弯曲变形的过程及

合集下载

板料弯曲变形工艺及特点

板料弯曲变形工艺及特点
板料弯曲变形工艺及 特点
3.3 弯曲工艺
弯曲是利用模具或其他工具将板料、型材或管材弯成具有一定角度和圆角 的塑性成形方法。它是冲压的基本工序之一。应用广泛,加工的零件种类很多。
V形件
圆管
加工种类
U形件
方管
异型管
常见的加工方法如图所示:
弯 曲 加 工 方 法 (a)V、U形模具弯曲;(b)折弯; (c)滚弯;(d)拉弯
弯曲分为自由弯曲和校正弯曲。
自由弯曲是 指弯曲终了时, 凸模、坯料、凹 模三者贴合后, 凸模不在下压。
校正弯曲是 指在弯曲终了前, 凸模给板料施加 足够大的压力使 其进一步的产生 塑性变形,从而 得到校正。
2.弯曲变形的特点 分析材料的弯曲变形特点,通常采用网格法,如图所示。
弯曲前后网格的变化 (a)弯曲前;(b)弯曲后 显微镜观察、测量弯曲后网格的尺寸和形状的变化情况,可以看 出弯曲变形的特点。
(1)通过对网格的观察, 可以看出弯曲圆角部分的网格 发生了显著的变化,原来的正 方形网格变成了扇形。靠近圆 角部分的直边有少量变形,其 余直角部分没有发生变形,说 明弯曲变形的区域主要发生在 弯曲圆角部分。
(2)在弯曲变形区内,从网格的变化情况来看,板料在长、宽、 厚三个方向都发生了变形。
长度方向
板料内区的纵向网格
而板料外区的纵向网
最内区的圆弧最短,区越长,最外区的圆弧最
其长度远小于弯曲前的直 长,其长度明显大于弯曲
线长度,说明区内的材料 前的直线长度,说明外区
受到压缩。
材料受到拉伸。
厚度方向
由于内侧长度方向缩短,因此厚度应 增加,但由于凸模紧压坯料,厚度方向增 加不易。外侧长度伸长,厚度要变薄。因 为增厚量小于变薄量,因此板料厚度在弯 曲变形区内有变薄现象。弯曲变形程度越 大,弯曲部位的变薄越严重。

弯曲变形过程及特点

弯曲变形过程及特点

二、弯曲时的中性层
在弯曲的初始阶段,以初始中面为界,内区受压 缩,外区受拉伸。
外层:
弯曲前:V=LBt 弯曲后: V=π(R2-ρ02 ) B α/2π
பைடு நூலகம் 内层:
临近板初始中面而偏于内区的一层(第4层)金属, 一开始受压缩;随着弯曲过程的进行,这层不 再进一步承受压缩,到某一时刻其塑性应变增 量变为零,以后就会受到拉伸,并逐渐恢复它 的初始长度,成为应变中性层。
板的弯曲变形区应分为三个不同的区域:
I区:包括曲率半径大于初始中面的各层, 即 R 1 (R 2 r2 ) 区域内的金属,在弯
2
曲过程中切向始终受拉;,
II区,包括曲率半径小于最终应力中性层
的各层,即 r Rr
区域内的金
属在弯曲过程中切向始终受压;
III区:包括初始中面与最终应力中性层 之间的各层,即 Rr 1 (R 2 r2 )
弯曲变形过程及特点
弯曲:把板料、管材或型材等弯曲成一 定的曲率或角度,并得到一定形状零件 的冲压工序。
常见的弯曲加工:使用弯曲模压弯,折弯、拉 弯、辊弯以及辊压成形。
级进模
一、弯曲变形的特点
图示为板材在V形模内的校正弯曲过程
1 观察变形后弯曲件坐标网的变化
(1)圆角部分的正方形网格变成了扇形,而远离圆角的两 直边处的网格没有变化。
d
(
)
d
1.155 代入平面应变条件下的Mises屈
服条件,
于是有
d
d 1.155
上式积分的边界条件:
在外表面 R, 0
在内表面 r, 0
应力分布图中, 把σθ等于零的金属层称
为应力中性层。可由 条件确定:
处σρ的连续

