正弦波振荡电路的设计及分析
RC正弦波振荡电路的设计

第13章正弦波振荡电路正弦波振荡电路也称信号产生电路,通常也称振荡器,它用于产生一定频率和幅度的信号,例实验室的各种信号的产生电路。
按振荡器输出信号的波形来分有正弦波振荡器和非正弦波振荡器两大类。
13.1 正弦波振荡电路的工作原理一、振荡产生的基本原理:1.什么是正弦波振荡器?无ui →有uo(正弦波)(必须要有能源Vcc)2.如何产生正弦波振荡?U fU o设:U i = U im Sinωt首先将开关S接到1端,U i作用于Au →U o =U i Au(开环),→U f = U o Fu = U i Au Fu(闭环)。
当U f = U i时,再将开关S倒向2端,此时无U i,但U o不变仍为正弦波,即放大器产生了正弦波振荡。
∴自激振荡的条件为:U f = U i二、电路自激振荡的条件(一)振荡的平衡条件:U f = U i 即Au Fu = 11.振幅平衡条件:︱Au Fu︱= 12.相位平衡条件:ψa +ψf = 2nπ(n = 0.1.2……n)作为一个稳态振荡电路,相位平衡条件和振幅平衡条件必须同时满足,利用幅平条件可以稳定U o的幅度,利用相平条件可以确定振荡频率。
(二)振荡的建立与稳定振荡的建立:一合上电源Vcc是一个阶跃电压为非正弦,利用付氏级数分解为若干个正弦波的迭加,其中就有我们所需要的fo的成分,如果能有一个选频网络将它选出,尽管它很小,但经放大→会增大一点→反馈 → 放大,U o 的幅度会越来越大,最终达到预定的数值。
∴ 振荡的建立过程中:︱Au Fu ︱>1;要有选频网络; 振荡的稳定: 负反馈;晶体管的非线性;(三)正弦波振荡器的组成:放大电路 + 反馈网络(正) 其中包括选频和稳幅环节 (四)正弦波振荡器的分类(依据选频网络)RC 正弦波振荡器 (低) LC 正弦波振荡器 (高)石英晶体振荡器 (fo 的稳定性高)U o•13.2 RC 正弦波振荡器一、RC 桥式正弦波振荡器(文氏电桥振荡器) (一)原理图(二)RC 串并联网络的选频特性200)//(91ωωωω-+=u F •当ω=ωo=1 / RC 即f =fo = 1 / 2πRC 则:Fu = Fumax = 1 / 3ψf = 03//arctan00ωωωωF --=ϕ0(三)振荡电路分析 1.起振条件:由自激振荡条件: ︱Au Fu ︱= 1; ψa +ψf =2n π;及RC 串并联网络的选频特性: ∣Fu ∣= 1 / 3 ;ψf = 0; 要求:︱Au ︱= 3;ψa = 2n π; 实际振荡电路:Au 由集成运放担任;Fu 为RC 串并联网络(正反馈),具有选频特性;R 1R f 负反馈用于稳幅;构成电桥;(1)分析电路是否满足振荡条件幅频条件:当ω=ωo 时 ∣Fu ∣= 1 / 3 ∴ 只需Au = 3即可R 1R f 构成电压串联负反馈 Au = 1+ R f / R 1相频条件:已知 ψf = 0;且可分析出ψa = 0∴ ψa +ψf = 0 满足相平条件其实一般情况下,只要是正反馈就一定可以满足ψa +ψf = 2n π∴ 相平条件的判断可用瞬时极性法解决。
用Multisim软件模拟正弦波振荡器电路

正弦波振荡器电路的设计一.设计要求1.要求振荡器的工作频率在30MHZ附近。
2.频率的稳定度为1%—5%。
二.设计原理正弦波振荡器可分为两大类,一类是利用正反馈原理构成的反馈振荡器,它是目前应用最广的一类振荡器。
另一类是负阻振荡器,它是将负阻器件直接连接到谐振回路中,领用负阻器件的负电阻效应去抵消回路中的损耗,从而产生出等幅的自由振荡。
本次实验采用负反馈振荡器产生正弦波。
原理框图如下:1、平衡条件与起振条件(1)振荡的过程当接通电源时,回路内的各种电扰动信号经选频网络选频后,将其中某一频率的信号反馈到输入端,再经放大→反馈→放大→反馈的循环,该信号的幅度不断增大,振荡由小到大建立起来。
随着信号振幅的增大,放大器将进入非线性状态,增益下降,当反馈电压正好等于输入电压时,振荡幅度不再增大进入平衡状态。
