整式的乘法(五)——乘法公式一
《整式的乘法》主要知识点解读

《整式的乘法》主要知识点解读-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《整式的乘法》主要知识点解读1.同底数幂的乘法:法则:同底数幂相乘,底数不变,指数相加。
公式: (,)m n m n a a a m n +=为正整数。
解读:(1)法则的条件必须是底数相同的幂相乘(幂的个数不限),而不是相加,法则的结论是底数不变,指数相加,要注意指数是相加而不是相乘。
(2)底数不同的幂相乘,不能用此法则;不要忽视指数是1的因数,如606c c c +≠。
(3)底数是和、差或其他形式的幂相乘,应将这些和或差看成一个整体,勿犯232233()()()()x y x y x y x y ++=++的错误。
2.幂的乘方:法则:幂的乘方,底数不变,指数相乘。
公式:()(,)m n mn a a m n =为正整数解读:(1)幂的乘方的底数指的是幂的底数,而不是乘方的底数,法则中的结论“指数相乘”是指幂的指数与乘方的指数相乘。
(2)不要把幂的乘方的性质与同底数幂的乘法性质混淆。
幂的乘方运算是转化为指数的乘法运算(底数不变);同底数幂的乘法是转化为指数的加法运算(底数不变)。
3.积的乘方:法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
公式:()().m m m ab a b m =为正整数解读:(1)法则中的积里的每一个因式是指组成积的所有因式,不能漏掉,且各自乘方后还是乘法运算。
(2)三个或三个以上的积的乘方也具有同样的性质,即().m m m m abc a b c =(3)幂的以上三种运算性质都可以逆用,并且逆用之后解决问题往往会很方便,请大家在学习中体会。
一、整式的乘法:1.单项式乘以单项式:法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式中出现的字母,连同它的指数作为积的一个因式。
解读:(1)单项式的乘法可分为三步:①把它们的系数相乘,包括符号的计算;②同底数幂相乘;③单独字母的处理。
5、整式的乘法及乘法公式

龙文教育个性化辅导教案学生 学校 年级 课次 科目教师日期时段课题 整式乘法及乘法公式教学目标 考点分析1、单项式与单项式、单项式与多项式、多项式与多项式相乘除的法则,熟练运用;2、熟练运用平方差公式、完全平方公式。
教学重点 难点1、运用乘法法则熟练进行计算;2、平方差公式与完全平方公式的应用;3、平方差公式与完全平方公式的逆用。
教学内容 乘法法则回顾:1.单项式乘法:单项式相乘,把它们的系数,相同字母分别相乘;2.单项式与多项式相乘法则:单项式与多项式相乘,就是单项式去乘多项式的每一项,再把所得的积相加(根据乘法对加法的分配率)。
3.多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的乘积相加(注意符号,不要漏算,最后结果不含同类项)【例1】计算:22(1)(3)(821)a a a --+ 22231(2)(2)()42x y xy xy -•-【例2】化简:(1)()(2)(2)()a b a b a b a b +--+- 2(2)5(21)(23)(5)x x x x x ++-+-【例3】若22(3)(3)x nx x x m ++-+的乘积中不含2x 和3x 项,求m 和n 的值新课讲授:乘法公式(1)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差,即 (a +b )(a -b )=a 2-b2注意:上式中a ,b 可以表示单项式,也可以表示多项式。
【例4】运用平方差公式计算:2211(1)()()22x y x y -+ (2)(41)(41)a a ---+(3)()()m n m n a b a b +- (4)()()a b c a b c -+++【例5】利用平方差公式简化计算:(1)59.860.2;⨯ (2)10298;⨯ 2(3)123461234512347;-⨯ 2(4)2008【拓展】计算:242(1)(21)(21)(21)(21)n ++++23221111(2)(1)(1)(1)(1)23410----2222222(3)1009998979621-+-++-【例6】观察下列等式:9-1=8,16-4=12,,36-16=20…这些等式反映出自然数间的某种规律,设n 表示正整数,用关于n 的等式表示_____________(2)完全平方公式:两个单项式的和(或者差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍,即: (a ±b )2=a 2±2ab+b 2*注意完全平方和(差)公式的逆应用【例7】计算:2(1)(4)m n + 21(2)()2x -2(3)(32)x y - 21(4)(4)4y --【例8】计算:2(1)()a b c ++ 2(2)(23)a b c -+ 2(3)()a b c --【例9】(1)若2414039x x -+=,则x=________ (2)若228x xy k ++是一个完全平方式,则k=________ (3)若224m kmn n ++是一个完全平方式,则k=________ (4)若x+y=8,xy=7,则22x y +=_______,x-y=_______【例10】已知a+b=3,ab= -12,求下列各式的值22(1)a b +;22(2)a ab b -+;2(3)()a b -【例11】(1)已知12x x -=,求221x x+的值(2)已知22114x x +=,求1x x+的值【例12】解方程:22(23)(4)(2)6x x x x +--+=+【课堂练习】1. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+ B .2222)(b ab a b a +-=- C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+ 2、化简:322)3(x x -的结果是A .56x -B .53x -C .52xD .56x 3.当31x y ==、时,代数式2()()x y x y y +-+的值是 . 4、若221m m -=,则2242007m m -+的值是 . 5、化简:(x -y )(x+y )+(x -y )+(x+y ).6、计算:()()2121x x ++-7、已知2514x x -=,求()()()212111x x x ---++的值8、先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.aa bba bb图甲 图乙学生总结评定1.学生本次课对老师的评价:○特别满意○满意○一般○差2.本次课我学到了什么知识:学生签字:教师总结评定1.学生上次作业完成情况:2.学生本次上课表现情况:3.老师对本次课的总结:教师签字:课前审阅:课后检查:龙文教育课后作业学生 科目 教师 课次完成时间完成 情况1、下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--2.计算: ⎪⎭⎫⎝⎛-⋅23913x x =________;24(2)a --=________. 3.已知:32a b +=,1ab =,化简(2)(2)a b --的结果是 . 4、计算:31(2)(1)4a a -⋅- = .5、如图,沿正方形的对角线对折,•把对折后重合的两个小正方形内的单项式相乘,乘积是___________(只要写出一个结论)a 2ab-2b6、若a-1a =3,求a 2+21a的值.7、计算:()()()2312x x x +---8、先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.教师签字: 审阅签字: 时间:龙文教育课后测试卷学生科目教师课次完成时间得分/测试内容试卷分析教师签字:审阅签字:时间:。
整式的乘除知识点