模具设计基础-第三章 弯曲工艺与弯曲模具设计

模具设计基础-第三章 弯曲工艺与弯曲模具设计
(4)弯曲件的孔边距 当弯曲带孔的工件时,如孔位于弯曲变形区附近,则弯 曲后孔的形状会发生改变。为了避免这种缺陷的出现,必须 使孔处于弯曲变形区之外。
当t 2mm ,S t 当t 2mm ,S 2t
模具设计基础 第三章 弯曲工艺与弯曲模具设计
5.止裂孔、止裂槽 如图 3.12 所示, 当局部弯曲某一段边缘时, 为了防止 尖角处由于应力集中而产生裂纹,可增添工艺孔、 工艺槽或 将弯曲线移动一定距离, 以避开尺寸突变处, 并满足b≥t, h=t+r+b/2的条件。
弯曲件的结构工艺性对弯曲生产有很大的影响。弯曲件良 好的工艺性,不仅能简化弯曲工序和弯曲模的设计,而且还能 提高弯曲件的精度、节约材料、提高生产率。 (1)弯曲件的形状 弯曲件的形状一般应对称,弯曲半径应左右一致,如图 所示。图(b)所示形状左右不对称,弯曲时由于工件受力不平 衡将会产生滑动现象,影响工件精度。
3.7补偿法
模具设计基础 第三章 弯曲工艺与弯曲模具设计
2) 校正法 校正弯曲时,在模具结构上采取措施,让校正压力集 中施加在弯曲变形区,使其塑性变形成分增加,弹性变形 成分减小,从而使回弹量减小,如图 3.8 所示。
3.8 校正法示意
模具设计ห้องสมุดไป่ตู้础 第三章 弯曲工艺与弯曲模具设计
四、弯曲件的工艺性
模具设计基础 第三章 弯曲工艺与弯曲模具设计
3.回弹 由于影响回弹的因素很多,各因素之间往往又互相影 响,因此很难实现对回弹量的精确计算和分析。在模具设 计时,对回弹量的确定大多按经验确定(也可查有关冲压资 料进行估算),最后通过试模来修正。 在模具设计时,要尽可能消除或减小回弹的影响响(指 消除回弹对弯曲件的影响,但并不能消除弯曲件的回弹现 象)。

第三章 弯 曲 (2)

第三章       弯    曲 (2)

ρ = r + xt
r:弯曲件内弯曲半径 t:材料厚度 x:中性层位移系数,查表。 弯曲件展开尺寸计算:
r/t < 0.5时,因为圆角区域发生了严重变薄,其相邻的直边也变薄,因 此需要采用经验公式计算。 对于复杂形状的弯曲件,在初步计算后,还需要反复试弯,不断修 正才能确定坯料尺寸。
3 回弹值的确定: 为了得到形状与尺寸精确的弯曲件,需要实现确定回弹值, 因为影响因素很多,理论计算方法往往不精确,而且很复杂,因此 一般是根据经验数值以及简单的计算来初步确定模具工作部分尺寸, 然后在试模时校正。
图3-21
产生偏移的原因: 1 弯曲坯料形状不对称; 2 弯曲件两边折弯个数 不相等; 3 弯曲凸凹模结构不对 称。
图3-22
控制偏移措施: 1 采用压料装置。
图3-23
2 利用工艺孔限制坯料移动。 3 对偏移量进行补偿。
4 对不对称零件,先成对弯曲,再切断。 5 尽量采用对称凸凹模结构
图3-24
0 .7 K B t σ b F自 = r+t
2
U型件:
]型件:
F = 2.4 Btσ b ac 自
上式中: F自:自由弯曲在冲压行程结束时的弯曲力; B:弯曲件的宽度; r:弯曲件的内弯曲半径; t:弯曲件材料厚度; σb:材料抗拉强度; K:安全系数,一般取1.3 a、c:系数; 校正弯曲时的弯曲力: 校正弯曲时的弯曲力一般按照下式计算:
2 应力状态 长度方向:弯曲内区受压,外区受拉,切向应力是绝对值最大的主应 力; 厚度方向:在变形区内存在径向压应力,在板料表面为0,由表及里 逐渐增加,到达中性层时达到最大值; 宽度方向:对于窄板,由于可以自由变形,因此内外区都为0,对于 宽板,内区为压应力,外区为拉应力