(2)起振条件——为了振荡起来必需满足的条件由振荡的建立过程可知,为了使振荡器能够起振,起振之初反馈电压Uf 与输入电压Ui 在相位上应同相(即为正反馈);在幅值上应要求Uf >Ui ,即:起振条件:2T K F n ψψψπ=+=|()|1T jw KF => (3)平衡条件——为维持等幅振荡所需满足的条件振幅平衡条件:|()|1T jw KF == 相位平衡条件 :2T K F n ψψψπ=+=其中n=0,1,2,3…2、稳定条件振荡器工作时要处于稳定平衡状态,既要振幅稳定,而且相位要稳定。
振幅稳定条件:AF 与Ui 的变化方向相反。
相位稳定条件:相位与频率的变化方向相反三. 设计步骤 1.选定电路形式。
选择电容反馈式的改进型振荡器——克拉泼振荡器。
下图是克拉泼振荡器的交流等效电路。
它是用电感L 和电容C3的串联电路构成,且C3<<C1,C2。
C1C2L1C3.此回路的总电容C 只要由C3决定,因为C1,C2和并联对电路总电容的影响很小。
所以电路的振荡角频率为10311LC LC ωω≈== 反馈系数12C F C = 振荡器频率取32MHZ ,则C3电容取50PF ,电感L1取500nH 。
正弦波振荡器振荡电路分析

正弦波振荡器分析1.振荡器的振荡特性和相应特性如如下面图,试分析该振荡器的建立过程,并判定A、B两平衡点是否稳定。
解:依据振荡器的平衡稳定条件能够判定出A点是稳定平衡点,B点是不稳定平衡点。
因此,起始输进信号必须大于U iB振荡器才有可能起振。
图9.10 图2.具有自偏效应的相应振荡器如如下面图,从起振到平衡过程u BE波形如如下面图,试画出相应的i C和I c0波形。
解:相应的和波形如如下面图。
图9.12 图3.振荡电路如如下面图,试分析以下现象振荡器工作是否正常:〔1〕图中A点断开,振荡停振,用直流电压表测得V B=3V,V E=。
接通A点,振荡器有输出,测得直流电压V B=,V E=。
〔2〕振荡器振荡时,用示波器测得B点为余弦波,且E点波形为一余弦脉冲。
解:〔1〕A点断开,图示电路变为小信号谐振放大器,因此,用直流电压表测得V=3V,V E=。
当A点接通时,电路振荡,由图所示的振荡器从起振到平衡的过程B中能够瞧出,具有自偏效应的相应振荡器的偏置电压u BEQ,从起振时的大于零,等于零,直到平衡时的小于零〔也能够不小于零,但一定比停振时的u BEQ小〕,因此,测得直流电压V B=,V E=是正常的,讲明电路已振荡。
〔2〕是正常的,因为,振荡器振荡时,u be为余弦波,而i c或i e的波形为余弦脉冲,所示E点波形为一余弦脉冲。
4.试咨询仅用一只三用表,如何判定电路是否振荡?解:由上一题分析可知,通过测试三极管的偏置电压u BEQ即可判定电路是否起振。
短路谐振电感,令电路停振,要是三极管的静态偏置电压u BEQ增大,讲明电路差不多振荡,否那么电路未振荡。
5.一相应振荡器,假设将其静态偏置电压移至略小于导通电压处,试指出接通电源后应采取什么措施才能产生正弦波振荡,什么缘故?解:必须在基极加一个起始鼓舞信号,使电路起振,否那么,电路可不能振荡。
6.振荡电路如如下面图,试画出该电路的交流等效电路,标出变压器同名端位置;讲明该电路属于什么类型的振荡电路,有什么优点。
rc正弦波振荡电路设计

rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。
2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。
对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。
因此,已知振荡频率f,可以求出R和C的值。
3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。
电路一般由放大器、RC电路和正反馈网络组成。
放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。
4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。
例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。
5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。
