第11章磁场中的磁介质

合集下载

电路及磁路第三版第11章磁路和铁心线圈电路

电路及磁路第三版第11章磁路和铁心线圈电路

所以,曲面A的磁通为
d B dA
A A
A

dA
B
磁通的SI单位:韦伯(Wb)
均匀磁场:磁感应强度量值相等、方向相同的磁场。
第十一章 磁路和铁心线圈电路
如果是均匀磁场,且各点磁感应强度与面积 S 垂直,则该 面积上的磁通为
B A 或 B A

又称磁感应强 度为磁通密度
总的来看:铁磁性物质的B 和H 的关系是非线性的。
O
a2
μ a1
a3 a4 ② B
① ③
H1 H 2 H 3
H
第十一章 磁路和铁心线圈电路
从图中的曲线③ μ- H 可以看到,铁磁性物质的磁导率μ不 是常数,是随H 的变化而变化的。 开始阶段μ较小;随着H 的增大,μ达到最大值,而后随着 磁饱和的出现, H 再增大,μ值下降。 图中的起始磁化曲线可用磁畴理论予以说明。

A
合的空间曲线
第十一章 磁路和铁心线圈电路
安培环路定律:磁场强度矢量H沿任何闭合路径的线 积分等于穿过此路径所围成的面的电流代数和,即

H dl I
l
例如:可写出图中的安培环路定律表达式为
I1
H I2 dl
H dl I1 I 2
l
电流的方向和所选路径 方向符合右手螺旋法则 时为正,否则为负。
二 磁滞回线
◆ 磁滞回线:铁磁性物质 在反复磁化过程中的B-H关 系(在+Hm 和-Hm 间,近似 对称于原点的闭合曲线)。如 交流电机或电器中的铁心常受 到交变磁化。
Bm
H m Br
B
b
a
O Hc
a

磁场中的磁介质

磁场中的磁介质

e ev 电子电流 I 2r / v 2r ev evr 2 m IS r 2r 2
m en
I S
e L 2m e
角动量 L me vr
二、原子的磁矩
2.电子的量子轨道磁矩
h L m, m 0,1,2, 1.05 10 34 J S 2 e 24 一个可能的值 m 9.27 10 J / T 2m e
分子电流为
dI n a 2 dr cos i
n m dr cos
M dr cos M dr


dI M dr
三、磁介质的磁化
若 dr 选在磁介质表面,则 d I 为面束缚电流。
面束缚电流密度
dI M cos M r j dr
电流为i,半径为 a,分子磁 矩为 m ,任取一微小矢量 dr 2 a 元 dr ,它与外磁场 B 的夹角 m i 为,则与 dr 套住的分子电 流的中心都是位于以为 dr 轴、 以 a2 为底面积的斜柱体内。 i
m
B
三、磁介质的磁化
若单位体积内的分子数为n ,则与 dr 套连的总
2.磁化强度
单位体积内分子磁矩的矢量和称作磁介质的 磁化强度。 mi M V
单位 安每米(A/m)
3.实验规律
实验发现,在外磁场不是很强时,对所有磁 介质
r 1 M BB
0 r
三、磁介质的磁化
3.束缚电流与磁化强度之间的关系
以顺磁质为例 , 等效分子
电子的自旋磁矩(内禀磁矩) 电子自旋角动量 内禀磁矩
s 2
玻尔磁子
e e mB s 9.27 10 24 J / T me 2me

