高一数学不等式知识点
基本不等式知识点总结高一

基本不等式知识点总结高一基本不等式知识点总结一、不等式的定义和性质不等式是数学中表示大小关系的一种符号方法。
不等式的定义如下:若两个数a、b满足条件a>b,则称a大于b,记作a>b;若a≠b 且a>b或a<b,则称a与b之间存在不等关系。
不等式的性质如下:1. 传递性:若a>b且b>c,则a>c。
2. 对称性:若a>b,则-b>-a。
3. 相反数性质:若a>b,且c>0,则 ac>bc;若a>b,且c<0,则 ac<bc。
4. 分解性质:若a>b,且c>0,则a+c>b+c。
5. 翻转性质:若a>b,且c<0,则-a<-b。
6. 加法性质:若a>b,则a+c>b+c。
7. 乘法性质:若a>b且c>0,则ac>bc;若a<b且c<0,则ac>bc。
二、基本不等式1. 加法不等式:若a>b,则a+c>b+c,其中c为任意实数。
2. 减法不等式:若a>b,则a-c>b-c,其中c为任意实数。
3. 乘法不等式:a) 正数乘法不等式:若a>b且c>0,则ac>bc。
b) 负数乘法不等式:若a>b且c<0,则ac<bc。
4. 除法不等式:a) 正数除法不等式:若a>b且c>0,则a/c>b/c。
b) 负数除法不等式:若a>b且c<0,则a/c<b/c。
5. 绝对值不等式:a) 若|a|<b,则-a<b<a。
b) 若|a|>b,则a<-b 或 a>b。
6. 平方不等式:a) 若a>b>0,则a^2>b^2。
b) 若a<b<0,则a^2>b^2。
三、解不等式的方法1. 加减法解法:对于不等式a+c>b+c,若c>0,则原不等式成立;若c<0,则原不等式不成立。
高一数学知识点不等式

高一数学知识点不等式不等式是数学中的一个重要概念,它在高一数学学习中占据着重要的地位。
本文将讨论高一数学中的不等式知识点,包括不等式的基本概念、解不等式的方法等内容。
1.不等式的基本概念不等式是指包含不等号(>、<、≥、≤)的数学表达式。
它描述了两个数之间的相对大小关系。
在不等式中,我们称表达式的两边为左边和右边,其中,不等号左侧的表达式通常称为不等式的“左端”,不等号右侧的表达式通常称为不等式的“右端”。
2.不等式的表示形式不等式可以有多种表示形式,下面是一些常见的表示形式:- 一元一次不等式:形如ax+b>0的不等式,其中a和b为已知实系数,x为未知实数。
- 一元二次不等式:形如ax^2+bx+c>0的不等式,其中a、b和c为已知实系数,x为未知实数。
- 绝对值不等式:形如|ax+b|<c的不等式,其中a、b为已知实系数,c为已知正实数,x为未知实数。
3.不等式的解集表示解不等式是指找出满足不等式条件的数的集合。
解集可以使用不等式符号表示,也可以使用区间表示。
下面是一些常见的解集表示形式:- 不等式符号表示:例如,解集{x | x>2}表示满足不等式x>2的所有实数x的集合。
- 区间表示:例如,解集(-∞, 2)表示所有小于2的实数的集合。
4.不等式的性质和运算规则不等式有一些特殊的性质和运算规则,包括以下几点:- 不等式两边同时加(减)一个相同的数,不等式方向不变。
- 不等式两边同时乘(除)一个正数,不等式方向不变。
- 不等式两边同时乘(除)一个负数,不等式方向改变。
- 对于绝对值不等式,需要考虑绝对值的正负情况来确定解集。
5.不等式的解法方法解不等式的方法主要包括代入法、图像法和数轴法等。
在解题过程中,我们可以运用不等式的性质和运算规则,根据具体题目的要求采取不同的解题方法。
6.不等式的应用不等式在高一数学中有广泛的应用,常见的应用场景包括以下几个方面:- 解决实际问题中的数量关系,如寻找最大值、最小值等。
高一数学不等式知识点总结

