的PN 上运动,运动路径长为PN 的长,求出BQ 及PN 的圆角,运用弧长公式进行计算即可得到结果.【2021·江苏镇江·中考母题】如图,点D ,E 分别在△ABC 的边AC ,AB 上,△ADE ∽△ABC ,M ,N 分别是DE ,BC 的中点,若AM AN =12,则ADE ABC S S =__.【考点分析】本题考查了相似三角形的性质,掌握相似三角形面积的比等于相似比的平方、相似三角形对应中线的比等于相似比是解题的关键.【思路分析】根据相似三角形对应中线的比等于相似比求出DE BC,根据相似三角形面积的比等于相似比的平方解答即可.1.(2022·江苏淮安·一模)如图,在正方形ABCD 中,8AB =,点H 在AD 上,且2AH =,点E 绕着点B 旋转,且3BE =,在AE 的上方作正方形AEFG ,则线段FH 的最小值是______.2.(2022·江苏苏州·二模)如图,在ABC 中,2AC =,AB AD CD ==,36BAD ∠=︒,则AD =________.3.(2022·江苏泰州·二模)定义:如果三角形中有两个角的差为90°,则称这个三角形为互融三角形,在Rt △ABC 中,∠BAC = 90°,AB = 4 ,BC = 5 ,点D 是 BC 延长线上一点.若 △ABD 是“互融三角形”,则 CD 的长为________.4.(2022·江苏泰州·二模)如图1,在Rt ABC 中,90B ,BA BC =,D 为AB 的中点,P 为线段AC上一动点,设PC x =,PB PD y +=,图2是y 关于x 的函数图像,且最低点E 的横坐标是AB =______.5.(2022·江苏淮安·一模)如图,在边长为1的小正方形组成的网格中,四边形ABCD 和四边形CGFE 的顶点均在格点上,则两个四边形重叠部分(阴影部分)的面积为__________.6.(2022·江苏泰州·一模)如图,直线l 与圆O 相交于A 、B 两点,AC 是圆O 的弦,OC ∥AB ,半径OC 的长为10,弦AB 的长为12,动点P 从点A 出发以每秒1个单位的速度沿射线AB 方向运动.当△APC 是直角三角形时,动点P 运动的时间t 为 _____秒.7.(2022·江苏南京·一模)如图,在ABC 中,30B ∠=︒,点D 是AC 上一点,过点D 作∥DE BC 交AB 于点E ,DF AB ∥交BC 于点F .若5AE =,4CF =,则四边形BFDE 的面积为______.8.(2022·江苏苏州·一模)如图,矩形ABCD中,点E在边CD上,AC与BE交于点F,过点F作FG BC⊥于点G,若23DEEC=,则FGAB的值为______.9.(2022·江苏南京·模拟预测)图,在▱ABCD中,对角线AC,BD交于点O,AF平分∠BAC,交BD于点E,交BC于点F,若BE=BF=2,则AD=_____.10.(2022·江苏扬州·一模)ABCD中,BE CF=,连接AE、BF交于点H,连接DH并延长交BC于点G,若2AB BH==BG=__________.11.(2022·江苏无锡·一模)如图,在ΔABC中放置5个大小相等的正方形,若BC=12,则每个小正方形的边长为____.12.(2022·江苏苏州·二模)如图,在矩形ABCD 中,1AB =,3AD =.①以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;②分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为______.13.(2022·江苏泰州·二模)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 是△ABC 内部一点(不包括三条边),点F 、G 分别在AC 、AB 边上,且EF ⊥AC ,EG ⊥AB ,垂足分别为F 、G .点D 是AB 边的中点,连接ED ,若EF <EG ,则ED 长的取值范围是_________.14.(2022·江苏常州·二模)如图,正六边形ABCDEF 中,G 是边AF 上的点,113==GF AB ,连接GC ,将GC 绕点C 顺时针旋转60︒得,''G C G C 交DE 于点H ,则线段HG '的长为__________.15.(2022·江苏扬州·二模)如图,在锐角三角形ABC 中,8BC =,4sin 5A =,BN AC ⊥于点N ,CM AB ⊥于点M ,连接MN ,则△AMN 面积的最大值是______.16.(2022·江苏南通·二模)如图,正方形ABCD 的边长为5,E 为AD 的中点,P 为CE 上一动点,则AP BP +的最小值为______.17.(2022·江苏扬州·二模)定义:等腰三角形底边与腰的比叫做顶角α的正对(sad α).例如,在ABC 中,AB AC =,顶角A 的正对BC sadA AB ==底边腰.当36A ∠=︒时,36sad ︒=______________.(结果保留根号)18.(2022·江苏盐城·一模)如图,DE 是△ABC 的中位线,F 为DE 中点,连接AF 并延长交BC 于点G ,若2EFG S =△,则ABC S =___________.19.(2022·江苏无锡·一模)如图,点P 为线段AB 上一点,3AB =,2AP =,过点B 作任意一直线l ,点P关于直线l 的对称点为Q ,将点P 绕点Q 顺时针旋转90︒到点R ,连接PQ 、RQ 、AR 、BR ,则线段AR 长度的最大值为________.20.