第11章磁场中的磁介质

第11章磁场中的磁介质

Bo
向,介质内部的磁场迅
速增加,在铁磁质充磁
过程中伴随着发声、发
热。
2.磁畴的形成
按照量子理论, 铁磁质内电子间存在着很强的由电子自旋引起的相互 作用——电子交换作用, 使各电子的自旋磁矩排列整齐,从而形成磁畴。 每个磁畴内的电子自旋磁矩整齐排列,磁性很强——自发磁化。
3.磁畴与外磁场的关系
无外磁场时, 各个磁畴由于热运动其方向排列无序, 因而整体对外 不显磁性。
顺磁质和抗磁质的磁性很弱,统称弱磁质;铁磁质的磁性很强,且具有非 线性和磁滞特性。
二、 介质的磁化
任何物质皆由原子或分子构成。 原子(分子)中的电子同时参与两种运 动:自旋及绕核的轨道运动,对应有轨 道磁矩和自旋磁矩。
分子电流——分子中所有电子对外产生 的磁效应的总和可用一用等效的分子电 流的磁效应来表示
磁场强度的单位:安培/米(A/m)
§ 11.2 铁磁质
在工程技术上常用的磁介质是铁磁质,如电机、变压器和电表等。铁 磁质比顺磁质和抗磁质的磁性均要复杂。
磁化曲线——磁介质内磁感 应强度B随磁场强度H的变化 关系曲线(B~H曲线)。
顺磁质和抗磁质的磁化曲 线为直线,即B与H成线性 关系;而铁磁质则不同, 具有非线性和磁滞性。
1.超导体的基本性质
零电阻率
超导体在临界温度以下时,电阻为零,所以它可以通过很大的电流, 而几乎无热损耗。
有人曾用超导体做成一个圆环,当把它冷却到临界温度以下后,突然 去掉磁场,由于电磁感应,在超导体环内产生一个相当强的电流,这 个电流在持续两年半的时间内仍没发现可观的变化。
2. 迈斯纳效应— 完全抗磁性
利用这种现象可制成超导 重力仪,用来预测地震, 当地震发生之前,地表面 的重力场会发生变化,超 导球的位置也会发生变化, 由此来预测地震。

磁场中的磁介质ppt

磁场中的磁介质ppt

第五版
一、 H矢量的安培环路定理
几点说明
15
磁场中的介质

H dl I0
L
(1)只与传导电流有关,与束缚电流无关
(2) H 与 D 一样是辅助量,描述电磁场
ED

B H
B 0 H
9
(3)在真空中: M 0 r 1
第五版
15
磁场中的介质
当外磁场由 H m 逐渐减小时,这种 B 的变化落后于H的变 化的现象,叫做磁滞 现象 ,简称磁滞. 由于磁滞, H 0 时,磁感强度 B 0 Br 叫做剩余磁感强 , 度(剩磁).
Bm
H m Br
B
Q
P
Hm
H
O
P
'
Hc
Bm
磁滞回线 矫顽力
Hc
17
第七章 恒定磁场
r
第七章 恒定磁场
13
物理学
第五版
15
磁场中的介质
解 rd R
B H
dR
0 r I
H dl I
l
2π dH I
2π d H dl I I 0
l
r
I
2π dH 0 , H 0
d
I
B H 0
同理可求 d r , B 0
物理学
第五版
15
磁场中的介质
3 铁磁性材料 不同铁磁性物质的磁滞回线形状相差很大.
B B B
O
H
O
H
O
H
软磁材料
硬磁材料
第七章 恒定磁场
矩磁铁氧体材料

9-磁介质 大学物理

9-磁介质 大学物理

当线圈中通入电流后,在磁化场的力矩作用下, 当线圈中通入电流后,在磁化场的力矩作用下,各分子环 流的磁矩在一定程度上沿着场的方向排列起来,此时, 流的磁矩在一定程度上沿着场的方向排列起来,此时,软 铁棒被磁化了。 铁棒被磁化了。
对于各向同性的均匀介质,介质内部各分子电流相互抵消, 对于各向同性的均匀介质,介质内部各分子电流相互抵消, 而在介质表面,各分子电流相互叠加, 而在介质表面,各分子电流相互叠加,在磁化圆柱的表面出 磁化面电流( 现一层电流,好象一个载流螺线管,称为磁化面电流 现一层电流,好象一个载流螺线管,称为磁化面电流(或安 培表面电流) 培表面电流)。
(2)电子自旋磁矩 (2)电子自旋磁矩 实验证明: 实验证明:电子有自旋磁矩
ps = 0.927×10-23 A⋅m2 0.927×
(3)分子磁矩 (3)分子磁矩 分子磁矩是分子中所有电子的轨道磁矩和自旋磁矩 与所有核磁矩的矢量和。 与所有核磁矩的矢量和。 三.顺磁质与抗磁质的磁化 顺磁质与抗磁质的磁化 1、顺磁质及其磁化(如铝、 1、顺磁质及其磁化(如铝、铂、氧) 分 子 磁 矩 分子的固有磁矩不为零 pm ≠ 0 无外磁场作用时, 无外磁场作用时,由 于分子的热运动, 于分子的热运动,分 子磁矩取向各不相同, 子磁矩取向各不相同 整个介质不显磁性。 整个介质不显磁性。
B0
I0 Is
Is——磁化电流 磁化电流 js——沿轴线单位长度上的磁 沿轴线单位长度上的磁 化电流(磁化面电流密度) 化电流(磁化面电流密度)
3、磁化强度和磁化电流密度之间的关系: 磁化强度和磁化电流密度之间的关系:
以长直螺线管中的圆柱形磁介质来说明它们的关系。 以长直螺线管中的圆柱形磁介质来说明它们的关系。
磁场中的磁介质

