第一章数学物理方程的解法
第一章+数学物理方程概述

第一章 数学物理方程概述数学物理方程,其定义是研究反映物理规律的数学方程。
由于一般的物理量基本都具有多个变量()t z y x ,,,,因此,它所满足的微分方程属于偏微分方程。
本章的目的,归纳出几个常见物理问题对应的数学物理方程。
§1.1 常见数学物理方程的导出1.1.1 常见的几个偏微分方程波动方程:数学上称双曲型方程,表现为场的波动性。
热传导方程或扩散方程:数学上称抛物型方程,表现为不可逆的输运过程。
拉普拉斯(Laplace )方程和泊松方程:数学上称椭圆型方程,表现为场的稳定分布。
()⎪⎩⎪⎨⎧−=∇=∇zy x u u ,,022ρ其中,算符z y x e ze y e x ˆˆˆ∂∂+∂∂+∂∂=∇,∇⋅∇=∇=Δ2称为拉普拉斯算子。
直角坐标系下, ()xx u xux u =∂∂=∇222一维yy xx u u y uxu y x u +=∂∂+∂∂=∇22222),( 二维 ()zz yy xx u u u zuy u x u z y x u ++=∂∂+∂∂+∂∂=∇2222222,, 三维1.1.2 常见数学物理方程的导出一、波动方程的导出1、弦的横振动如图1所示,一根拉紧的弦在平衡位置(x 轴)附近做横向微小振动()1<<α。
已知弦的线密度为ρ,作用于弦单位长度的外力为()t x F ,,方向垂直x 轴,弦上的张力为T ,()t x u ,表示弦上x 点在时刻t 的距离平衡位置的垂直位移。
推导弦横向振动所满足的方程。
图1 弦的横振动将弦上任意一小段()x x x Δ+,作为研究对象,由牛顿第二定律,小弦纵向和横向的运动方程分别为⎪⎩⎪⎨⎧∂∂⋅Δ=Δ+−=2211222211sin sin cos cos t ul l F T T T T ραααα由于弦的振动幅度比较小(α较小),所以有如下近似条件: T T T ==⇒≈=21111cos cos αα,T 为常数; x x u ∂∂=⇒==1111sin sin tan αααα,xx xuΔ+∂∂=2sin α;弦长x dx x u l xx xΔ≈⎟⎠⎞⎜⎝⎛∂∂+=Δ∫Δ+21。
数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
第一章 三类典型方程和定解条件

a 其中,ij (x), bi (x), c x , f (x)都只是 x1 , x2, , xm 的已知 函数,与未知函数无关。
若一个函数具有某偏微分方程中所需 要的各阶连续偏导数,并且代入该方程中 能使它变成恒等式,则此函数称为该方程 的解(古典解)。 初始条件和边界条件都称为定解条件。 把某个偏微分方程和相应的定解条件 结合在一起,就构成了一个定解问题。 只有初始条件,没有边界条件的定解问题 称为始值问题(或柯西问题)。反之,只 有边界条件,没有初始条件的定解问题称 为边值问题。既有初始条件又有边界条件 的定解问题,称为混合问题。
数学物理方程
第一章 三类典型方程和定解条件 第二章 分离变量法 第三章 Laplace方程的格林函数法
第四章 贝塞尔函数及勒让德多项式
第一章 三类典型方程和定解条件
数学物理方程的研究对象——定解问题。 一个定解问题是由偏微分方程和相应的定解 条件组成。我们先来介绍三类典型的方程:
三类典型方程
一、波动方程 二、热传导方程