弯曲变形分析

弯曲变形分析

弯曲变形分析弯曲过程中,当坯料上作用有外弯曲力矩时,坯料的曲率半径发生变化。

图1表示板弯曲变形区(ABCD部分)内切向应力的变化情况。

弯曲过程中内区(靠近曲率中心一侧)切向受压,外区(远离曲率中心一侧)受拉。

根据变形程度,弯曲过程可分为三个阶段:1)弹性弯曲。

在变形开始时变形程度较小,坯料变形区应力最大的内、外表面的材料没有产生屈服,变形区内材料仅为弹性变形。

此时的切向应力分布如图3-1a所示。

2)弹-塑性弯曲。

随着变形的增大,坯料变形区内、外表面材料首先屈服,进入塑性变形状态。

随着变形的进一步增大,塑性变形由表面向中心逐步扩展。

切向应力分布如图3-1b。

3)纯塑性弯曲。

变形到一定程度,整个变形区的材料完全处于塑性变形状态。

切向应力分布如图3-11c。

弯曲变形过程在压力机上采用压弯模具对板料进行压弯是弯曲工艺中运用最多的方法。

弯曲变形的过程一般经历弹性弯曲变形、弹-塑性弯曲变形、塑性弯曲变形三个阶段。

现以常见的V 形件弯曲为例,如图1 所示。

板料从平面弯曲成一定角度和形状,其变形过程是围绕着弯曲圆角区域展开的,弯曲圆角区域为主要变形区。

弯曲开始时,模具的凸、凹模分别与板料在 A 、B 处相接触。

设凸模在 A 处施加的弯曲力为 2F (见图 1 a )。

这时在 B 处(凹模与板料的接触支点则产生反作用力并与弯曲力构成弯曲力矩M = F·(L 1 /2),使板料产生弯曲。

在弯曲的开始阶段,弯曲圆角半径r很大,弯曲力矩很小,仅引起材料的弹性弯曲变形。

图1 弯曲过程随着凸模进入凹模深度的增大,凹模与板料的接触处位置发生变化,支点 B 沿凹模斜面不断下移,弯曲力臂 L 逐渐减小,即 L n < L 3 < L 2 < L 1 。

同时弯曲圆角半径 r 亦逐渐减小,即 r n < r 3 < r 2 < r 1 ,板料的弯曲变形程度进一步加大。

弯曲变形程度可以用相对弯曲半径 r/t表示,t为板料的厚度。

弯曲成形工艺

弯曲成形工艺

1、影响回弹量的因素
材料力学性能 屈服强度愈高,弹性模 量愈小,加工硬化愈严重,则回弹量也 愈大。 相对弯曲半径r/t 相对弯曲半径r/t 越小, 回弹值越小。
曲率回弹:
ΔK = 1 ρ0 1 ρ0 '
角度回弹: Δα = α α 0
《汽车结构及制造技术》
弯曲中心角α 弯曲中心角α越大,弯曲后回弹角Δα越大。 曲件形状 形状愈复杂,由于各部分相互牵制,回弹困难。 模具间隙 弯曲模具的间隙愈大,回弹也愈大,所以板料厚度 允差愈大,回弹值愈不稳定。 模具圆角半径和摩擦等都对弯曲件回弹量有影响。
应力:材料或构件在单位截面上所承受的垂直作用力 应变:在外力作用下,单位长度材料的伸长量或缩短量,称为应变量 在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量
《汽车结构及制造技术》
6.2 弯曲件质量分析与工艺设计
6.2.1 弯曲件的回弹
卸载后弯曲件曲率和角度发生变化的 现象,称为弯曲回弹(简称回弹)。 弯曲回弹表现为弯曲半径和弯曲中心角的 变化。 • 弯曲回弹是不可避免的。
图 6-14
板料纤维方向对弯曲半径的影响
《汽车结构及制造技术》
3. 最小相对弯曲半径经验数值的确定
《汽车结构及制造技术》
6.2.3 弯曲中的偏移及防止措施
坯料在弯曲过程中沿制件的长度方向产生移动,使制件两 边的高度不符合图样要求的现象。
《汽车结构及制造技术》
采用压料装置,使坯料 在压紧的状态下逐渐弯 曲成形,从而防止坯料 的滑动,而且能得到较 平整的制件。
《汽车结构及制造技术》
总结提高
学生归纳
1
弯曲变形过程 弯曲变形特点
2
影响回弹的因素 减小回弹的措施