整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。
整式的除法运算是指对一个整式除以另一个整式的运算。
整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。
一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。
例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。
例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。
例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。
例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。
例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。
例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。
这个性质可以简化计算,使得整式的乘法更加灵活。
2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。
这个性质可以改变运算次序,简化计算过程。
3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。
整式的乘法(学生)

(一)幂的乘法运算 一、知识点讲解:二、典型例题:例1、(同底数幂相乘)计算:(1)52x x ⋅(2)389)2()2()2(-⨯-⨯-(3)mm a a +-⋅11 (4)523)()()(x y x y y x -⋅-⋅-例2、(幂的乘方)计算:(1)(103)5(2)23)(m a -(3)()[]522y x - (4)532])][()[(m n n m --例3、(积的乘方)计算:(1)(ab )2(2)(-3x )2 (3)332)3(c b a -(4)32])(3[y x + (5)20082009)3()31(-⨯一、知识点讲解:1、单项式⨯单项式2、单项式⨯多项式3、多项式⨯多项式 二、典型例题:例1、计算:(1)abc b a ab 2)31(322⋅-⋅ (2))34432()23(22y xy y x xy +-⋅-(3)(x-3y)(x+7y) (4))1)(1)(1(2++-x x x(三)乘法公式 一、知识点讲解:二、典型例题:例2、计算:(1)(x +2)(x -2) (2)(5+a)(-5+a) (3))52)(52(y x y x +---(4)()()222233x y yx ++- (5) 20021998⨯ (6)()()()4222+-+x x x例3、填空:(1)x 2-10x +______=( -5)2;(2)x 2+______+16=(______-4)2;(3)x 2-x +______=(x -____ )2; (4)4x 2+______+9=(______+3)2.例4、计算:(1)()222)2(y x y x -++ (2)(x+错误!未找到引用源。
)2(3)22)121(-x (4)2999例5、已知x x +=13,求()1122x x +;()()212x x -例6、化简求值()()()()2232323232b a b a b a b a ++-+--,其中:31,2=-=b a 。
整式的乘法知识点