用以说明初始状态的条件称为初始条件。 用以说明边界上的约束情况的条件称为边 界条件。
一、初始条件
比如说波动方程(1.3)其初始条件有两 个,一个是参数u,一个是u的一阶导数。 即: u u t 0 及 都已知。 t
t 0
而热传导方程(1.7)其初始条件只有一 个,就是参数u。即:
Байду номын сангаасu t 0 是已知。
一个定解问题提的是否符合实际情况,从 数学角度来看,有三方面可以加以检验:
1、解的存在性,看定解问题是否有解。
2、解的唯一性,看是否只有一个解。
3、解的稳定性,看当定解条件有微小
变动时,解是否相应地只有微小的变 动,若确实如此,则称此解是稳定的。
第1章 数学物理方程及定解问题

2
T
ρ
, f (x, t) =
F(x, t)
ρ
, 得 力 用 ,弦 动 程 外 作 下 振 方 为
一维非齐次波动方程
∂ 2 u( x , t ) ∂ 2 u( x , t ) − a2 = f ( x , t ). 2 2 ∂t ∂x
二维波动方程或膜振动方程
一块均匀的紧张的薄膜,离开静止水平位置作垂直 于水平位置的微小振动,其运动规律满足
2 ∂ 2u ∂ 2u 2∂ u = a 2 + 2 + f ( x, y , t ) 2 ∂t ∂y ∂x
在时刻t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t ) ∫x ρ ∂t dx;
x + ∆x x
在时刻t + ∆t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t + ∆t ) dx . ∫x ρ ∂t
∫
=∫
∂u( x , t + ∆ t ) ∂u( x , t ) − ρ dx . ∂t ∂t
第一节 波动方程及定解条件
1.一维波动方程或弦振动方程 一维波动方程或弦振动方程
物理模型
一长为 l 的柔软、均匀的细弦,拉紧以后,让它离 的柔软、均匀的细弦,拉紧以后, 开平衡位置在垂直于弦线的外力作用下作微小横振 求弦上个点的运动规律。 动,求弦上个点的运动规律。
张紧的、静止的弦是一直线,该直线是弦的 平衡位置,以此为 x 轴。振动总是传播到整 根弦,横振动就是弦中的质点离开平衡位置 的位移垂直于 x 轴, 可用 t 时刻弦上各质点 x 离开平衡位置的横向位移 u ( x, t ) 来描述弦的 状态, 某一时刻 u ( x, t ) 的分布代表弦的形状, 称为位形。由于弦中质点的位移不同导致弦 的形变,形变产生应力,为了便于应力的描 述,不妨假定所研究的弦为“柔软的”弦。
数学物理方程 第一章典型方程和定解条件

sin ' tan ' u(x dx,t)
x
则
T T'
u
M'
ds
T'
'
M
gds
T
x
x dx x
T
u(
x dx, x
t)
u ( x, x
t
)
gds
ma
T
u(x dx,t) x
u ( x, x
t)
gds
ma
m ds
其中:
a 2u(x,t) t 2
ds dx
T
u(x dx,t) x
微小: 振幅极小, 张力与水平方向的夹角很小。
u
M'
ds
T'
'
M
gds
T
x
x dx x
牛顿运动定律:
横向:T cos T 'cos ' 0
纵向:T sin T 'sin ' gds ma 其中: cos 1 2 4 1
2! 4!
