浙教版八年级上册数学:5.3 一次函数(公开课课件)

合集下载

浙教版八年级上第五章一次函数图象与性质市级公开课课件

浙教版八年级上第五章一次函数图象与性质市级公开课课件

归纳
小结
拓展

A P(2,1) B
4
的解吗?
O
x
(2)你能求。 (2)在直线y=x-1上是否存在点C,使得△OCB与
△OAB面积相等?
(3)在直线y=x-1上 是否存在点D,使得 △DAB与△OAB面积 相等?
y
1 y x2 2
2
y x 1
1 y x 2 的图象上,则a与b的大小关系 2
是( A )
(A)a > b (C)a < b
(B)a = b (D)不能比较
3.一次函数图象与一次函数图象
(1)从图像上可以看出
y
1 x y20 2 x y 1 0
1 y x2 2
2
y x 1
2.一次函数图象与一次函数解析式的系数
若一次函数y=kx+b的图象经过一、三、四象 限,你能确定k与b的符号吗? 请你说说k,b的符号对函数图象的影响.
2.一次函数图象与一次函数解析式的系数
名称
函数表达式
系数符号
图象
性质 y随x增大 而增大
b>0 k>0 一 y=kx+b 次 函 (k≠0) 数 k<0 b<0 b=0 b>0 b<0 b=0
A
P(2,1)
4
O
B
x
一路下来,大家收获不小吧!
下面我们通过一张图来回顾一节这
个课的收获.
梳理
一次函数 性质 图象 再认识 一元一次方程 拓展 与一次函数相 关的面积问题
二元一次方程组 一元一次不等式
知识盘点:
引入
数形 结合
梳理
一次函数 的图象 及性质

八年级数学上册 5.3 一次函数(第2课时)课件 (新版)浙教版

八年级数学上册 5.3 一次函数(第2课时)课件 (新版)浙教版
解:由题意,可设 y=kx+b. ∵当 x=20 时,y=1 600;当 x=30 时,y=2 000.
20k+b=1 ∴ 30k+b=2 k=40, 解得 000, b=800.
600,
∴y 与 x 之间的函数表达式为 y=40x+800.
(2)如果有50名运动员参加比赛且全部费用由 运动员分摊,那么每名运动员需要支付多少元
14.(12分)鞋子的“鞋码”和鞋长(cm)存在一种换算关系, 下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码” 是表示鞋子大小的一种号码)
鞋长(cm) 鞋码(号) 16 22 19 28 21 32 24 38
(1)设鞋长为x cm,“鞋码”为y,试判断,x和y满足何种 函数关系? (2)求x,y之间的函数表达式. (3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少? 解:(1)一次函数(2)y=2x-10(x是一些不连续的值.一 般情况下,x取16,16.5,17,17.5,…,26,26.5,27等) (3)此人的鞋长为27 cm
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法


高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
3.(3 分)一次函数 y=kx+b,当 x=1 时,y=1;当 x=2 时,y=-4,则 k 与 b 的值为( C )

浙教版八年级数学上册5.3一次函数公开课优质PPT课件(2)

