数学物理方程-第1章
数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
第一章 数学物理中的偏微分方程

M'
T'
u ( x, t ) sin tan x u ( x dx, t ) sin ' tan ' x
ds
'
T
M
gds
x x dx x
T T '
其中: m
ds
u ( x dx, t ) u( x, t ) T gds ma x x
举例(多元函数)
2u 2u 2u 2 2 0 2 x y z u u u u 2 2 2 x y z t
2 2 2
拉普拉斯(Laplace)方程
热传导方程
u u u u 2 2 2 2 x y z t
2 2 2 2
波动方程
14
物理模型与定解问题的导出
15
弦振动方程的导出
16
一长为L的柔软均匀细弦,拉紧后,当它 受到与平衡位置垂直的外力作用时,开始作微 小横振动。 假设这运动发生在同一平面内, 求弦上各点位移随时间变化规律。
弦上各点作往返运动的主要原因在于弦的张力 作用,弦在运动过程中各点的位移、加速度和张力 都在不断变化,但它们遵循物理的运动规律。由此 可以建立弦上各点的位移函数所满足的微分方程。
2 vxvxx vy vyy v2
拟线性PDE
8.
9.
拟线性PDE
a( x, y)(vxx vyy ) ev (vx vy )
半线性PDE
10. 11.
ut ux sin u
半线性PDE 完全非线性PDE
ut ux
2
2
u2
12
1.2 三个典型的方程
数学物理方程

方程 uxx uyy A5ux B5uy C5u D5, 称为椭圆型方程的 标准形。
三、方程的化简
步骤:第一步:写出判别式 a122 a11a22 ,根据判别式判 断方程的类型;
第二步:根据方程(1)写如下方程
a11
(
dy dx
)
2
2a12
dy dx
a22
0
(2)
称为方程(1)的特征方
(2)当 0 时,特征线 (x, y) c. 令 (x, y), (x, y).
其中 (x, y)是与 (x, y)线性无关的任意函数,这样以, 为新变量方程(1)化为标准形 u Au Bu Cu D,
其中A,B,C,D都是 , 的已知函数。
(3)当 0 时,令 1 ( ), 1 ( ). 以 , 为新
程。方程(2)可分解为两个一次方程
dy a12 (3)
dx
a11
称为特征方程,其解为特征线。
设这两个特征线方程的特征线为 (x, y) c1, (x, y) c2.
令 (x, y), (x, y).
第三步(1)当 0 时,令 (x, y), (x, y). 以 , 为 新变量方程(1)化为标准形 u Au Bu Cu D, 其中A,B,C,D都是, 的已知函数。
(3)若在(x0, y0 ) 处 0, 称方程(1)在点 (x0, y0 ) 处为椭圆型方程。
例:波动方程 utt a2uxx f (x,t) a2 0 双曲型
热传导方程 ut a2uxx f (x,t) 0 抛物型
位势方程 uxx uyy f (x, y) 1
椭圆型
二、方程的标准形式
定义:方程
uxy A1ux B1uy C1u D1,
第1章 数学物理方程及定解问题

2
T
ρ
, f (x, t) =
F(x, t)
ρ
, 得 力 用 ,弦 动 程 外 作 下 振 方 为
一维非齐次波动方程
∂ 2 u( x , t ) ∂ 2 u( x , t ) − a2 = f ( x , t ). 2 2 ∂t ∂x
二维波动方程或膜振动方程
一块均匀的紧张的薄膜,离开静止水平位置作垂直 于水平位置的微小振动,其运动规律满足
2 ∂ 2u ∂ 2u 2∂ u = a 2 + 2 + f ( x, y , t ) 2 ∂t ∂y ∂x
在时刻t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t ) ∫x ρ ∂t dx;
x + ∆x x
在时刻t + ∆t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t + ∆t ) dx . ∫x ρ ∂t
∫
=∫
∂u( x , t + ∆ t ) ∂u( x , t ) − ρ dx . ∂t ∂t
第一节 波动方程及定解条件
1.一维波动方程或弦振动方程 一维波动方程或弦振动方程
物理模型
一长为 l 的柔软、均匀的细弦,拉紧以后,让它离 的柔软、均匀的细弦,拉紧以后, 开平衡位置在垂直于弦线的外力作用下作微小横振 求弦上个点的运动规律。 动,求弦上个点的运动规律。
张紧的、静止的弦是一直线,该直线是弦的 平衡位置,以此为 x 轴。振动总是传播到整 根弦,横振动就是弦中的质点离开平衡位置 的位移垂直于 x 轴, 可用 t 时刻弦上各质点 x 离开平衡位置的横向位移 u ( x, t ) 来描述弦的 状态, 某一时刻 u ( x, t ) 的分布代表弦的形状, 称为位形。由于弦中质点的位移不同导致弦 的形变,形变产生应力,为了便于应力的描 述,不妨假定所研究的弦为“柔软的”弦。
数学物理方程 第一章典型方程和定解条件