整式的乘法知识点1、幂的运算性质:(a ≠0,m 、n 都是正整数)(1)a m ·a n =a m +n 同底数幂相乘,底数不变,指数相加.(2)()n m a = a mn 幂的乘方,底数不变,指数相乘.(3)()n n n b a ab = 积的乘方等于各因式乘方的积. (4)n m a a ÷= a m -n 同底数幂相除,底数不变,指数相减.例(1).在下列运算中,计算正确的是( )(A )326a a a ⋅=(B )235()a a = (C )824a a a ÷=(D )2224()ab a b = (2)()()4352a a -⋅-=____ ___=2.零指数幂的概念:a 0=1(a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:()022017π-=3.负指数幂的概念: a - p =p a 1(a ≠0,p 是正整数) 任何一个不等于零的数的负指数幂,等于这个数的正指数幂的倒数. 例:223-⎛⎫ ⎪⎝⎭= 312-⎛⎫- ⎪⎝⎭=4.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-5.单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2))32()5(-22n m n n m -+⋅6.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例:(1)1(4)x x --() (2)(2)(1)x y x y +-+7.乘法公式: ①完全平方公式:(a +b )2=a 2+2ab +b 2(a -b )2=a 2-2ab +b 2口诀:首平方、尾平方,乘积的二倍放中央.例:① (2x +5y )2=( )2 + 2×( )×( ) + ( )2=__________________;② 2)2131(-m =( )2 - 2×( )×( ) + ( )2=________________; ③ (-x +y )2 = ( )2 =__________;④ (-m -n )2 = [ ]2 = ( )2_______________;⑤x 2+__ _ +4y 2 = (x +2y )2 ⑥214m ⎛⎫- ⎪⎝⎭ +2n = ( )2 ②平方差公式:(a +b )(a -b )=a 2-b 2口诀:两个数和乘以这两个数的差,等于这两个数的平方差.注意:相同项的平方减相反项的平方例:① (x -4)(x +4) = ( )2 - ( )2 =________;② (3a+2b )(3a -2b ) = ( )2 - ( )2 =_________________;③ (-m +n )( m +n ) = ( )2-( )2 =___________________;④ 11(2)(2)44x y x y ---=( )2-( )2=___________; ⑤(2a +b +3)(2a +b -3) =( )2-( )2=________________ ___= ;⑥(2a —b +3)(2a +b -3)=[ ][ ]=( )2-( )2另一种方法:(2a —b +3)(2a +b -3)==⑦ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______;⑧(x +3y )( ) = 9y 2-x 2③十字相乘:2()()x a x b x ++=+ ( ) x +一次项的系数是a 与b 的 ,常数项是a 与b 的例:()()12x x ++= , ()()23x x --= ,()()57x x +-= , ()()34x x -+=1、若22916x mxy y ++是一个完全平方式,那么m 的值是__________。
初中数学 什么是整式的乘法

初中数学什么是整式的乘法整式的乘法是指两个或多个整式相乘的运算。
在初中数学中,学生需要掌握整式的乘法规则和技巧。
整式是由常数、变量和它们的乘积(即单项式)相加或相减得到的表达式。
整式的乘法是指将两个或多个整式相乘,得到一个新的整式。
整式的乘法可以通过分配律和乘法公式来进行。
首先,让我们看一下分配律。
分配律规定,对于任意的整数a、b和c,有以下等式成立:a * (b + c) = a * b + a * c这意味着,当我们要将一个整数与括号中的整式相乘时,我们可以先将整数与括号中的每一项相乘,然后将它们相加。
例如,如果我们要计算3 * (2x + 4),我们可以将3与2x相乘,再将3与4相乘,然后将它们相加:3 * (2x + 4) = 3 * 2x + 3 *4 = 6x + 12接下来,让我们看一下乘法公式。
乘法公式可以用于计算两个整式的乘积。
其中,最常用的乘法公式是二次方差公式和平方差公式。
二次方差公式是指:(a + b) * (a - b) = a^2 - b^2这意味着,当我们要计算一个二次方差的乘积时,我们可以将两个整数相乘,然后将它们的平方相减。
例如,如果我们要计算(3x + 2) * (3x - 2),我们可以将3x与3x相乘,再将2与-2相乘,然后将它们的平方相减:(3x + 2) * (3x - 2) = (3x)^2 - 2^2 = 9x^2 - 4平方差公式是指:(a + b) * (a + b) = a^2 + 2ab + b^2这意味着,当我们要计算一个平方差的乘积时,我们可以将两个整数相乘,然后将它们的平方相加,再将它们的乘积加倍。
例如,如果我们要计算(2x + 3)^2,我们可以将2x与2x相乘,再将3与3相乘,然后将它们的平方相加,再将它们的乘积加倍:(2x + 3)^2 = (2x)^2 + 2 * 2x * 3 + 3^2 = 4x^2 + 12x + 9在进行整式的乘法时,还需要注意变量之间的乘法规则。
整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。
下面就让我们一起来深入了解整式乘除的相关知识点。
一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。
例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。
整式的乘和乘法公式复习法