总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。
rc正弦波振荡实验报告

rc正弦波振荡实验报告RC正弦波振荡实验报告引言:RC正弦波振荡电路是电子学中非常重要的一种电路,它能够产生稳定的正弦波信号。
本实验旨在通过搭建RC正弦波振荡电路,研究其工作原理和参数对振荡频率的影响。
实验装置和步骤:实验所需的装置包括一个电容器(C)、一个电阻器(R)、一个信号发生器和一个示波器。
具体步骤如下:1. 将电容器和电阻器按照串联的方式连接起来。
2. 将信号发生器的输出端与电容器的一端相连,将示波器的输入端与电容器的另一端相连。
3. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。
实验结果:在实验过程中,我们通过调节信号发生器的频率和幅度,观察了示波器上的波形。
当频率较低时,波形呈现出较为平缓的正弦波;当频率逐渐增加时,波形开始变得不规则,并且出现了衰减的现象。
通过进一步调节电容器和电阻器的数值,我们发现改变这两个参数可以对振荡频率进行调节。
当电容器的容值较大或电阻器的阻值较小时,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,振荡频率较高。
讨论:RC正弦波振荡电路的工作原理是基于电容器和电阻器的充放电过程。
当电容器充电时,电流通过电阻器流入电容器,电容器的电压逐渐增加;当电容器放电时,电流从电容器流出,电容器的电压逐渐减小。
这个充放电过程会不断重复,从而产生稳定的正弦波信号。
在实验中,我们观察到当频率较低时,波形呈现出较为平缓的正弦波。
这是因为在较低的频率下,电容器有足够的时间来充放电,从而形成较为平缓的波形。
而当频率逐渐增加时,电容器的充放电时间变得不足,导致波形变得不规则,并且出现了衰减的现象。
此外,我们还观察到改变电容器和电阻器的数值可以对振荡频率进行调节。
这是因为电容器的容值和电阻器的阻值直接影响了电容器的充放电时间。
当电容器的容值较大或电阻器的阻值较小时,电容器的充放电时间较长,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,电容器的充放电时间较短,振荡频率较高。
电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。
由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。
2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。
rc正弦波振荡电路

RC正弦波振荡电路简介RC正弦波振荡电路是一种基于电容(C)和电阻(R)元件的电路,可以产生稳定的正弦波电信号。
这种电路常见于信号发生器、音频放大器和频率计等领域。
本文将介绍RC正弦波振荡电路的基本原理、设计方法和应用。
原理RC正弦波振荡电路的基本原理是基于RC网络的充放电特性。
当电容器充电时,电流会通过电阻器,同时电流也会通过电容器。
充电过程中,电容器的电压会逐渐增加,直到达到充电电压。
一旦充电电压达到,电容器将开始放电,电流仍然通过电阻器,但是方向相反。
这样不断循环的充电和放电过程将产生连续的正弦波信号。
设计方法1. 选择合适的电阻值和电容值选择合适的电阻和电容值是设计RC正弦波振荡电路的关键。
其中,电阻决定了振荡频率,而电容决定了振荡周期。
根据公式:f = 1 / (2 * π * R * C)其中,f为振荡频率,π为圆周率,R为电阻值,C为电容值。
可以调整R和C的数值来获得所需的振荡频率。
2. 确定放大倍数RC正弦波振荡电路通常需要放大信号的幅度。
可以通过添加一个放大器来实现,放大器通常采用运算放大器或晶体管等元件。
3. 稳定性分析在设计RC正弦波振荡电路时,需要考虑电路的稳定性。
稳定性可以通过研究电路的极点和传递函数来评估。
如果电路的极点位于左半平面,那么电路是稳定的,否则是不稳定的。
通过合适的选择元件值,可以实现稳定的振荡电路。
应用RC正弦波振荡电路具有广泛的应用领域,包括但不限于以下几个方面:1. 信号发生器RC正弦波振荡电路可以用作信号发生器,用于产生稳定的正弦波信号,用于实验、测试和测量等应用。