sin ' tan ' u(x dx,t)
x
则
T T'
u
M'
ds
T'
'
M
gds
T
x
x dx x
T
u(
x dx, x
t)
u ( x, x
t
)
gds
ma
T
u(x dx,t) x
u ( x, x
t)
gds
ma
m ds
其中:
a 2u(x,t) t 2
ds dx
T
u(x dx,t) x
微小: 振幅极小, 张力与水平方向的夹角很小。
u
M'
ds
T'
'
M
gds
T
x
x dx x
牛顿运动定律:
横向:T cos T 'cos ' 0
纵向:T sin T 'sin ' gds ma 其中: cos 1 2 4 1
2! 4!
cos ' 1
sin tan u(x,t)
数学物理方程与特殊函数
☆ 数学与物理的关系
数理不分家
☆ 数学物理方程: 用数学方程来描述一定的物理现象
数学物理方程(简称数理方程)是指自然科学和工程技术的各门 分支学科中出现的一些偏微分方程(有时也包括积分方程、微分方程等), 它们反映了物理量关于时间的导数和关于空间变量的导数 之间的制约关系。例如声学、流体力学、电磁学、量子力学等等 方面的基本方程都属于数学物理方程的研究对象。
• 如图,取杆长方向为x轴方向,垂直于杆长 方向的各截面均用平行位置x标记;在任一 时刻t,此截面相对于平衡位置的位移为u( x, t )
数理方程 - 01 - 数理方程绪论

2015/10/13
11
通解(一般解)
• 一般来讲,一阶偏微分方程的解依赖一个任意函数, 二阶方程依赖两个任意函数。 • 通解或一般解:m 阶偏微分方程的解如果包含有 m 个任意函数。 • 注意:这 m 个函数不能合并,如 f + g 其实就相当于 一个任意函数。
2015/10/13
12
例
• 求 tuxt 2ux 2 xt 的通解
M1
M2 d
O
x
x+x
x
2015/10/13
15
受力分析
3. 惯性力:
▫ 惯性会使物体有保持原有运动状态的倾向,若是以该 物体为参照物,看起来就仿佛有一股方向相反的力作 用在该物体上,故称之为惯性力:F = -ma。 每点的质量为 dm ( x)dx ,每点的加速度为 a utt , 所有点求和得到积分,即惯性力为
2 ▫ 设 v ux ,则化为 vt v 2 x t
▫ 视 x 为参数,则为关于 v 的一阶常微分方程,
2 2 dt dt 2 2 3 t t ▫ 由求解公式可得 v e 2 xe dt G( x) t G ( x) xt 3
第一章----波动方程

总之:
无外力作用的一维弦振动方程:
2u t 2
a2
2u x2
0
外力作用下的弦振动方程:
(1.4)
2u t 2
a2
2u x2
f (x,t)
(1.5)
其中 a2 T , f F , f 称为非齐次项(自由项)。
注:弦振动方程也叫波动方程,因为它描述的是一种 振动或波动现象,后面将给出解释。
1973年布莱克(Black)和休尔斯(Scholes)建立了倒向 微分方程决定欧式期权的无套利价格:
f t
rS
f S
1 2S2
2
2 f S 2
rf
这里,对买入期权有 f (S,t) |tT max{ST X ,0} ;对卖出期权有
f (S,t) |tT max{X ST ,0} 。其中 r 为无风险利率, S 为股票价格,
一般步骤(从宇宙探星谈起): 1、将物理问题归结为数学上的定解问题; 2、求解定解问题; 3、对求得的解给出物理解释。
四、偏微分方程的研究内容-适定性的概念
1、存在性 2、唯一性 3、稳定性
如果一个定解问题的解是存在的、 唯一的,而且是稳定的,则称该定 解问题是适定的。
五、微分方程的重要作用
可以说有了微积分,就有了微分方程 (微积分是17世纪为了解决物理、力学、 天体问题而产生的,而这些问题多为数学 物理方程)。
1 (tan )2 dx 1 2 dx dx
(2)弦上各点的张力是常数
由于弦做横振动,弦沿 x 轴无运动,所以合力为零
T1 cos1 T2 cos2 T1 T2 T
数学物理方程答案谷超豪