高一数学不等式知识点总结一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。
其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。
应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。
其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。
应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。
其逻辑关系为:AB1B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。
3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。
用分析法证明AB的逻辑关系为:BB1B1B3 …BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真。
高一数学不等式知识点总结

高一数学不等式知识点总结一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。
其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。
应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。
其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。
应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。
其逻辑关系为:AB1B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。
3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。
用分析法证明AB的逻辑关系为:BB1B1B3…BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真。
高一数学不等式知识点

高一数学不等式知识点在高一数学的学习中,不等式是一个重要的内容。
不等式不仅在数学中有着广泛的应用,也为我们解决实际问题提供了有力的工具。
接下来,让我们一起深入了解一下高一数学中不等式的相关知识点。
一、不等式的基本性质1、对称性:若 a > b,则 b < a 。
比如说,5 > 3 ,那么 3 < 5 。
2、传递性:若 a > b 且 b > c ,则 a > c 。
例如 7 > 5 ,5 > 3 ,所以 7 > 3 。
3、加法性质:若 a > b ,则 a + c > b + c 。
比如 8 > 6 ,那么 8 + 2 > 6 + 2 。
4、乘法性质:若 a > b 且 c > 0 ,则 ac > bc ;若 a > b 且 c <0 ,则 ac < bc 。
举个例子,若 4 > 2 ,当 c = 3 时,4×3 > 2×3;当 c =-3 时,4×(-3) < 2×(-3) 。
二、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (其中a ≠ 0 )的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤:1、去分母(若有分母):根据不等式的性质,在不等式两边同时乘以分母的最小公倍数,去掉分母。
但要注意,当乘以或除以一个负数时,不等号的方向要改变。
2、去括号:运用乘法分配律去掉括号。
3、移项:将含未知数的项移到不等式的一边,常数项移到另一边。
4、合并同类项:将同类项合并,化简不等式。
5、系数化为 1 :在不等式两边同时除以未知数的系数,得到不等式的解集。
例如,解不等式 2(2x 1) 3(x + 1) < 5 ,首先去括号得 4x 2 3x 3 < 5 ,然后移项得 4x 3x < 5 + 2 + 3 ,合并同类项得 x < 10 。
三、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (其中a ≠ 0 )的不等式叫做一元二次不等式。
高一数学不等式知识点笔记

高一数学不等式知识点笔记一、不等式的定义和性质不等式是指两个数、两个代数式或两个函数之间的大小关系,通常用不等号(<、>、≤、≥)表示。
1. 不等式的基本性质:- 反身性:任何数与自身之间没有大小关系,即 a = a。
- 对称性:如果 a > b,则 b < a;如果a ≥ b,则b ≤ a。
- 传递性:如果 a > b 且 b > c,则 a > c;如果a ≥ b 且b ≥ c,则a ≥ c。
2. 不等式的加减性质:- 加法:如果 a > b,那么 a + c > b + c。
- 减法:如果 a > b,那么 a - c > b - c(当 c > 0)或 a - c < b - c (当 c < 0)。
3. 不等式的乘除性质:- 正数乘法:如果 a > b 且 c > 0,那么 ac > bc。
- 负数乘法:如果 a > b 且 c < 0,那么 ac < bc。
- 正数除法:如果 a > b 且 c > 0,那么 a/c > b/c。
- 负数除法:如果 a > b 且 c < 0,那么 a/c < b/c。
二、一元一次不等式一元一次不等式是指形如 ax + b > c 或 ax + b < c 的不等式,其中 a、b、c 是已知实数。
1. 解一元一次不等式的方法:- 将不等式转换为等价不等式。
- 使用数轴图,根据系数 a 的正负和不等号的方向确定解集。
- 需要注意的是,当不等式中存在乘法或除法时,需考虑 a 的正负和不等号的方向是否改变。
三、一元二次不等式一元二次不等式是指形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0的不等式,其中 a、b、c 是已知实数且a ≠ 0。
1. 求解一元二次不等式的步骤:- 将一元二次不等式转换为二元一次不等式。
高一数学不等式知识点梳理