例1 利用完全平方公式计算: (1) 197 2
练习 利用整式乘法公式计算: (1)998 2
(2)( a b 3 )( a b 3 )
( x 2 )( x 2 ) ( x 1 )( x 3 ) (3 )
ab 1 ) ( ab 1 ) (4)(
三乘法公式 四(一) 平方差公式 2 2 ( a b )( a b ) a b 五 (a、b可以 是数,也可以是整式) 六即:两数和与这两数差的积,等 于它们的平方差。
例2 利用平方差公式计算: 1 1 (1)( x y )( x y )
4
4
(2)
( m n )( m n ) 3 n
练习:计算 1 . (b5 ) 2
1 3 ( ) 2. 3
3 2
3 8
2
3 .(a
(p )
4
5 .(x ) 7 . 3
4 6
(x ) 6 .(2)
8. (2)
3 2
2 3
(三)积的乘方 n n n ( ab ) a b (n是正整数) 法则: 积的乘方等于各乘因数(或式)的 乘方的积。
例:计算: n 2 (1 ) (3 a ) (3 ) (2xy)
4
(2) (2 3)
2
(4 ) ( 2 b )
5
练习 :计算 2 2 3 (1 ) (4a ) (2) (ab)
(3)( x
4
2
y )
2
3 3
(4) ( p q)
2
2
( 3 x ) ( 2 x ) (5 ) (6 ) 2 3 5
三) 多项式乘多项式 四法则 多项式与多项式相乘,先 用一个多项式的每一项乘另一多 项式的每一项,再把所得的积相 加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(八年级数学)整式的乘法(五)——乘法公式1
第周星期班别姓名学号
一、学习目标:自主探索总结出两数和乘以它们的差规律,并能正确运用两数和乘以它们的差的公式进行多项式乘法。
二、回忆:()()
++=
m n a b
三、探讨:
1、赛一赛,看谁做得最快:计算
A组:(1)(1)(2)
--=
x x
(2)(1)(2)
++=
x x
(3)(21)(23)
+-=
x x
B组:(1)(1)(1)
-+=
x x
(2)(5)(5)
-+=
x x
(3)(23)(23)
-+=
x x
2、想一想:完成以上练习后与同学交换答案,并与同组同学讨论:
(1) A组练习与B组练习有什么不同?
(2)讨论B组的题目特点。
左边:右边:
3、结论:平方差公式:两数和与它们的差的积,等于
a b a b
+-=
()()
四、你会运用上述公式吗?请来试一试:
例:1、________
+x
(
-
x
3)(2
_______
)2
3=
相同项的积相反项的积
2、_________________)23)(23=--+-x x (
相同项的积 相反项的积
3、 ______________________________)2)(2(==+-+x x
相同项的积 相反项的积
A 组
1、 下列各式,能直接用平方差公式计算的有: (写编号)
(1)(2)(2)a b a b -+ (2)(2)()a b a b -+
(3)(12)(12)c c +- (4) (2)(2)x x -+--
2、你准备好了吗?请对照平方差公式完成以下练习:
(1)(3)(3)x x +- = + =________________ 相同项的积 相反项的积
(2)(23)(23)a a +-= _ + =________________
(3)(3)(3)a b a b +- = + =________________
(4)(12)(12)c c +- = + =________________
(5)11(2)(2)22
x x +
-= + =________________ 3、计算
(1)(2)(2)x x +-
解:(2)(2)x x +-= + =________________
相同项的积 相反项的积
(2)(2)(2)x x -+--
解:(2)(2)x x -+--=____________+___________=_______________
(3)(2)(2)x y x y -+--
解:(2)(2)x y x y -+--____________+___________=_______________
(4)(23)(23)a b a b ---+
解:(23)(23)a b a b ---+____________+___________=_______________
测一测:
(1)(3)(3)
+-=
a a
m m
+-=,(2)(4)(4)
(3)(25)(25)
x x
x x
-+--=
+-=,(4)(3)(3)
(5)(21)(21)
x y x y
+-=
-+--=,(6)(23)(23)
x x
B组:
1、你能快速求出下列各式的结果?请试一试:
(1)1998×2002
思考:想一想,上式可以写成哪两个数的和乘以它们差?
解:原式= ( - )( + )
=()2-()2
= - = (2)999×1001 (3)498×502
解:原式= 解:原式=
3、街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2
米,而东西向要缩短2米。
问改造后的长方形草坪的面积是多少?
解:
C 组:你真棒,这么快就完成A 、B 两组练习,想不想试一试C 组练习?
1、比一比,看谁能正确计算下列各题:
(1)()()y x x y --- (2)(2)(2)m n n m --- 解:原式= 解:原式=
(3)1111
()()3232a b a b -++ (4))3)(9)(32-++x x x (
解:原式=
2、220051-能被2004整除吗?说明你的理由。
3、计算:
(1)(1)(1)x x -+=
(2)2(1)(1)x x x -++=
(3)32(1)(1)x x x x -+++=
(4)根据上题得出的规律,计算:
12(1)(1)n n x x x x x --++⋯⋯+++。