数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给定一根两端固定的拉紧的均匀柔软的弦线,设其 长度为 l ,它在外力作用下在平衡位置附近作微小的横 振动,求弦上各点的运动规律。
基本假设:
1. 弦是均匀的,弦的截面直径与长度相比可以忽略。
弦可以视为一条曲线,线密度为常数。
2. 弦在某平面内作微小横振动。弦的位置始终在一直线段附近,
u(0, t)=0 , u(l, t)=0,
这两个等式称为边界条件。此外,设弦在初始时刻t=0时的位置和速度为
u (x ,0 )(x ), u (x ,0 )(x ) ( 0 x l) t 这两个等式称为初始条件。边界条件和初始条件总称为定解条件。把微分方程 和定解条件结合起来,就得到了与实际问题相对应的定解问题。
解决问题的工具
数学物理方程
纯粹数学、分支
自然科学、技术科学
课 览程
概
一、波动方程 (双曲型)
1. 方程导出、定解条件 2. 初值问题求解 3. 初边值问题求解
二、热传导方程(抛物型)
三、调和方程 (椭圆型)
四、二阶方程的分类总结
五、一阶偏微分方程组
七、偏微分方程的数值解
第一章 波动方程
➢ 物理背景:波的传播和弹性体振动。 §1-1 一维波动方程的导出、定解条件
对于弦振动方程而言,与上述定解条件结合后,其定解问题可以描述为:
2u( x, t )
t 2
a2
2u( x, t ) x2
f
( x, t ),
1.19
t 0 : u (x), u (x),
(1)任取一弦段(x, x+Δx),它的弧长为
xx
s
1(u)2dx
x
x
由基本假设2可知, ( u ) 2 与1相比可以忽略不计,所以 sx x
因此,可以认为弦在振动过程中并未伸长,即可认为张力大小与时间无关
T(x,t) T(x)
(2)由于弦只在x轴的垂直方向作横振动,所以水平方向的合力为零,即
T ( x x ) co 2 T s ( x ) co 1 0 s
段(x, x+Δx)上的外力为:
xx
F(x,t)dx
x
它在时间段(t, t+Δt)内的冲量为:
tt xx
F(x,t)dd x t
t
x
于是有: tt tx x x [ 2 u ( tx 2 ,
进一步由Δt, Δx 的任意性,有下面的弦振动方程(一维波动方程):
t
x x x
t t
从而有
t t x x
[
tx
2 u (tx 2,t) T 2 u ( x x 2 ,t)]ddx t0
进一步由Δt, Δx 的任意性,有
2 u (tx 2,t)a22 u ( xx 2,t)0 , a2T/
假定有垂直于x轴方向的外力存在,并设其线密度为F(x,t),则弦
2 u ( x ,t ) a 2 2 u ( x ,t ) f( x ,t ),a 2 T /,f( x ,t ) F ( x ,t ) /
t2
x 2
二维波动方程(如薄膜振动)
t2u 2 a2( x2u2 y2u2)f(x,y,t)
三维波动方程(如电磁波、声波的传播)
t2u 2a2( x 2u 2 y 2u 2 z 2u 2)f(x,y,z,t)
弦上各点在同一平面内垂直于该直线的方向上作微小振动。
sintan, cos1
3. 弦是柔软的,它在形变时不抵抗弯曲。
弦上各质点的张力方向与弦的切线方向一致,而弦的伸长变形 与张力的关系服从虎克定律。
基本规律: 牛顿第二定律 F=m*a F∆t=m*a* ∆t 冲量定理 F∆t=m*(v1-v2)
用u(x, t)表示弦点在时刻t沿垂直于x轴的位移。
特点: 反映了有关的未知变量关于时间的导数和关于
空间变量的导数之间的制约关系。
范畴: 连续介质力学、电磁学、量子力学等方面的基
本方程都属于数学物理方程的范围。
“一切科学的理论,总是从实践中来,又回到实践中去,
接受检验,指导实践,同时在实践中丰富和发展自己。”
力学问题 弦线振动问题
流体运动、弹性体振动、 热传导、电磁作用、
数学物理方程
许和勇
友谊校区 翼型、叶栅国防科技重点实验室 中楼217室 Tel:15802935215
西北工业大学 2012年10月
数学物理方程
定义: 主要是指从物理学及其他各门自然科学、技术
科学中所产生的偏微分方程(有时也包括积分 方程、微分积分方程等), 例如 2u(tx2,t)a22u (xx2,t)0
原子核-电子作用、化学反应
偏微分方程 (基本规律)
偏微分方程 求解数学物理方程 (基本规律) 定解问题
预测自然现象变化 (气象预报等)
各种工程设计 (机械强度计算等)
数学物理方程
数学
偏微分方程理论
历史悠久
对象、 内容、 方法
纯粹数学
偏微分 方程理论
样 多杂 复
分支
新课题、新方法
自然现象 实际问题
泛函分析 复变函数 微分几何 计算数学
由基本假设2可知,co2sco1s1,所以 T(xx)T(x)
因此,弦的张力大小与空间变量x无关 ,可以把弦线的张力T(x)在x轴方向
的分量看成常数T。
(3)对于图中选取的弦段而言,张力在x轴垂直
方向上的合力为:
T (si2 n si1 )n T [ u (x x x ,t) u (x x ,t)]
在时间段(t, t+Δt)内该合力产生的冲量为:
t tT[u(x x,t)u(x,t)]dt
t
x
x
(4)另一方面,在在时间段(t, t+Δt)内弦段(x, x+Δx)的动量变化为:
x x[u(x,t t)u(x,t)]dx
x
t
t
(5)因此,根据冲量定理,得到:
t tT [ u ( x x ,t ) u ( x ,t ) ] d x t x[ u ( x ,t t ) u ( x ,t ) ] dx
2. 定解条件
弦振动方程描述的是弦作微小横振动时的位移函数u(x, t)所应满足的一 般性规律。仅仅利用它并不能完全确定一条弦的具体运动状况。这是因为 弦的运动还与其初始状态以及边界所处的状况有关系,因此对于具体的弦 振动问题而言,还需要结合实际问题附加某些特定条件。
在前面的推导中,弦的两端被固定在x=0和x=l两点,即