大学物理——第11章-恒定电流的磁场

大学物理——第11章-恒定电流的磁场


单 位:特斯拉(T) 1 T = 1 N· -1· -1 A m 1 特斯拉 ( T ) = 104 高斯( G )
3
★ 洛仑兹力 运动的带电粒子,在磁场中受到的作用力称为洛仑兹力。
Fm q B
的方向一致; 粒子带正电,F 的指向与矢积 B m 粒子带负电,Fm的指向与矢积 B的方向相反。
L
dB
具体表达式
?
5
★ 毕-萨定律
要解决的问题是:已知任一电流分布 其磁感强度的计算
方法:将电流分割成许多电流元 Idl
毕-萨定律:每个电流元在场点的磁感强度为:
0 Idl r ˆ dB 4 πr 2
大 小: dB
0 Idl sin
4 πr
2
方 向:与 dl r 一致 ˆ
整段电流产生的磁场:
r 相对磁导率
L
B dB
8
试判断下列各点磁感强度的方向和大小?
8
7

6

R
1
1、5 点 :
dB 0
0 Idl
4π R 2
Idl

2
3、7 点 : dB 2、4、6、8 点 :
3 4
5
dB
0 Idl
4π R
sin 450 2
9
★ 直线电流的磁场
29
★ 磁聚焦 洛仑兹力
Fm q B (洛仑兹力不做功)
与 B不垂直

//
// cosθ
sin θ
m 2π m R T qB qB
2πm 螺距 d // T cos qB

磁场中磁介质

磁场中磁介质

磁介质的分类
顺磁性介质
抗磁性介质
铁磁性介质
反铁磁性介质
在磁场中容易被磁化的 物质,如铝、铂等。
在磁场中不容易被磁化 的物质,如铜、金等。
在磁场中极易被磁化的 物质,如铁、钴、镍等。
在磁场中具有反铁磁性 的物质,如锰、铬等。
02
磁场对磁介质的影响
磁场对磁介质的作用
磁化现象
磁场对磁介质产生作用,使其内 部磁矩定向排列,形成磁化现象。
剩余磁化强度
当磁场去除后,磁介质仍会保留一部分磁化强度, 称为剩余磁化强度。
磁介质的磁导率
相对磁导率
描述磁介质在磁场中的导磁能力与真空导磁能 力的比值。
最大磁导率
在一定磁场强度下,磁介质的磁导率达到最大 值。
温度系数
表示磁导率随温度变化的系数,某些材料的温度系数较大,对温度变化较为敏 感。
03
磁介质的性质与特点
磁滞现象
磁介质在磁化过程中会出现滞后现 象,即当磁场反向时,磁介质的磁 化强度不会立即消失,而是逐渐减 小。
磁损耗
在交变磁场中,磁介质会因为磁滞 现象和涡流效应产生能量损耗。
磁介质的磁化过程
起始磁化
磁介质在磁场中开始被磁化的过程,起始磁化曲 线通常是非线性的。
磁饱和
随着磁场强度的增加,磁介质的磁化强度逐渐达 到饱和状态,此时磁导率不再变化。
3
磁滞损耗
由于磁滞现象产生的能量损耗,通常表现为热量。
磁介质的损耗特性
介电损耗
01
由于电场作用在磁介质上产生的能量损耗,通常表现为热量。
涡流损耗
02
由于磁场变化产生的涡旋电流在磁介质中产生的能量损耗,通
常表现为热量。