cos ' 1
sin tan u(x,t)
数学物理方程与特殊函数
☆ 数学与物理的关系
数理不分家
☆ 数学物理方程: 用数学方程来描述一定的物理现象
数学物理方程(简称数理方程)是指自然科学和工程技术的各门 分支学科中出现的一些偏微分方程(有时也包括积分方程、微分方程等), 它们反映了物理量关于时间的导数和关于空间变量的导数 之间的制约关系。例如声学、流体力学、电磁学、量子力学等等 方面的基本方程都属于数学物理方程的研究对象。
• 如图,取杆长方向为x轴方向,垂直于杆长 方向的各截面均用平行位置x标记;在任一 时刻t,此截面相对于平衡位置的位移为u( x, t )
数学物理方程的解析解法

数学物理方程的解析解法在数学和物理领域,解析解法是一种重要的方法,用于求解各种数学物理方程。
与数值解法相比,解析解法能够给出方程的精确解,对于深入理解问题的本质和推导更深层次的结论非常有帮助。
本文将介绍几种常见的数学物理方程解析解法,并探讨其应用。
一、一阶常微分方程的解析解法一阶常微分方程是描述许多物理现象的重要工具,其解析解法可以通过分离变量、齐次线性微分方程、一阶线性非齐次微分方程、可降阶的方程等方法来求解。
1. 分离变量法分离变量法适用于可将微分方程写成dy/dx=f(x)g(y)的形式。
通过将方程两边同时对x和y进行积分,将方程分离成两个单独的积分方程,再通过求解这些积分方程得到最终解。
2. 齐次线性微分方程法齐次线性微分方程形式为dy/dx=f(ax+by),其中a和b为常数。
通过令y=vx,将原微分方程转换成常数系数线性微分方程,然后利用常数系数线性微分方程的求解方法,求解得到最终解。
3. 一阶线性非齐次微分方程法一阶线性非齐次微分方程可写成dy/dx+p(x)y=q(x)的形式。
通过求解对应的齐次线性微分方程的通解,再通过变量分离法求解非齐次线性微分方程特解,最后将通解和特解相加得到最终解。
4. 可降阶的微分方程法可降阶的微分方程法适用于微分方程可以通过降低微分方程的阶数来求解的情况。
通过采用变量替换的方法,将高阶微分方程转化为一阶微分方程,然后利用一阶微分方程的解析解法求解。
二、二阶常微分方程的解析解法二阶常微分方程常见于描述自由振动、电路分析、传热过程等物理问题。
解析解法可以通过特征根法、常系数非齐次线性微分方程法等方法来求解。
1. 特征根法特征根法适用于形如d²y/dx²+p(x)dy/dx+q(x)y=f(x)的二阶常微分方程。
通过假设y=e^(mx),将方程代入原方程得到特征方程,然后求解特征方程的根,再根据特征根的求解结果构造齐次解和非齐次解,最终得到最终解。
数学物理方程 陈才生主编 课后习题答案 章

1.1 基本内容提要
1.1.1 用数学物理方程研究物理问题的步骤 (1) 导出或者写出定解问题,它包括方程和定解条件两部分; (2) 求解已经导出或者写出的定解问题; (3) 对求得的解讨论其适定性并且作适当的物理解释.
1.1.2 求解数学物理方程的方法 常见方法有行波法(又称D’Alembert解法)、分离变量法、积分变换法、Green函
q = −k∇u,
其中k 为热传导系数,负号表示热量的流向和温度梯度方向相反.写成分量的形式
qx = −kux, qy = −kuy, qz = −kuz.
(3) Newton冷却定律. 物体冷却时放出的热量−k∇u 与物体和外界的温度差 u 边 − u0 成正比, 其 中u0为周围介质的温度.
·2·
1 n
en2
t
sin nx
(n
1), 满足
ut = −uxx,
(x, t) ∈ R1 × (0, ∞),
u(x, 0) = 1 +
1 n
sin
nx,
x ∈ R1.
显然, 当n → +∞时supx∈R
un(x, 0) − 1
=
1 n
→
0.
但是, 当n → ∞时
sup
x∈R1 ,t>0
un(x, t) − 1
∂2u ∂t2
=
E ρx2
∂ ∂x
x2
∂u ∂x
.