弯曲变形文档

弯曲变形文档

弯曲变形弯曲变形简介弯曲变形是指在受到外力作用时物体的形状发生弯曲的现象。

在力的作用下,物体会沿某个轴向发生曲率的变化。

这种变形是由于物体内部的应力分布不均匀造成的。

弯曲变形的现象普遍存在于日常生活和工程领域中,如桥梁、建筑物、杆件等。

弯曲变形的原理和影响因素在弯曲变形的过程中,物体经历了受力、应力和应变等过程。

受力物体受到的外力是引起弯曲变形的原因。

外力可以是静力或动力,来自外界的压力、重力、扭矩等。

不同类型的外力会对物体的弯曲变形产生不同的影响。

应力应力是指物体内部单位面积上的力。

在弯曲变形中,物体受到的外力通过内部的分子和原子之间进行传递,从而在物体内部产生应力。

应力的大小和方向直接影响着物体的弯曲程度和方向。

应变应变是指物体在受到外力作用后发生的形状变化。

应变可以分为线性应变和非线性应变两种类型。

线性应变是指弯曲变形的形状随应力成正比的变化。

非线性应变则是指物体在受到外力作用后,并不按线性规律进行变化。

影响因素弯曲变形的程度和形状会受到多种因素的影响:•材料的属性:材料的韧性、强度、刚度等属性会影响物体的弯曲变形。

•受力的位置和大小:外力的位置和大小直接决定了物体弯曲变形的形状和程度。

•物体的结构:物体的大小、形状、几何结构等都会影响其弯曲变形的方式和程度。

弯曲变形的应用和工程案例弯曲变形在工程领域中具有重要的应用价值。

许多结构和设备的设计都需要考虑弯曲变形的影响。

桥梁和建筑物桥梁和建筑物常常会受到各种外力的作用,如重力、风力、温度变化等。

这些外力会引起桥梁和建筑物的弯曲变形。

为了确保结构的稳定性和安全性,工程师需要考虑这些变形,并根据实际情况进行结构设计和加固。

杆件和承重构件杆件和承重构件在机械、航空航天和汽车等领域中广泛使用。

在受到载荷作用时,这些杆件会发生弯曲变形。

工程师需要根据载荷和弯曲变形来选择合适的材料和结构,以确保杆件的强度和稳定性。

弹性元件和弹簧弹性元件和弹簧在许多设备和机械中起到承载和缓冲作用。

第一至二节 弯曲变形过程分析

第一至二节 弯曲变形过程分析
窄板(B <3t): 内区宽度增加,外区宽度减小,原矩形截面变成了扇形 。
第二节 弯曲变形工艺计算
一、缷裁后弯曲件的回弹 1、回弹现象 塑性弯曲时伴随有弹性变形,当外载荷去除后,塑性变形 保留下来,而弹性变形会完全消失,使弯曲件的形状和尺寸发 生变化而与模具尺寸不一致,这种现象叫回弹。 2、回弹现象的表征及模具相关尺寸的修正 1)回弹的表现形式: ①曲率1/ρ减小,弯曲半径r 增大; ②弯曲中心角α减小,相应 弯曲角φ增大。
一、缷裁后弯曲件的回弹
4、减少回弹值的措施
1)选用合适的弯曲材料
2)改进弯曲件的结构设计 3)改进弯曲工艺 (1)采用校正弯曲代替自由弯曲; (2)对冷作硬化的材料须先退火,使其屈服点σs降低。对回 弹较大的材料,必要时可采用加热弯曲; (3)采用拉弯工艺。 4)改进模具结构 (1)补偿法 (2)校正法 (3)软凹模法
第二节 弯曲变形工艺计算
二、最小相对弯曲半径rmin/t 相对弯曲半径 r/t 是指弯曲件内侧圆角半径与板料厚度的 比值,表示板料弯曲变形程度的大小。
二、最小相对弯曲半径rmin/t
1、切向应变与相对弯曲半径的关系