(2022·江苏盐城·一模)如图,在Rt ABC 中,CD 为斜边AB 的中线,过点D 作DE AC ⊥于点E ,延长DE 至点F ,使EF DE =,连接,AF CF ,点G 在线段CF 上,连接EG ,且180,2,3CDE EGC FG GC ∠+∠=︒==.下列结论:①12DE BC =;②四边形DBCF 是平行四边形;③EF EG =;④BC =______.(填序号)21.(2022·江苏连云港·一模)如图,以AB 为直径的半圆O 内有一条弦AC ,P 是弦AC 上一个动点,连接BP ,并延长交半圆O 于点D .若5AB =,4AC =,则DP BP 的最大值是________.22.(2022·江苏·扬州市邗江区梅苑双语学校一模)如图,在平行四边形ABCD 中,E ,F 分别是边AB ,AD 的中点,BF ,CE 交于点M ,若三角形BEM 的面积为1,则四边形AEMF 的面积为________.23.(2022·江苏南京·模拟预测)如图,在矩形ABCD 中,AB =6,E 是BC 的中点,AE 与BD 交于点F ,连接CF.若AE⊥BD,则CF的长为_____.24.(2022·江苏苏州·模拟预测)如图,矩形ABCD中,2BC=,E在边BC上运动,M、N在AB=,4+的最小值为______.对角线BD上运动,且25.(2022·江苏·连云港市新海初级中学一模)如图,矩形ABCD中,AB=4,AD=6,点E在边BC上,且BE∶EC=2∶1,动点P从点C出发,沿CD运动到点D停止,过点E作EF⊥PE交矩形ABCD的边于F,若线段EF的中点为M,则点P从C运动到D的过程中,点M运动的路线长为_______.【填空题】必考重点09 相似三角形的判定与性质相似三角形的判定与性质一直是江苏省各地市考查的重点,难度中等或较难,常作为压轴题考查。
有关相似三角形的比例计算与应用

有关相似三角形的比例计算与应用相似三角形是指具有相同形状但不一定相同大小的两个三角形。
在几何学中,我们经常需要计算相似三角形的比例关系以及应用它们解决问题。
在本文中,我们将讨论相似三角形的比例计算和应用。
相似三角形的比例计算主要涉及到三个方面:边的比例、角的比例和面积的比例。
首先,我们来看边的比例。
对于两个相似三角形,它们对应边的长度之比是相等的。
假设我们有两个相似三角形ABC和DEF,它们的对应边分别为AB和DE,BC和EF,AC和DF。
那么我们有如下比例关系:AB/DE = BC/EF = AC/DF这个比例关系可以用来计算相似三角形中未知边的长度。
例如,已知一个三角形的两条边的长度以及它们之间的比例,我们可以通过这个比例关系来计算第三条边的长度。
接下来,我们来看角的比例。
对于两个相似三角形,它们对应角的度数是相等的。
假设我们有两个相似三角形ABC和DEF,它们的对应角分别为∠A和∠D,∠B和∠E,∠C和∠F。
那么我们有如下比例关系:∠A = ∠D, ∠B = ∠E, ∠C = ∠F这个比例关系可以用来计算未知角的度数。
例如,已知一个三角形的两个角的度数以及它们之间的比例,我们可以通过这个比例关系来计算第三个角的度数。
最后,我们来看面积的比例。
对于两个相似三角形,它们的面积之比等于任意两边长之比的平方。
假设我们有两个相似三角形ABC和DEF,它们的对应边分别为AB和DE,BC和EF,AC和DF。
那么我们有如下面积比例关系:(面积ABC)/(面积DEF) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2这个比例关系可以用来计算相似三角形中未知三角形的面积。
例如,已知一个三角形的面积以及它与另一个相似三角形边长的比例,我们可以通过这个比例关系来计算另一个三角形的面积。
除了比例计算,相似三角形还有许多实际应用。
其中一个应用是测量较高物体的高度。
假设我们站在水平地面上的位置,并且测量了我们自己的身高和我们与物体之间的距离。
北师大版九年级数学上册说课稿:4.4探索三角形相似的条件

北师大版九年级数学上册说课稿:4.4 探索三角形相似的条件一. 教材分析《北师大版九年级数学上册》第四单元“相似三角形”的第四节“探索三角形相似的条件”是本单元的核心内容。
本节课主要让学生通过探究、归纳出三角形相似的判定方法,理解相似三角形的性质,为后续解决实际问题和进行几何证明打下基础。
教材从学生已知的图形出发,引导学生观察、思考、归纳,从而得出三角形相似的条件。
首先,通过两组三角形的图片,让学生直观地感受相似三角形的形状。
然后,引导学生通过测量三角形对应边的长度,比较对应角的大小,从而发现相似三角形的规律。
最后,通过几何图形的变换,让学生理解相似三角形的性质,并能够运用这些性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对三角形的相关概念有一定的了解。
但是,对于三角形相似的判定方法和性质,他们可能还比较陌生。
因此,在教学过程中,我将会引导学生从直观的图片出发,通过实际操作、观察、思考,逐步理解和掌握相似三角形的判定方法和性质。
三. 说教学目标1.知识与技能目标:让学生掌握三角形相似的判定方法,理解相似三角形的性质。
2.过程与方法目标:通过观察、操作、思考、归纳等过程,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:三角形相似的判定方法,相似三角形的性质。
2.教学难点:对相似三角形性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与、积极思考。