大学物理-第十一章静磁学C

大学物理-第十一章静磁学C
34
例11-24 图示为三种不同的磁介
质的B~H关系曲线,其中虚线表示 B
a
的是B=oH的关系。a、b、c各代
表哪一类磁介质的B~H关系曲线:
b
a代表铁磁质 的B~H关系曲线。
c
b代表顺磁质 的B~H关系曲线。
H
c代表抗磁质 的B~H关系曲线。
抗磁质和顺磁质的B和H间是线性关系, 相对磁导率r
与1相差不大。在一般性(精度要求不高)的问题中,可
χmH
其中m叫磁介质的磁化率。
由:
H
B
M
μo
得: B 0 (H M ) 0 (1 m )H
可证明1+m=r相对磁导率, or= 磁导率, 则
B μ0 μr H μH
21
磁场强度
真正有物理意义的, 对磁场中的运动电荷或 电流有力的作用的是B而不是H, 磁学中H仅 是一个辅助量, 相当于电学中的D,由于历史
M
dL
I
dt
dL Mdt
dL垂直于磁矩和磁场构成的平面,在虚线的圆周上, 绕磁场转动。
7
因此抗磁质中
B
B0
B
B0
这是抗磁性的重要表现。
(2)顺磁质:
pm Δpm pm 0 称为取向磁化。
分子的固有磁矩pm产生的附加磁场B´的方向总是 与外磁场Bo的方向相同, 因此顺磁质中
求解思路
选高斯面
(2)由
求 (3)由
(2)由
D dS
s
q0
(S内)

D E
D
(3)由
0 r
H dl l
I o内
H
B 0rH 求 B
求E
24
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁介质对磁场的影响
B0
一、磁介质对磁场的影响
与电介质的情况类似,稳恒磁 场中的磁介质因磁化而产生磁化电 流和附加磁场;磁介质内的总场为 原磁场B0 与附加磁场B’的矢量和。
I
B0
B B0 B ' 实验已经证明, 与B 0 之间的关系为: B
B r B0
2. 迈斯纳效应— 完全抗磁性 1933年德国物理学家W.迈斯纳发现完全抗磁性。 将超导体放入磁场中,表面产生超导电流,超导电流产生的磁场与外 磁场抵消,使超导体内的磁感应强度为 0。
Bo
超导体在磁场中由于超导电流产生的磁场与外磁场的斥力作用,使 超导体可悬浮在空中。
F
mg
N
3.超导体的应用 由于超导体内电阻为0,超导电流不会产生热量,超导电流也就不会 消失,超导体一直会悬浮在磁场中。 利用这种现象可制成超导 重力仪,用来预测地震, 当地震发生之前,地表面 的重力场会发生变化,超 导球的位臵也会发生变化, 由此来预测地震。 还可制造超导磁悬浮列车, 世界上最快的磁悬浮列车 时速超过500公里/小时。
5. 磁饱和状态 随着外磁场增加,能够提供转向的磁畴越来越少,铁磁质中的磁场增 加的速度变慢,最后外磁场再增加,介质内的磁场也不会增加,铁磁质达 到磁饱和状态。
B
磁饱和状态
b a
c
d
o
H
二、铁磁质的磁化规律——磁滞回线
1. 实验目的: 确定铁磁质内的B随外场H 的变 化关系, 确定其磁导率m 的特点和铁磁质的磁 化规律。 2. 实验结果 o~a : 起始磁化曲线,未经磁化的铁磁质, 起始时, B 随H 而增大, 到a点达到饱 和。
2
I
I
(2)磁介质内的磁场分布
l
H dl I I
I 2 r
B 0 r H
H
0 r I
B0
(3)磁介质外的磁场分布
2 r H dl I 0
l
磁介质中的安培环路定理Leabharlann 电介质中的高斯定理
L
B dl 0 I 0 0 i '
o
H
具有较强的磁致伸缩性能, 用于制作机电换能器和声电换能器。
3.非金属氧化物----铁氧体
由三氧化二铁Fe2O3和其它二价金属氧 化物(如NiO,ZnO等)的粉末混合烧结而成
特点: 具有高磁导率, 高电阻率, 涡流损耗少, 适用于高频技术。作记忆元件, 或作天线和电 感中的磁心。 例如: 矩磁铁氧体, 其磁滞回线近似矩形而得名。
铁的居里温度 tc = 770°C; 30%的坡莫合金居里温度 tc = 70°C;
利用铁磁质具有居里温度的特点,可将其制作温控元件,如电饭锅 自动控温。 原因:由于加热使磁介质中的分子、原子的振动加剧,提供了磁畴转 向的能量,使铁磁质失去磁性。
2.敲击法 通过振动可提供磁畴转向的能量,使介质失去 磁性。如敲击永久磁铁会使磁铁磁性减小。 3.加反向磁场
第十一章
磁场中的磁介质
上章我们学习了真空中稳恒电流激发的磁场及 其规律。当空间有介质(导体、绝缘体)存在时,磁 场将与介质发生相互作用,我们把磁场中的介质称 为磁介质。磁介质在外加磁场作用下自身产生附加 磁场的过程称为磁化。
本章简要介绍磁介质的性质、磁化的机制、以 及磁介质中的安培环路定理。
§11.1
H dl
L