2. 音频放大器RC正弦波振荡电路经过合适的放大器可以用于音频放大器中,用于放大音频信号。
3. 频率计RC正弦波振荡电路可以用于频率计,通过测量电路振荡频率来实现对待测信号频率的测量。
结论RC正弦波振荡电路是一种基于RC网络的电路,可以实现稳定的正弦波振荡。
通过选择合适的电阻和电容值,设计合适的放大倍数和稳定性分析,可以实现所需的振荡频率和信号幅度。
RC正弦波振荡电路工作原理及案例分析

RC正弦波振荡电路工作原理及案例分析
工作原理:
1.当电路通电时,运放的输出为零,电容C充电通过电阻R。
电荷通
过电容器和电阻器的匝线,使负电荷集中在负端子,正电荷集中在正端子。
2.当电容器电荷积累到一定程度时,电压开始在电容器上积累。
3.这时,电容器上的电压开始向运放的反馈电路输出,导致运放开始
放大并输出一个正弦波振荡信号。
4.当输出电压经过电容衰减后,电容开始放电,电压开始下降直到为零。
5.在电容放电的过程中,运放输出变为负值,反馈电路也发生变化,
导致运放开始放大反向信号,输出一个负幅度的振荡信号。
6.重复以上过程,可以产生一个稳定的正弦波振荡信号。
案例分析:
假设我们需要设计一个频率为1kHz的正弦波振荡电路,我们可以选
择适当的电容和电阻数值来实现这个要求。
1.选择电容C和电阻R的数值为:C=1μF,R=1kΩ。
2.计算振荡频率:f=1/(2πRC)=1/(2π*1kΩ*1μF)≈1kHz。
3.搭建电路并接入运放,通过对电容和电阻的数值进行调整,可以调
节输出的正弦波振荡频率和幅度。
4.测量输出波形,可以通过示波器来观察振荡信号的频率和幅度是否
符合设计要求。
通过以上案例分析,我们可以看到RC正弦波振荡电路的设计方法和
工作原理。
通过调节电容和电阻的数值,可以实现不同频率和幅度的正弦
波信号输出。
这种电路在信号发生器、音频放大器等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014届《通信原理》课程设计《正弦波振荡电路的设计与分析》课程设计说明书学生姓名张永良学号5021211107所属学院信息工程学院专业通信工程班级通信工程15-1指导教师姚娜教师职称讲师塔里木大学教务处制目录前言 (1)工程概况 (1)正文 (1)3.1设计的目的和意义 (1)3.1.1设计目的 (1)3.2克拉泼电容三点式振荡电路的基本原理 (2)3.2.1 振荡器组成原则 (2)3.2.2 电路原理及分析 (3)3.2.3改进型电容三点式(克拉泼振荡器) (4)3.2.4 克拉泼振荡器的电路分析 (5)3.2.5克拉泼振荡器的起振条件 (5)3.2.6克拉泼振荡器的振荡频率 (6)3.2.7克拉泼振荡器的电容参数影响 (7)3.3设计方法和内容 (7)3.3.1电容三点式和改进型电容三点式仿真比较 (7)3.3.2克拉泼振荡器电容参数改变对波形的影响 (9)3.4结论 (10)致谢 (10)参考文献: (11)前言振荡器用于产生一定频率和幅度的信号,它不需要外加输入信号的控制,就能自动的将直流电能转化为所需要的交流能量输出。
振荡器的种类很多,根据产生振荡波形的不同,可分为正弦波振荡器和非正弦波震荡器。
正弦波振荡器从组成原理来看,可分为反馈振荡器和负阻振荡器。
正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。
以LC谐振回路作为选频网络的反馈振荡器称为LC正弦振荡器。
三点式振荡器属于LC振荡器的一种,由于电容三点式频率调节不便引起电路工作性能的不稳定使该电路只适宜产生固定频率的振荡,所以选择了改进型电容三点式(克拉泼电路),即在电容三点式电路的基础上,在谐振回路的电感支路上串联一个可调电容。
此次设计的电路是建立在反馈电路基础之上的,在熟悉了改进型电容三点式的原理下,对电路进行仿真,由输出波形比较它们的不同,最后得出可调电容的值越大,振荡频率稳定度越高。
振荡器在现代科学技术领域有着广泛的应用,例如,在无线电通信、广播、电视设备中来产生所需要的载波和本机振荡信号;在电子测量仪器中用来产生各种频段的正弦信号。