2.教学手段:利用多媒体课件、几何模型等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过两组相似三角形的图片,让学生直观地感受相似三角形的形状,引发学生的兴趣。
2.探究:引导学生观察、测量三角形对应边的长度,比较对应角的大小,从而发现相似三角形的规律。
3.归纳:学生进行小组讨论,归纳出三角形相似的判定方法,并能够运用这些方法解决实际问题。
一类三角形的面积比问题

一类三角形的面积比问题在我们学习数学的奇妙旅程中,三角形的面积比问题就像是一个藏在神秘宝盒里的小秘密,等着我们去揭开它的面纱。
今天,咱们就来好好聊聊这一类有趣的三角形面积比问题。
先来说说我曾经遇到过的一件小事儿。
有一次,我去公园散步,看到园丁师傅在修剪草坪。
那片草坪被分成了不同形状的区域,其中就有几个三角形。
这一下子就让我想到了三角形的面积比。
我就在想啊,如果这几个三角形的形状和大小不一样,它们的面积比会是怎样的呢?咱们回到数学的世界里。
三角形的面积比问题,其实在很多地方都能派上用场。
比如说,在几何图形的组合中,知道了两个三角形的面积比,就能更好地理解整个图形的构成和特点。
那怎么来算三角形的面积比呢?这可得从三角形的面积公式说起。
我们都知道,三角形的面积等于底乘以高除以 2 。
如果两个三角形的底和高的比例关系确定了,那它们的面积比也就清楚啦。
假设我们有两个三角形,一个三角形的底是 6 厘米,高是 4 厘米;另一个三角形的底是 3 厘米,高是 2 厘米。
第一个三角形的面积就是6×4÷2 = 12 平方厘米,第二个三角形的面积就是 3×2÷2 = 3 平方厘米。
它们的面积比就是 12 : 3 ,化简一下就是 4 : 1 。
再复杂一点,如果两个三角形有一个角相等,那它们的面积比就等于对应边的乘积之比。
比如说,有两个三角形,它们有一个角都是 60度,对应的两条边分别是5 厘米和2 厘米,那它们的面积比就是5×5 :2×2 ,也就是 25 : 4 。
有时候,题目会给我们一些更巧妙的条件。
比如告诉你一个三角形被一条中线分成了两个三角形,这时候,这两个三角形的面积是相等的哟!因为中线把底边平分了,高又是一样的,所以面积就相等啦。
还有一种情况也很常见,就是两个相似三角形的面积比。
相似三角形的对应边成比例,面积比就等于对应边比例的平方。
比如说,两个相似三角形的对应边比例是 3 : 2 ,那它们的面积比就是 3²: 2²,也就是 9 : 4 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一点是相似三角形面积比等于对应边长比的平方
Prepared on 22 November 2020
第一点是相似三角形面积比等于对应边长比的平方;第二点是同高不同底的两个三角形面积之比等于这两个三角形的底边之比
对应角相等,对应边成比例的两个三角形叫做相似三角形。
(similar triangles)互为相似形的三角形叫做相似三角形。
相似三角形的认识
对应角相等,对应边成比例的两个三角形叫做相似三角形。
(similar triangles)。
互为相似形的三角形叫做相似三角形
相似三角形的判定方法
根据相似图形的特征来判断。
(对应边成比例,对应角相等)
1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;
(这是相似三角形判定的引理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线分线段成比例的证明)
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
绝对相似三角形
1.两个全等的三角形一定相似。
2.两个等腰直角三角形一定相似。
3.两个等边三角形一定相似。
直角三角形相似判定定理
1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
三角形相似的判定定理的推论
推论一:顶角或底角相等的那个的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的性质
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方。
相似三角形的特例
能够完全重合的两个三角形叫做全等三角形。
(congruent triangles)
全等三角形是相似三角形的特例。
全等三角形的特征:形状完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。
1.相似三角形对应角相等,对应边成比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应、、半径等)的比等于相似比。
3.相似三角形的比等于相似比。
4.相似三角形的比等于相似比的。
5.相似三角形内切圆、外接圆比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6.若a:c =c:b,即c的平方=ab,则c叫做a,b的比例中项
d=a/b 等同于ad=bc.
8.必须是在同一平面内的三角形里
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比
特例--全等三角形
1.相似比为1
2.对应角相等
3.对应边相等
4.对应高相等
5.对应中线相等
6.对应角平分线相等
7.周长相等 8.面积相等。