I0
磁介质中的安培环路定理:

H dl
L

I0
即:磁场强度沿任意闭合路径的线积分(环流),等于穿过 以该回路为边界的传导电流的代数和。 说明: H 是为消除磁化电流的影响而引入的辅助物理量。 H 的环流仅与传导电流I0 有关,与介质无关(当I 相同时, 尽管介质不同,H 在同一点上却相同)。因此可以先求磁 场强度 H ,再求磁感应强度B。

L

I ')
磁介质的总磁场
传导电流
磁化电流总和
由于磁化电流的计算很繁,所以我们从无磁介质时出发。 无磁介质时: L 根据实验规律
B0 dl 0 I0
B r B0

B
L
0 r
dl

I0
定义磁场强度: H
B
0 r

B


r 称为磁介质的相对磁导率。
顺磁质:μr≥ 1 抗磁质:μr ≤ 1 铁磁质:μr >> 1 如金属铝、锰、铬等。 如金属金、银、铜等。 如金属铁、钴、镍等。
I
B'
弱磁性物质 强磁性物质
二、磁介质的磁化
任何物质皆由原子或分子构成。原子(分子)中的电子 同时参与两种运动:自旋及绕核的轨道运动,对应有轨道磁 矩和自旋磁矩。 分子磁矩——分子所有电子的轨道磁矩与 自旋磁矩的矢量和,称为分子固有磁矩, 简称为分子磁矩 m。分子磁矩的方向与电 子运动的角速度方向相反。 分子电流——分子磁矩产生的磁效应可以用一等效的圆电流 的磁矩来表示。 这就是安培提出的分子电流假设。
B
在无外磁场时,抗磁质中 分子固有磁矩为零:m=0, 物质不显磁性。
有外场时,电子的轨道角动量会绕着磁场方向旋进, 形成一个电的环流,但电子带负电,这就相当于一个 与原磁场方向反向的正的环流,产生的磁矩指向磁场 的相反方向.
三、磁介质中的安培环路定理
有磁介质时,安培环路定理是:
B dl 0 ( I 0
H的单位:安培/米(A/m)
例1、长直单芯电缆的芯是一根半径为R1 的金属导体,它与 外壁之间充满均匀磁介质,其相对磁导率为 r,外筒半径为 R2 ,电流从芯流过再沿外壁流回。求(1)导线内的磁场分布;(2) 磁介质中磁场分布;(3)磁介质外的磁场分布。
解:(1)导线内的磁场分布
Ir H dl I 2 l R1 Ir 0 Ir H B 0 H 2 2 2 R1 2 R1
B b a
Br o
H
a ~b :当外磁场减小时,介质中的磁场
并不沿起始磁化曲线返回,而是滞后于 外磁场变化——磁滞现象, 当H = 0时, B = Br ≠0,Br——剩磁。
b ~c : 加上反向外磁场,则B 继续 减小,当H=-Hc时,B=0,Hc称为矫顽 力, 即为了消除剩磁所需加的反向 外磁场Hc 。 c~d:继续增加反向磁场,介质达 到反向磁饱和状态。
顺磁质和抗磁质的磁化可用安培分子电流假说解释,而铁磁 质的磁化很复杂。 1. 顺磁质的磁化机理——顺磁性 无外场Bo时,分子的磁矩 排列杂乱无章,介质内分 子磁矩的矢量和 m=m=0 有外场Bo时,分子磁矩转 到与外磁场方向一致,分 子磁矩的矢量和 m=m≠0
⊙ 等 效 I′
对各向同性(均匀)磁介质, 从导体横截面看,导体内部分 子电流两两反向,相互抵消。 导体边缘分子电流同向。
L L