工程概况此次课程设计是在multisim软件下对改进型电容三点式克拉泼电路的输出波形进行仿真。
由于振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。
本次课程设计要求振荡器的输出频率为10Mhz,属于高频范围。
所以选择LC振荡器作为参考对象,再考虑输出频率和振幅的稳定性,最终选择了克拉泼振荡器。
此次可设用了两周的时间,对改进型电容三点式克拉泼电路进行仿真,发现了克拉泼电路的优缺点。
正文3.1设计的目的和意义3.1.1设计目的熟悉multisim软件,运用软件里的一些元器件连接电路图,完成课程设计:改变型电容三点式(克拉泼电路)设计仿真。
1.对改进型电容三点式(克拉泼电路)进行输出波形仿真,并分析。
3.调节可变电容的值,观察输出波形的变化,并与实际理论值进行比较。
3.1.2设计意义设计的改进型电容三点式电路克服了电容三点式电路的频率高的缺点,在实际应用中的范围更加广泛。
3.2克拉泼电容三点式振荡电路的基本原理3.2.1 振荡器组成原则电容反馈式振荡电路的基本电路就是通常所说的三端式(又称三点式)的振荡器,即LC 回路的三个端点与晶体管的三个电极分别连接而成的电路,如图3-2-1所示。
由图可见,除晶体管外还有三个电抗元件X1、X2、X3,它们构成了决定振荡器频率的并联谐振回路,同时构成了正反馈所需的网络,为此根据振荡器组成原则,三端式振荡器有两种基本电路,如图3-2-1所示。
图2-0中X1和X2为容性,X3为感性,满足三端式振荡器的组成原则,反馈网络是由电容元件完成的,称电容反馈振荡器(a)(b )图3-2-1 三端式振荡器基本电路电路由放大电路、选频网络、正反馈网络组成。
总体设计方案框图如下:图3-2-2 电容反馈式振荡电路设计框图三点式LC 正弦波振荡器的组成法则是:与晶体管发射极相连的两个电抗元件应为同性质的电抗,而与晶体管集电极—基极相连的电抗元件应与前者性质相反。
也就是说上图(b )中be Z ∙、ce Z ∙与bc Z∙的性质必须相反振荡器才能起振。
3.2.2 电路原理及分析电容反馈式电路工作原理及分析图3-2-3(a )是电容三点式电路一种常见形式,(b)是其高频等效电路。
图中C1、C3是回路电容, L1是回路电感, C2和C5分别是高频旁路电容和耦合电容。
一般来说, 旁路电容和耦合电容的电容值至少要比回路电容值大一个数量级以上。
有些电路里还接有高频扼流圈, 其作用是为直流提供通路而又不影响谐振回路工作特性。
对于高频振荡信号, 旁路电容和耦合电容可近似为短路, 高频扼流圈可近似为开路。
(a )(b )图3- 2-3 电容三点式振荡电路由于电容三点式电路已满足反馈振荡器的相位条件, 只要再满足振幅起振条件就可以正常工作。
因为晶体管放大器的增益随输入信号振幅变化的特性与振荡的三个振幅条件一致, 所以只要能起振, 必定满足平衡和稳定条件。
(1) 平衡条件振荡器的平衡条件即为1)()()(==ωωωj F j K j T ,也可以表示为 :()1T j KF ω==,20,1,2T K F n n φφφπ=+==⋅⋅⋅即为振幅平衡条件和相位平衡条件。
平衡状态下,电源供给的能量正好抵消整个环路损耗的能量,平衡时输出幅度将不在变化:振幅平衡条件决定了振荡器输出信号振幅的大小;环路只有在某一特定的频率上才能满足相位平衡条件:相位平衡条件决定了振荡器输出信号频率的大小。
(2) 起振条件振荡器在实际应用时不应有外加信号,而应是一加上电后即产生输出;振荡的最初来源是振荡器在接通电源时不可避免地存在的电冲击及各种热噪声。
振荡开始时激励信号很弱,为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡。
由()()()1i i T j U j U j ωωω'>>,可知,1)(>ωj T 称为自激振荡的起振条件,也可写为()1f L T j Y R F ω'=>,20,1,2,T f L F n n φφφφπ'=++==⋅⋅⋅分别称为起振的振幅条件和相位条件,其中起振的相位条件即为正反馈条件。
(3) 稳定条件振荡器的稳定条件分为振幅稳定条件和相位稳定条件。
(1)振幅稳定条件要使振幅稳定,振荡器在其平衡点必须具有阻止振幅变化的能力。