浙教版八年级数学上册5.3一次函数公开课优质PPT课件(2)
5.3 一次函数
第一课时 一次函数的概念
1.(4分)下列函数中,是正比例函数的是( A )
A.y=-8x
B.y=-x8
C.y=5x2+6
D.y=-0.5x-1
2.(4分)下列函数关系中表示一次函数的有( D )
①y=2x+1;②y=1x;③y=x+2 1-x;④s=60t;⑤y=100-25x.
(2)设x(单位:元)表示公民每月的收入,y(单位:元)表示 应交税款,当5 000≤x≤8 000时,请写出y关于x的函数关系 式.
(3)某公司一名职员2014年4月应交税款120元,问:该月 他的收入是多少元?
解:(1)12元
(2)y关于x的函数关系式为y=(x-5 000)×10%+
45=0.1x-455(5 000≤x≤8 000)
(1)分别求出0≤x≤200和x>200时,y与x的函数表达式. (2)小明家8月份交电费117元,小明家这个月用电多少千瓦 时?
解:(1)当0≤x≤200时,y=0.55x;当x>200时,y=0.7x-30
(2)小明家8月份用电210千瓦时
15.(15分)依法纳税是每个公民应尽的义务,从2011年 9月1日起,新修改后的《中华人民共和国个人所得税 法》规定,公民每月收入不超过3 500元,不需交税; 超过3 500元的部分为全月应纳税所得额,都应纳税, 且根据超过部分的多少按不同的税率纳税,详细的税 率如下表:
(1)求张老师借款后第一个月应还款数额; (2)假设贷款月利率不变,请写出张老师借款后第n(n是正 整数)个月还款数额p与n之间的函数关系式(不必化简); (3)在(2)的条件下,求张老师2016年7月份应还款数额. 解:(1)1 700元
(2)p=1 250+[90 000-(n-1)×1 250]×0.5% (3)1 525元

浙教版八年级数学上册教学优质课件53一次函数

浙教版八年级数学上册教学优质课件53一次函数

浙教版八年级数学上册教学优质课件53一次函数一、教学内容本节课,我们将深入探讨浙教版八年级数学上册第五章第三节内容,重点学习一次函数定义、图像、性质及其应用。

具体涉及教材第五章节“一次函数图像”、“一次函数性质”以及“一次函数应用”三个部分。

二、教学目标通过本节课学习,使学生能够:1. 理解并掌握一次函数定义及性质;2. 能够准确绘制一次函数图像;3. 学会运用一次函数解决实际问题。

三、教学难点与重点教学难点:一次函数图像绘制及性质理解。

教学重点:一次函数定义掌握及其在实际问题中应用。

四、教具与学具准备教具:黑板、粉笔、多媒体设备。

学具:直尺、圆规、铅笔、橡皮、练习本。

五、教学过程1. 实践情景引入通过展示一辆汽车以恒定速度行驶情景,引导学生思考速度和时间关系,引出一次函数概念。

2. 例题讲解讲解一次函数定义,举例说明如何根据给定条件求解一次函数表达式。

如:已知汽车行驶速度和时间,求行驶路程。

3. 随堂练习(1)已知某物体匀速直线运动速度和时间,求路程;(2)已知两个点坐标,求过这两个点一次函数表达式。

4. 课堂互动六、板书设计1. 一次函数定义2. 一次函数图像绘制方法3. 一次函数性质4. 一次函数在实际问题中应用七、作业设计1. 作业题目(1)已知一次函数表达式,求其图像上某一点坐标;(2)已知两个点坐标,求过这两个点一次函数表达式;(3)已知一次函数图像上两点,求该函数斜率和截距。

