累次积分与重积分
概率论二重积分的计算(二)

f ( x, y)dxdy f (r cosθ, r sinθ)rdrdθ.
D
D
选择积分次序
选择积分限
化为累次积分
作业:P153 3.2 12(1)(2) 13(2)(3)
下次课内容
3.3 二重积分的应用
复习
二重积分的计算
一、二重积分在直角坐标系下的计算
f (x, y)dxdy
2
y
x2 y2dxdy r rdrd
D
D
π
2 dθ
2sinθ r 2dr
1
π
2 r3
2sinθ
dθ
8
π
2 sin3 θdθ
0
0
30 0
30
πo
x
8
π
2 (1 cos2 θ)d cosθ
8 1 cos3 θ cosθ 2
30
33
0
16 . 9
x2 y2dxdy
D
sin(
x
x2 2
y2
y2
)
dxdy
D
sin(r
r
)
rdrd
r2 r 1
2
0
d
2
1
sinrdr
4.
二重积分在极坐标下的计算
例5 计算二重积分 x2 y2dxdy,其中区域D为由
x=0及 x2+y2=2y 围成的第D 一象限内的区域.
解 D的边界曲线为x2+y2=2y,其极坐标表达式
r 2sinθ, 此时D可以表示为 0 θ π , 0 r 2sinθ,
则平面上任意一点的极坐标(r, )与直角坐标( x, y)之间
的变换公式为
重积分的计算方法

重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域D的草图;第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
概率论 二重积分的计算(二)

利用极坐标常能简化计算.
要点与步骤:
(1)用直角坐标系计算繁锁或不能计算的可以用 极坐标计算;
(2) 画区域图, 列出型区域, 写成极坐标下的 二次积分.
3.极坐标下二重积分计算的基本步骤
(1)将直角坐标系下的二重积分转化为极坐标系下的 二重积分.
① 将 xrco θ,y srsiθ n代入被积函数,
rr
当r充分小时 , 略去2高阶无穷小量
1 (r)2 , 得 rr,
D
2
故面积微元为
drdrd,o
A
这样二重积分在极坐标系下的表达式为
f (x, y)dσ f(rcoθs,rsinθ)rdrd
D
D
二重积分在极坐标下的计算
二重积分在极坐标系下的表达式为
f (x, y)dσf(rcoθs,rsinθ) rdrd
解
D
在极坐标系下
0r a D:0θ2π
,
故
e(x2y2)dxdy er2rdrdθ
y
D
D
2π
dθ
aer2rdr
0
0
2π1er2 0 2
0adθ
o
x
π(1ea2 ).
注:由于 e x 2 的原函数不是初等函数 ,故本题
无法用直角坐标计算.
二重积分在极坐标下的计算
例2 计I算 dxd,yD:x2y21. D 1x2y2
D
D
直角坐标系下与极坐标系下二重积分的转换公式
f (x, y)dxdyf(rcoθ,srsiθ n)rdθr.d
D
D
如何计算极坐标系下的二重积分?
化为二次积分或累次积分来计算
二重积分在极坐标下的计算
高等数学(2)第11章重积分典型例题解析

高等数学(2)第11章重积分典型例题解析例1 填空(1)根据二重积分的几何意义,⎰⎰--Dy x y x d d R222= 。
(其中{}222),(Ry x y x D ≤+=)(2)累次积分⎰⎰x xy y x f x d ),(d 10交换积分次序后,得到的积分为 。
(3)已知积分区域D x y x y =≤+≤{(,),}111,二重积分f x y x y D(,)d d ⎰⎰在直角坐标系下化为累次积分的结果是 。
解(1)由二重积分的几何意义,⎰⎰--Dy x y x d d R222表示球心在圆点,半径为R 的上半球体的体积,故为332R π。
应该填写:332R π。
(2)由已知的累次积分,得积分区域为⎩⎨⎧≤≤≤≤xy x x 10,若变换积分次序,即先积x 后积y ,则积分变量y 的上、下限必须是常量,而积分变量x 的积分上、下限必须是常量或是y 的函数,因此积分区域应表为⎩⎨⎧≤≤≤≤102y y x y ,于是交换后的积分为⎰⎰yyx y x f y 2d ),(d 10。
应该填写:⎰⎰y yx y x f y 2d ),(d 10。
(3)由已知的积分区域为D x y x y =≤+≤{(,),}111可知区域D 满足联立不等式组⎩⎨⎧≤+≤-≤≤-11111y x ,即而解得⎩⎨⎧≤≤-≤≤-0211y x ,因为两个积分变量的上、下限都是常量,所以可随意选择积分的顺序,若先积x 后积y ,则应填⎰⎰--0211d ),(d x y x f y ,反之应填d d x f x y y (,)--⎰⎰2011。
应该填写:d d x f x y y (,)--⎰⎰2011或⎰⎰--0211d ),(d x y x f y例2 单项选择 (1)二重积分xx y x y 2d d 1422≤+≤⎰⎰可表达为累次积分( )。
A. d d θθπr r 321202cos ⎰⎰; B.r r 321202d d cos θθπ⎰⎰;C.d d 2x x y xx ----⎰⎰442222; D.d d 2y x x yy ----⎰⎰111122(2)由曲面z x y =--422和z =0及柱面x y221+=所围的体积是( )。
Lesbesgue积分的几何意义与Fubini定理