S
1 E dS
0
(q
S
0
q )
'
H
B
0 r

B

D 0 r E E
D dS
S
H dl I 0
l
q
0
§ 11.2
铁磁质
在工程技术上常用的磁介质是铁磁质,如电机、变压器和电表等。 铁磁质有如下特点: 1.在外磁场作用下能产生很强的磁感应强度;μ>>1 2.当外磁场停止作用时,仍能保持其磁化状态; 3.B与H之间不是简单的线性关系; 4.铁磁质都有一临界温度。在此温度(居里温度)之上,铁磁性 完全消失而成为顺磁质。 B Fe(1040K) Co(630K) Ni(1390K) ( H )
BS
B 磁化曲线——磁介质内磁感应强度 B随磁场强度H的变化关系曲线。 O
C
S
A
H
一、铁磁介质的磁化机理——磁畴
1.磁畴 磁畴——铁磁质中因电子自旋而引 起的强烈相互作用,在铁磁质内形 成磁性很强的小区域 。磁畴的体积 约为 10-12 m3 。
在无外磁场时,各磁 畴排列杂乱无章,铁磁质 不显磁性;在外磁场中, 各磁畴沿外场转向,介质 内部的磁场迅速增加,在 铁磁质充磁过程中伴随着 发声、发热。
对各向同性(均匀)磁介质, 分子电流可等效成磁介质表面 的磁化电流I′,I′产生附加 磁场B'。
B Bo B Bo
对各向同性(均匀)磁介质,磁化电流I′只出现在介质表面, 介质内部无磁化电流,且磁化电流I′不可引出,因此,磁化 电流也称为束缚电流。
2. 抗磁质的磁化机理——抗磁性
2.磁畴的形成 按照量子理论, 铁磁质内电子间存在着很强的由电子自旋引起的相互 作用——电子交换作用, 使各电子的自旋磁矩排列整齐,从而形成磁畴。 每个磁畴内的电子自旋磁矩整齐排列,磁性很强——自发磁化。
3.磁畴与外磁场的关系
无外磁场时, 各个磁畴由于热运动其方向排列无序, 因而整体对外 不显磁性。 有外磁场时, 各个磁畴的磁矩在外磁场的磁力矩作用下以整体的形 式趋向外磁场方向排列, 从而对外显示很强的磁性。出现高m 值。 具体过程: 与外磁场方向一致和相同的磁畴范围扩大, 磁畴磁矩方向同 时尽力转向外磁场的方向。 4. 磁畴与温度的关系: 当温度持续升高到某值时, 由于剧烈的热运动, 磁畴瓦解, 铁磁质的铁磁性消失, 过渡到顺磁质。此温度叫做居里温度或 居里点。
B
o
H
六、超导体
1911年,荷兰物理学家H· · K 昂纳斯及其助手首先发现在温度降至液氦 的沸点(4.2K)以下时,水银的电阻为0。 超导体——在低温下电阻为零的物质。 1913年昂纳斯因他在低温物理和超导领域所做的杰出贡献,获诺贝尔物 理学奖。 1.超导体的基本性质 零电阻率 超导体在临界温度以下时,电阻为零,所以它可以通过很大的电流, 而几乎无热损耗。 有人曾用超导体做成一个圆环,当把它冷却到临界温度以下后,突然 去掉磁场,由于电磁感应,在超导体环内产生一个相当强的电流,这 个电流在持续两年半的时间内仍没发现可观的变化。
相关文档
最新文档