具体来说,0i i A U U i KU =∂<∂就是在平衡点附近,当不稳定因素使振幅增大时,环路增益将减小,从而使振幅减小。
(2)相位稳定条件振荡器的相位平衡条件是φT (ω0)=2nπ。
在振荡器工作时, 某些不稳定因素可能破坏这一平衡条件。
如电源电压的波动或工作点的变化可能使晶体管内部电容参数发生变化, 从而造成相位的变化, 产生一个偏移量Δφ。
由于瞬时角频率是瞬时相位的导数, 所以瞬时角频率也将随着发生变化。
为了保证相位稳定, 要求振荡器的相频特性φT (ω)在振荡频率点应具有阻止相位变化的能力。
具体来说, 在平衡点ω=ω0附近, 当不稳定因素使瞬时角频率ω增大时, 相频特性φT (ω0)应产生一个-Δφ, 从而产生一个-Δω, 使瞬时角频率ω减小。
3.2.3改进型电容三点式(克拉泼振荡器)在电容三点式电路中,要减小极间电容在回路总电容中的比重,可以采用部分接入的方法。
一种电容三点式振荡器的改进型电路——克拉泼振荡器就是从这一点出发得到的。
在电容三点式振荡器电路的回路中仅多加一个与1C 、2C 相串联的电容3C 即构成了克拉泼振荡器。
3.2.4 克拉泼振荡器的电路分析(a) 实际电路 (b)交流通路图3-2-4克拉泼振荡器原理图图3-2-4(a )和(b )分别是克拉泼振荡器的实际电路和相应的交流通路。
由图3-2-4(a )可知,克拉泼电路与电容三点式电路的差别,仅在回路中多加一个与1C 、3C 相串联的电容3C 。
通常3C 取值较小,满足31C C <<,32C C <<,回路总电容主要取决于3C 。
而回路中的不稳定电容主要是三极管的极间电容ce C 、be C 、cb C ,它们又都直接并接在1C 、2C 上,不影响3C 值,结果是减小了这些不稳定电容对振荡频率的影响,而且3C 越小,这种影响就越小,环路增益就越小,回路标准性就越高。
实际情况下,克拉泼电路的频稳度大体上比电容三点式电路高一个量级,达4510~10--。
3.2.5克拉泼振荡器的起振条件(a )克拉泼电路 (b )开环电路图3-3-5克拉泼电路及其开环电路 在如图(a )所示的克拉泼电路中,L 、3C 的串联支路呈感性,符合三点式电路的组成法则,即与发射极连接的为1C 和2C ,而不与发射极连接的为感性电抗。
该电路满足相位平衡条件。
在×处断开,可以得到如图(b )所示的开环电路。
它的反馈网络的反馈系数保持不变,仍为112/()n C C C '=+,22b e C C C ''=+,不同的仅是0(//)L L e R R R '=需要通过3C 和1,21212(/())C C C C C ''=+的电容分压网路折算到集电极上,折算后的数值为22L n R '(或22/L L g n g ''),其中2331,2/()n C C C =+。
因此,该电路的振幅起振条件 1/222'>+n g n n g g iL m其中,1i e g r =。
3.2.6克拉泼振荡器的振荡频率 克拉泼振荡电路是在电容三点式振荡电路的基础上,采用L 和C 3的串联电路代替原来的L 而构成的。
由图3-2-4(b )可知,在工作频率上,L 与3C 串联支路应等效为一个电感,1C 和2C 以及并接在1C ,2C 上的ce C ,be C 只是整个回路电容的一部分,晶体管以部分接入的方式与回路联接,这样就减弱了晶体管与回路的耦合。
由于31C C <<,32C C <<,因而回路总电容近似等于3C ,振荡器的振荡频率osc ω为:C L LC OSC 311≈=ω显然,管子的结电容对osc ω的影响是很小的,而且3C 越小,结电容对振荡频率的影响就越小。
但是,由于1C ,2C 只是整个振荡回路的一部分,晶体管是以部分接入的方式与回路连接,减弱了晶体管与回路之间的耦合。
而晶体管的电压反馈系数为:C C U U ce be 21'F ≈=。
如果设回路L 两端的等效负载为L R ,则折合到集电极回路作为集电极负载电阻L R ': 2231L L L C R R p R C ⎛⎫'== ⎪⎝⎭p 为回路总阻抗反映到管子ce 端的接入系数,其值为 C C C C C C C C C C C p 13323213232≈+++=可见3C 减小LR '也减小,从而导致放大倍数下降,会影响起振条件。