2. 答案(1)点(x,y)坐标为(x,f(x));(2)y=kx+b,其中k为斜率,b为截距;(3)斜率k=(y2y1)/(x2x1),截距b=ykx。

八、课后反思及拓展延伸1. 反思:本节课学生对一次函数定义、图像、性质掌握程度,以及在实际问题中应用能力。

2. 拓展延伸:引导学生探索一次函数与其他函数(如二次函数、指数函数等)关系,为后续学习打下基础。

重点和难点解析:一、教学难点与重点在教学过程中,我需要特别关注一次函数图像绘制及性质理解,这是本节课难点。

八年级数学上册5-3一次函数第1课时一次函数的概念习题课件新版浙教版

八年级数学上册5-3一次函数第1课时一次函数的概念习题课件新版浙教版
解得 m =-2.
1
2
3
4
5
6
7
8
9
7. 若 y 关于 x 的函数 y =( a -2) x + b 是正比例函数,则 a ,
b 应满足的条件是(
D
)
A. a ≠2
B. b =0
C. a =2且 b =0
D. a ≠2且 b =0
1
2
3
4
5
6
7
8
9
8. 已知函数 y =( m +1) x2-| m|+ n +4.
(1)当 m , n 为何值时,此函数是一次函数?
【解】根据一次函数的定义,得2-| m |=1, m +
1≠0,解得 m =1.∴当 m =1, n 为任意实数时,此函
数是一次函数.
1
2
3
4
5
6
7
8
9
(2)当 m , n 为何值时,此函数是正比例函数?
【解】根据正比例函数的定义,得2-| m |=1,
2 x -1,其中是一次函数的是(
A. ①⑤
B. ①④⑤
C. ②⑤
D. ②④⑤
A )
4. [母题 教材P151作业题T2]在一次函数 y =-2( x +1)+ x
-1
中,一次项系数为
1
2
3
-2
,常数项为
4
5
6
7
8
9
.

5. 已知 A , B 两地相距30 km,小天以6 km/h的速度从 A 地
m +1≠0, n +4=0,解得 m =1, n =-4,
∴当 m =1, n =-4时,此函数是正比例函数.

浙教版数学八年级上册全册课件

浙教版数学八年级上册全册课件
对于任意两个实数a和b,如果a>b,则b<a;如果a=b,则 b=a;如果a<b,则b>a。
04
第四章:平面直角坐标系
平面直角坐标系的定义与性质
定义
平面直角坐标系是由两条互相垂直、原点重合的数轴构成的平面几何图形。
性质
坐标系中的每一点都有唯一的坐标表示,坐标轴上的单位长度具有一致性,坐标 轴的方向是固定的。
欧几里得证明
欧几里得在《几何原本》中给出了勾 股定理的严格证明,利用了相似三角 形的性质和比例关系,证明了勾股定 理的正确性。
勾股定理的应用
实际问题解决
勾股定理在实际生活中有广泛应 用,如建筑、航海、航空等领域 ,可以通过勾股定理计算直角三 角形中的边长,解决实际问题。
数学竞赛题目
勾股定理也是数学竞赛中常见的 知识点,常常出现在代数、几何 等题型中,考察学生运用勾股定
感谢您的观看
THANKS
浙教版数学八年级上册全册 课件
汇报人: 202X-01-05
目 录
• 第一章:轴对称与轴对称图形 • 第二章:勾股定理 • 第三章:实数 • 第四章:平面直角坐标系 • 第五章:一次函数
01
第一章:轴对称与轴对称 图形
轴对称与轴对称图形的定义与性质
轴对称
如果一个平面图形沿着一条直线 折叠后,直线两旁的部分能够互 相重合,那么这个图形叫做轴对 称图形,这条直线叫做对称轴。
轴对称图形的性质
轴对称图形具有对称性,即图形 关于对称轴对称,其对应点连线 与对称轴垂直且等距。
轴对称与轴对称图形的判定与性质应用
判定方法
可以通过观察图形的形状和特点,判 断其是否具有轴对称性。也可以通过 折叠或旋转图形,观察其是否能够完 全重合来判断。

函数课件浙教版数学八年级上册

函数课件浙教版数学八年级上册
浙教版 八年级上册
第5章 一次函数
5.2 函数(2)
复习回顾
【1】函数
一般地,在某个变化过程中,设有两个变量 x 和 y ,如果对于变量 x 的每一个确
定的值, y 都有唯一确定的值与之对应,那么就说 y 是 x 的函数, x 叫做自变量.
【2】函数的三种表示方法
y = 2.88x+7
图象法
列表法
探索新知
【例4】一根长度为30cm的弹簧,一端固定.如果另一端挂上物体,在正常的弹性限
度内,所挂物体质量每增加1kg时,弹簧长度增加2cm,完成下列问题:①当挂物体
重3kg时,弹簧总长度为
cm;②在正常的弹性限度内,如果用x表示所挂物体
质量(单位kg),那么弹簧的总长度是多少厘米?③在正常的弹性限度内,若弹簧
行了分段计费,每户每月用水量在规定立方米及以下的部分和超出部分标准不
同.下表反应的是小亮家1﹣4月份用水量与应交水费情况:
1
2
3
4
月份
6
8
10
12
用水量(m3)
9
12
18
24
费用(元)
记小亮家12月份用水x m3(12月份用水量超过规定用水量),应交水费为y元,
求y关于x的函数关系式和自变量x的取值范围.
大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则
应付货款y(元)与商品件数x的函数关系式是(
)A.y=54x(x>2)
B.y=54x+10(x>2)
C.y=54x+90(x>2)
D.y=54x+100(x>
2)
【解析】解:∵x>2,∴销售价超过100元,超过部分为60x﹣100,∴y=100+