第五章 积分论
第六节 Lesbesgue积分的几何意义 与Fubini定理
重积分与累次积分
[ a ,b ]×[ c , d ]
∫∫ f ( x, y )dxdy
重积分
[ a ,b ]×[ c , d ]
∫∫ f ( x, y )dxdy = ∫
b
a
dx ∫ f ( x, y ) dy
证明参照教材p-139
Байду номын сангаас
2.Lebesgue积分的几何意义
定理3 设f(x)为可测集 E ⊂ R 上的非负函数,
n
则f(x)是E上可测函数当且仅当 G(E;f)={(x,y)| x∈E,0≤y < f(x)} 是Rn+1中的可测集;并且有
f(x)
∫
E
f ( x)dx = mG( E; f )
证明参照教材p-139
∫
A× B
f ( p )dp =
∫ (∫
A
B
f ( x , y )dy ) dx
先累次积分后重积分
证明参照教材p-140
A B
先重积分后累次积分
证明参照教材p-140
3.Fubini定理
(2)设f(x)是B上的可测函数,∫A ( ∫B | f ( x , y ) | dy ) dx 存在(即|f(x,y)|作为y的函数在B上可积, 且 ∫B |
f ( x , y ) | dy
作为x的函数在A上可积),
则 f(p)在A × B可积 ,且
3.Fubini定理
(1)设 f(p)=f(x,y)在 A × B ⊂ R p + q 上可积, 则对几乎所有的x ∈A, f(x,y)作为y的函数在B上 可积, B f ( x , y )dy 作为x的函数在A上可积,且 ∫
重积分的计算方法(试题学习)

重积分的计算方法
重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算
1.常用方法
(1)化累次积分计算法
对于常用方法我们先看两个例子
对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:
第一步:画出积分区域D的草图;
第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;
第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法
着重看下面的例子:。
重积分的计算方法

重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域D的草图;第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
例说重积分与累次积分

1
重积分存在, 累次积分未必存在
例1 设 f (x, y) = 1 1 + , qx qy 0, 当 x , y 都是有理数时, 其他
为定义在 D = [ 0, 1 ] [ 0 , 1 ] 上的函数, 其中 q x 和 q y 分别表示有理数 x 和 y 的既约分 数的分母, 则 f ( x , y ) 在 D 上可积 , 但两个不同顺序的累次积分都不存在 . 解析 定义 f 1( x , y ) = 1, qx 0, f 2( x , y ) = 则易知 f 1 ( x , y ) , f 2 ( x , y ) 在 D 上都可积. 事实上, 对 ( 0< < 1) , ( 0, 1] 中分母大于 , N - 1) . 令 =
1
1 2
后 y 的累次积分不存在. 因为对区域 D = [ 0, 1 ] = 1 ( k = 1, 2, 但是 ,
1
, n) , 所以函数 f ( x , y ) 在区域 D 上不可积. [ 0 , 1 ] , 当 x 是有理数时 ,
1 0 1 0
x
f ( x , y ) dy =
0
dy =
1 ; 当 x 是无理数时, 2
1 0 1
1 0
f ( x , y ) dy
=
1 2
dy =
1 , 从而累次积分 2 y0
dx
0
f ( x , y ) dy =
1 存在, 而另一个累次积分 2
dy
0
f ( x , y ) dx 不
存在 . 事实上,
n
[ 0, 1] , 对[ 0, 1] 的任意分割 T , 在第 i 个区间[ x i - 1 , x i ] 上振幅