高一数学不等式知识点梳理在高中数学中,不等式是一个重要的概念和内容,在各个章节中都会涉及到不等式的相关知识和应用。
下面将对高一数学中的不等式知识点进行梳理和总结,以帮助同学们更好地理解和掌握不等式的相关内容。
一、不等式的基本概念1. 不等式的定义:不等式是数之间的大小关系的一种表示方式,用符号“<”、“>”、“≤”、“≥”等表示。
2. 不等式的解集:不等式的解集是使得不等式成立的所有实数的集合。
二、一元一次不等式1. 一元一次不等式的解法:(1) 通过绘制数轴法确定解集;(2) 利用性质将不等式转化为等价的形式求解。
2. 一元一次不等式的性质:(1) 加减性质:若a<b,则a±c<b±c(其中c为常数);(2) 倒置性质:若a<b,则-b<-a;(3) 倍增性质:若a<b,则ac<bc(c>0)或ac>bc(c<0);(4) 倒数性质:若a<b,则1/b<1/a(a>0,b>0)。
三、一元二次不等式1. 一元二次不等式的解法:(1) 使用根的性质来解决一元二次不等式;(2) 利用配方法将一元二次不等式转化成平方完全性质的形式求解。
2. 一元二次不等式的性质:(1) 零点性质:若x1、x2为一元二次不等式的解,则x1+x2=-b/a、x1*x2=c/a;(2) 符号性质:当a>0时,一元二次不等式y=ax²+bx+c的解集随x的增加而递增,当a<0时,解集随x的增加而递减;(3) 洛必达不等式:若0<a<b,则0<ln(a/b)<a/b<1。
四、绝对值不等式1. 绝对值不等式的解法:(1) 利用绝对值的定义进行讨论求解;(2) 利用绝对值的性质化简不等式,并得出解集。
2. 常见的绝对值不等式:(1) |x|<a(a>0)的解集为(-a, a);(2) |x|>a(a>0)的解集为(-∞, -a)∪(a, +∞);(3) |x-a|<b(b>0)的解集为(a-b, a+b);(4) |x-a|>b(b>0)的解集为(-∞, a-b)∪(a+b, +∞)。
高一数学不等式知识点的