浙教版数学八年级上册5.3《一次函数》说课稿(2)

浙教版数学八年级上册5.3《一次函数》说课稿(2)

浙教版数学八年级上册5.3《一次函数》说课稿(2)一. 教材分析浙教版数学八年级上册5.3《一次函数》是学生在学习了平面直角坐标系、点的坐标、直线方程等知识的基础上,进一步学习一次函数的定义、性质、图象和应用。

本节内容是整个初中数学的重要基础,也是解决实际问题的重要工具。

教材从实际问题出发,引导学生认识一次函数,并通过探究一次函数的性质,让学生体会数学与生活的紧密联系。

二. 学情分析八年级的学生已经具备了一定的数学基础,对平面直角坐标系、点的坐标、直线方程等知识有一定的了解。

但学生在学习过程中,可能对一次函数的实际应用背景理解不够深入,对一次函数的性质探究可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知基础,引导学生从实际问题中认识一次函数,激发学生的学习兴趣,提高学生探究一次函数性质的积极性。

三. 说教学目标1.知识与技能:使学生掌握一次函数的定义、性质、图象,能运用一次函数解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,让学生经历一次函数性质的发现过程,培养学生的数学思维能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣,提高学生运用数学解决实际问题的能力。

四. 说教学重难点1.教学重点:一次函数的定义、性质、图象。

2.教学难点:一次函数性质的探究,一次函数在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用观察、实验、探究、讲解、讨论等方法,引导学生自主学习、合作学习。

2.教学手段:利用多媒体课件、黑板、粉笔等辅助教学。

六. 说教学过程1.导入新课:从实际问题出发,引导学生认识一次函数,激发学生的学习兴趣。

2.探究一次函数的性质:让学生通过观察、实验、探究等方法,发现一次函数的性质,培养学生的数学思维能力。

3.讲解一次函数的性质:教师讲解一次函数的性质,帮助学生理解和掌握。

4.应用一次函数解决实际问题:让学生运用一次函数的知识解决实际问题,提高学生运用数学解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1:中学一级教师的月工资收入为4000元,则应纳税所
得额为_5_0_0__元__,应纳个人所得税为 _1_5_元___.
问题2:电脑初级程序员的月工资收入为6000元,则应纳税所
得额为__2_5_0_0 ,应纳个人所得税为 1_4__5_元__.