由式 4-9 可见,弯曲变形的最大切向应变与相对弯曲半径 r/t成反比。因此,以相对弯曲半径表示弯曲的变形程度,r/t 愈小表示变形程度愈大。 2、最小相对弯曲半径rmin/t的概念 最小弯曲半径rmin: 在板料不发生破坏的条件下,所能弯成零件内表面的最小 圆角半径。 常用最小相对弯曲半径rmin/t表示弯曲时的成形极限。其值 越小越有利于弯曲成形。
二、最小相对弯曲半径t
3、影响最小相对弯曲半径rmin/t的因素 1)材料的力学性能: 塑性越好,许可的最小弯曲半径就越小。
2)弯曲中心角a: 弯曲中心角愈小,愈利于降低最小弯曲半径数值;当 a 为 60°-70 ° 时其影响就很小。 3)板料的方向: 弯曲时弯曲线垂直于纤维方向比平行时效果好,可得到较小 的最小弯曲半径。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲变形的过程及变形特点
肖永茂
弯曲变形的过程
弯曲变形过程: 如图3.1.2所示V形件的弯曲, 随着凸模进入凹模深度的增大,凹模与板料
的接触处位置发生变化,支点B沿凹模斜面 不断下移,弯曲力臂l 逐渐减小,接近行程 终了,弯曲半径r继续减小,而直边部分反 而向凹模方向变形,直至板料与凸、凹模 完全贴合。
中性层。应变中性层长度的确定是今后进行弯曲件毛坯展
开尺寸计算的重要依据。当弯曲变形程度很小时,应变中 性层位置基本上处于材料厚度的中心,但当弯曲变形程度 很大时,可以 发现应变中性层位置向材料内侧移动,变 形量愈大,内移量愈大。
3. 变形区材料厚度变薄的现象
弯曲变形程度愈大,变形区外侧材料受 拉伸长,使得材料厚度方向的材料减薄; 变形区内侧材料受到压缩,使得材料厚度 方向的材料增厚。应变中性层位置向材料 内侧移动,外侧的减薄区域随之扩大,内 侧的增厚区域随之缩小,外侧的减薄量大 于内侧的增厚量,因此使弯曲变形区的材 料厚度。变薄程度愈大,料的相对宽度B/t(B是板料的宽度,t是板料的厚度) 对变形区的材料变形有很大影响。一般将相对宽度B/t大于 3的板料称为宽板,相对宽度B/t小于等于3的板料称为窄板 。 窄板弯曲时,宽度方向的变形不受约束。由于弯曲变形区外 侧材料受拉引起宽度方向收缩,内侧材料受压引起宽度方 向增厚,其横断面形状变成了外窄内宽的扇形,变形区横 断面尺寸发生改变称为畸变。 宽板弯曲时,在宽度方向的变形会受到相邻部分材料的制约 ,材料不易流动,因此其横断面形状变化较小,仅在两端 会出现少量变形。
2.弯曲变形区存在应变中性层
比较变形区内前后相应位置的网格线长度可知,板料的外区 (靠 凹模一侧) ,纵向纤维受拉而伸长;内区(靠 凸模 一侧) ,横向纤维受压缩而缩短。内、外区至板料的中 心,其缩短和伸长的程度逐渐变小。由于材料的连续性, 在缩短和伸长两个变形区域之间。其中必定有一层金属纤 维材料的长度在弯曲前后保持不变,这一金属层称为应变
3.1.2板料弯曲变形特点
• 通过网格试验观察弯曲变形特点
图3.1.3 弯曲前后坐标网络的变化
1. 弯曲圆角部分是弯曲变形的主要 变形区
通过对网格的观察,弯曲圆角部分的网格发 生了显著的变化,原来正方形网格变成了 扇形;而在远离圆角处的直边,则没有这 种变化;在靠近圆角处的直边,有少量的 变化,这说明弯曲变形区主要在圆角部 分。。通过不同角度的弯曲,会发现弯曲 圆角半径越小,该变形区的网格变形越大。 因此,弯曲变形程度可以用相对弯曲半径 (r/t)来表示。
相关文档
最新文档