高一数学不等式知识点的一、基本概念不等式是数学中的一种重要概念,表示两个量之间的大小关系。
在高一数学学习中,我们主要掌握以下几个基本概念:1. 不等式的符号在不等式中,常见的符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
2. 不等式的解集解集是指使不等式成立的所有实数的集合。
可以用区间表示解集,比如(a, b)表示大于a小于b的实数集合。
二、一元一次不等式一元一次不等式是指只含有一个未知数,并且该未知数的最高次数为1的不等式。
我们可以通过移项和同乘(同除)等基本运算解决一元一次不等式的求解问题。
例如,对于不等式2x - 3 > 5,我们可以先将常数项移至另一侧,得到2x > 8,然后同除以2,得到x > 4。
因此,不等式的解集为(4, +∞)。
三、一元二次不等式一元二次不等式是指只含有一个未知数,并且该未知数的最高次数为2的不等式。
解决一元二次不等式的方法通常有以下几种:1. 寻找零点可以将不等式转化为一个二次函数的零点问题,通过求解二次函数的零点来得到不等式的解集。
2. 使用判别式对于形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,可以计算出其判别式Δ=b^2 - 4ac的值,并根据判别式的正负情况来确定不等式的解集。
3. 图像法通过绘制一元二次函数的图像,找到使函数大于(或小于)零的区间,从而确定不等式的解集。
四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式,常见的形式有|a - b| > c或|a - b| < c。
解决绝对值不等式的方法主要有以下几种:1. 分情况讨论法根据绝对值的定义,将绝对值不等式分解为正负两个部分,然后分别求解并合并解集。
2. 图像法通过绘制绝对值函数的图像,找到使函数大于(或小于)某个值的区间,从而确定绝对值不等式的解集。
五、常见的不等式性质在高一数学的学习中,我们还需了解一些常见的不等式性质,如:1. 不等式的加法、减法性质对于不等式a > b和c > d,有a + c > b + d和a - c > b - d的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学不等式知识点 Prepared on 22 November 2020
不 等 式
1、 不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有:
(1)
对称性:a>b ⇔b<a ; (2)
传递性:若a>b ,b>c ,则a>c ; (3)
可加性:a>b ⇒a+c>b+c ; (4)
可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。
不等式运算性质:
(1)
同向相加:若a>b ,c>d ,则a+c>b+d ; (2)
异向相减:b a >,d c <d b c a ->-⇒. (3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd 。
(4) 乘方法则:若a>b>0,n ∈N +,则n n b a >;
(5) 开方法则:若a>b>0,n ∈N +,则n n b a >;
(6) 倒数法则:若ab>0,a>b ,则b 1a 1<。
2、基本不等式
定理:如果R b a ∈,,那么ab b a 222≥+(当且仅当a=b 时取“=”号)
推论:如果0,>b a ,那么ab b a ≥+2
(当且仅当a=b 时取“=”号) 算术平均数2
b a +;几何平均数ab ; 推广:若0,>b a ,则b
a a
b b a b a 1122222+≥≥+≥+ 当且仅当a=b 时取“=”号;
3、绝对值不等式
(1)|x |<a (a >0)的解集为:{x |-a <x <a};
|x |>a (a >0)的解集为:{x |x >a 或x <-a}。
(2)|b ||a ||b a |||b ||a ||+≤±≤-
4、不等式的证明:
(1) 常用方法:比较法,公式法,分析法,反证法,换元法,放缩法;
(2) 在不等式证明过程中,应注重与不等式的运算性质联合使用;
(3) 证明不等式的过程中,放大或缩小应适度。
5、 不等式的解法:
(1)一元二次型不等式的恒成立问题常用结论:
ax 2
+bx+c>0对于任意的x 恒成立⇔20040a a b ac >⎧=⎨-<⎩或检验; ax 2
+bx+c<0对于任意的x 恒成立⇔20040a a b ac <⎧=⎨-<⎩或检验 (2)解不等式是寻找使不等式成立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。
一元二次不等式(组)是解不等式的基础,一元二次不等式是解不等式的基本题型。
一元二次不等式与相应的函数,方程的联系
① 求一般的一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a >的解集,要结合20ax bx c ++=的根及二次函数2y ax bx c =++图象确定解集.
② 对于一元二次方程20(0)ax bx c a ++=>,设24b ac ∆=-,它的解按照
000∆>∆=∆<,,可分为三种情况.相应地,二次函数2(0)y ax bx c a =++>的图象与x 轴的位置关系也分为三种情况.因此,我们分三种情况讨论对应的一元二次不等式20ax bx c ++>(0)a >的解集,列表如下:
含参数的不等式应适当分类讨论。
6、线性规划问题的解题方法和步骤
解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族平行直线)与平面区域(可行域)有交点时,直线在y 轴上的截距的最大值或最小值求解。
它的步骤如下:
(1)设出未知数,确定目标函数。
(2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。
(3)由目标函数z =ax +by 变形为y =-b a x +b
z ,所以,求z 的最值可看成是求直线y =-b a x +b
z 在y 轴上截距的最值(其中a 、b 是常数,z 随x ,y 的变化而变化)。
(4)作平行线:将直线ax +by =0平移(即作ax +by =0的平行线),使直线与可行域有交点,且观察在可行域中使b
z 最大(或最小)时所经过的点,求出该点的坐标。
(5)求出最优解:将(4)中求出的坐标代入目标函数,从而求出z 的最大(或最小)值。
7、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若 0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若 0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.
8、在平面直角坐标系中,已知直线0x y C A +B +=.
①若 0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.
②若 0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.
9、最值定理
设x 、y 都为正数,则有
⑴ 若x y s +=(和为定值),则当x y =时,积xy 取得最大值2
4
s .
⑵ 若xy p =(积为定值),则当x y =时,和x y +取得最小值.
即:“积定,和有最小值;和定,积有最大值”
注意:一正、二定、三相等。