2、国家2011年实行的有关个人所得税的规定,全月应纳税所得 额(指月工资中,扣除国家规定的免税部分3500元后的剩余部分) 不超过1500元的税率为3%,超过1500元至4500元部分的税率的 为10%。 1)设全月应纳税所得额为x元,且1500<x≤4500应纳个人所得税
探索三
(3)从三亚的农贸市场里花了10元买了7个带子,并去加 工点烹煮,需收加工费每个带子x元,这道菜共花了y元,
则y与x之间的关系式是 y=7x+10 ;
探索四
(4)某种商品每件售价5.8元,销售价y(元)与售出件
数x(件)之间的函数关系式是 y=5.8x ;
探索五
比较下列各函数,它们有哪些共同的特征?
当x=100时,y=30(元),
当x=200时,y=62(元)。
课堂小结
已知函数 y (m 1)xm2 m 1 是一次函数,求m的 值,并判断它是否为正比例函数.
(2)已知函数y=(m+1)x+(m2-1),则
当m =-1时,y不是x的一次函数; 当m≠-1 时,y是x的一次函数; 当m = 时,y是x的正比例函数.
1
若y+3与x-2成正比例,则y是x的( )
A、正比例函数 B、比例函数
C、一次函数
D、不存在函数关系
(3)等腰三角形ABC的周长为16cm,底边长为ycm,腰AB长为xcm, y与x之间的关系.
解:(1)y=6x y是x的一次函数,也是x的正比例函数
(2)y= ( x )2,y不是x的一次函数,也不是正比例函数 4
(3)y=-2x+16,y是x的一次函数,但不是x的正比例函数
例2 国家2011年实行的有关个人所得税的规定:全月 应纳税所得额(指月工资中,扣除国家规定的免税部分 3500元后的剩余部分)不超过1500元的税率为3%,超过 1500元至4500元部分的税率的为10%。
答:每月应缴个人所得税为95元。
练一练
3、一种移动通讯服务的收费标准为:每月基本服 务费30元,每月免费通话时间为120分,以后每分收 费0.4元。 (1)写出每月话费y关于通话时间x(x>120)的函数
解析式; y=0.4x-18 (x > 120)
(2)分别求每月通话时间为100分,200分的话费。
为y元,求y关于x的函数解析式和自变量的取值范围; 解:(1)y = 1500×3%+(x-1500)×10%
= 0.1x-105 (1500<x≤4500 ) ∴ 所求的函数解析式为y= 0.1x-105 (1500<x≤4500 )
(2)当x = 5500-3500=2000时 y = 0.1×2000-105=95(元)
解:设y=kx. 将x=-2,y=8代入得 8=-2k,k=-4 ∴y=-4x 当x=3时,y=-12.
例1 求出下列各题中x与y之间的函数关系式,并判断y是否为x的一
次函数?是否为正比例函数?
(1) 某农场种植玉米,每2)之间的关系.
(2)正方形周长x与面积y之间的关系;
y=5.8x S=3V h=0.2t+5 y=7x+10
y=5.8x S=3V h=0.2t+5 y=7x+10
自变量
x
V
t
x
自变量的系数 5.8 3
0.2
7
自变量的次数 1
1
1
1
观察上表:你能发现上面这几个函数有哪些共同的特征?
自变量的次数都是1次. 等号两边的代数式都是整式;
一次函数: 形如y=kx+b(k、b都是常数,且k ≠ 0)的 形式,则称y是x的一次函数 。 其中k叫做比例系数,b叫做常数项。
v
它不是一次函数,也不是正比例函数。
(4)y=2(3-x)
它是一次函数,不是正比例函数。
(5)S=x(50-x) 它不是一次函数,也不是正比例函数。
已知正比例函数y=kx,当x=-2时,y=6,求 比例系数k的值。
解:将x=-2,y=6代入得 6=-2k,k=-3.
已知y是x的正比例函数,当x=-2时,y=8,求 y关于x的函数表达式,以及当x=3时的函数值。
特别地, 当b=0时,一次函数y=kx+b 就成为y=kx (K为常数,K≠ 0),叫做 正比例函数。其中k叫做比例系数。
下列函数中,哪些是一次函数?哪些是正比例函数? 请说出系数k和常数b的值。
(1)
它是一次函数,是正比例函数
(2)y=
2 3
x+200
它是一次函数,不是正比例函数。
(3)t=
200
新浙教版数学八年级(上)
5.3 一次函数(1)
探索一
(1)杭州飞往三亚的航班大约飞行了3小时,杭州机 场距离三亚机场S(公里)与飞机速度V(公里/时)
之间的关系式是 S=3V ;
探索二
(2)路旁的一排椰子树大约高有5米,每年可长高0.2米,
t年后的椰树高度为h米.则h与t之间的关系式 h=0.2t+5 ;
相关文档
最新文档