(1.3.9)
解 均匀细圆锥杆做微小横振动,可应用Hooke定律,并且假设密度ρ是常数. 以u¯ 表 示 图1.1所 示[x, x + ∆x]小 段 的 质 心 位 移, 小 段 质 量 为ρS∆x, S是 细
数学物理方程:第1章 数学物理方程的定解问题

第1章 数学物理方程的定解问题§1.1 数学物理方程的一般概念本节讨论:①数学物理方程的基本概念,②三类基本方程的数学表示,③一些简单解法▲数学物理方程的任务与特点 数学物理方程(亦称数理方程)在数学上为二阶偏微分方程。
它的任务有两个方面:①寻找数学定解问题的求解方法,给出解的表达式和计算方法;②通过理论分析得出问题的通解或某些特解的一般性质。
数学物理方程有如下特点:①它紧密地、直接地联系物理学、力学与工程技术中的许多问题。
②它广泛地运用数学物理中许多的技术成果。
如:数学中的复变函数、积分变换、常微分方程、泛函分析、广义函数等等,物理学中的力学、电学、磁学、热力学、原子物理学、振动与波、空气动力学等等。
⒈ 一些基本概念数学物理方程是物理过程中的一些偏微分方程。
由于物理过程是十分复杂的,故它们的数学表达式也是十分广泛的。
本书不能将众多的数学物理方程一一讨论,仅讨论一些常用的二阶线性微分方程。
一般而言,二阶线性偏微分方程可写为2,11nn ij i i j i i j i u u Lu a b cu f x x x ==∂∂=++=∂∂∂∑∑ (1.1.1) 式中:自变量),,(1n x x x ⋅⋅⋅=,系数ij a 、i b 、c 为x 的函数或为常数,并且ji ij a a =。
由于式中关于未知函数u 的导数最高为二阶导数,故方程称为二阶微分方程;同样,由于x 为n 维向量,方程也称为n 维方程;由于方程中对u 的各阶偏导数为线性的,故称为线性方程,否则就称为非线性方程。
若系数ij a 、i b 、c 均为常数,则称为常系数方程,否则称为变系数方程;若0≡f ,则称为齐次方程,反之称为非齐次方程。
▲方程的数学形式 在所有的自变量i x 中,时间变量t 常常被使用,由于它的独特性,人们常常直接用t 表示而不置于i x 之中,关于t 的导数式为:22u u L u a b t t t∂∂=+∂∂ (1.1.2) 故上述方程可改写为:f Lu u L t += (1.1.3)上述方程习惯上也称为n 维方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/20
6
第一章 微分几何
微分几何是采用微积分的方法研究几何图形 的学科。本章重点讨论曲面理论的基本原理。
微分几何中,由于运用数学分析的理论,就可 以在无限小的范围内略去高阶无穷小,一些复杂 的依赖关系可以变成线性的,不均匀的过程也可 以变成均匀的,这些都是微分几何特有的研究方 法。
学习本章的重点是掌握微分几何基本概念理解 空间曲面的定义、定理及重要几何量的计算方法。
故此时其奇点有且仅有一个:r(0) . 该曲线是(-, 0)和(0, )上的正则曲线。 三、同一曲线的不同参数表示
同一条曲线可有不同的参数表示。如果曲线C为r(t),用t=t (t1) 引入新参量t1,则r(t) r (t (t1)) = r1 (t1),为保障t, t1一一对应且
为使t, t1增加的方向均相应于曲线正向,要求
§ 1.1 三维空间中的曲线
二、正则
假定所研究的曲线 r (t) 至少是t 的一阶连续可微函数。
定义 :如果给定参数曲线 C: r r (t) , t(a, b) . • 若 r (t0) 0 ,则称 t t0 的对应点 r (t0 ) 为 C 的一个正则点. • 若 r (t0) 0 ,则称 t t0 的对应点 r (t0 ) 为 C 的一个奇点;
2020/8/20
7
第一章 微分几何
微分几何涉及用微积分方法了解空间形状及其性质。
微分几何解决问题的一般思路是:
参数方程定 义几何体
求导 从微积分导出能说
明几何学某些性质 的几何量
给定某些微 分量
求解
确定几何体
2020/8/20
几何量
微分方程的解集即几何体
满足的条件(微分方程) 8
第一章 微分几何
4
学习要求:
按时到课,完成作业,及时复习。
考核方法:30%平时+70%期末(闭卷) 推荐用书:
《数学物理方法》王一平主编,电子工业出版社
《微分几何的理论和习题》利普舒茨著,上海科学 技术出版社
《微分几何》梅向明 黄敬之 编,高等教育出版社
《物理学中的数学方法》拜伦著,1982年,科学出 版社
2020/8/20
2020/8/20
3
课程学习目标:
1、掌握微分几何、线性空间的相关定义和本征函数 集的应用; 2、掌握数学物理方程常规解法的技巧,以及特殊函 数的应用; 3、掌握格林函数在数学物理方法求解中的应用,掌 握积分方程的数值求解方法,学习数值渐近方法。 4、学习和提高编程分析实际问题的能力。
2020/8/20
周半径、角速率和向上速率.此时
r (t) (aw sin(wt) , aw cos(wt) , v) 0 ,
说明该参数化使之成为正则曲线。
或者称该曲线是(-, )上的正则曲线。
2020/8/20
13
§ 1.1.1 曲线的表示
§ 1.1 三维空间中的曲线
例3 半立方抛物线光滑曲线
r(t) (t3 , t2 , 0) , tR , 则 r (t) (3t2 , 2t , 0) ,
主要特色在于数学和物理的紧密结合, 将数学用于实际的物理和交叉科学的实际问 题的分析中,通过物理过程建立数学模型, 通过求解和分析模型,对具体物理过程的深 入理解。提高分析解决实际问题的能力。
2020/8/20
2
课程内容:
第一章:微分几何(4) 第二章:线性空间(4) 第三章:渐近方法(5) 第四章:格林函数法(5) 第五章:积分方程的解法(5)
1、三维空间中的曲线; 2、三维空间中的曲面; 3、曲面的第一、二基本形式; 4、曲面的曲率; 5、测地线; 6、张量简述。
2020/8/20
9
:第一章 微分几何
推荐用书:
《数学物理方法》王一平主编,电子工业出版社
《微分几何的理论和习题》利普舒茨著,上海科学 技术出版社
《微分几何讲义》陈省身 陈维恒著,北京大学出 版社
数学物理方法概论
之——(微分几何)
主讲教师:白璐 联系电话:15291456996 Email: blu@ /bailu
2020/8/201程特点:数学物理方法是物理学类、电子信息科学 类和通信科学类的重要公共基础课和工具。
仅仅表示一点,而不是正常的曲线,此时所有的参数值 对应于图形实体的同一点.这是非正则曲线的极端例 子.
例2 半径为a,螺距为2πv的圆柱螺线,如视为动点的轨
迹,表示为 r (t) (a cos (w t) , a sin (w t) , v t ) , tR ,
其中三个常数 a 0 , w 0 和 v 0 分别为动点运动的圆
若曲线上所有点正则,则称 C 为正则曲线,并称参数 t 为正 则参数. 几何意义:
• 视参数曲线为动点轨迹,正则点的几何意义则是当参数在该点
处作微小变动时动点的位置同时作真正的变动.
2020/8/20
12
§ 1.1.1 曲线的表示
§ 1.1 三维空间中的曲线
例1 若参数曲线 C: r r (t) 常矢 , tR ,则其几何图形
《微分几何》梅向明 黄敬之编,高等教育出版社
2020/8/20
10
§ 1.1.1 曲线的表示
§ 1.1 三维空间中的曲线
一、曲线的表示
在 E3 中Descartes直角坐标系 O-xyz 下运动质点的位置为
r (t) x(t)i y(t) j z(t)k
其中 i , j, k 为单位正交基向量.
空间曲线定义: 区间(a, b)上点t 在映射:t (x(t), y(t), z(t)) 下像的集合
5
第一章 微分几何
微分几何的产生和发展是与数学分析密切相连的, 在这方面做出突出贡献的有瑞士数学家欧拉,法国的 蒙日,德国的高斯、克莱因等。
经近300年的发展,已逐渐成为数学上独具 特色,应用广泛的学科。
在波的辐射、传播、散射、反射等应用领域常 遇到对物体几何形状的分析,而微分几何所阐明 的概念和方法,在这一方面成为有力的工具。
曲线C的表示:
C 可用向量形式的参数方程表示为
r (t) x(t)i y(t) j z(t)k [x(t), y(t), z(t)]
或写为分量形式的参数方程 x x(t)
y y(t) , t(a, b) .
2020/8/式20 中t 称为 C 的参数
z z(t)
11
§ 1.1.1 曲线的表示