有理数及其运算第一节有理数PPT模板

合集下载

有理数的加减法(共44张PPT)

有理数的加减法(共44张PPT)

总结词
整数和小数相加或相减时,先将整数和 小数都转换为小数,再进行加减运算。
VS
详细描述
在进行整数和小数的混合加减法时,先将 整数转换为小数,再进行小数的加减法运 算。例如,将整数1和0.5相加得到1.5,将 整数2和-0.8相加得到1.2。同样地,在进 行混合减法时,先将整数转换为小数,再 进行小数的减法运算。例如,将整数2和 0.6相减得到1.4,将整数1和-0.4相减得到 0.6。
异号数的加减法规则
总结词
异号数相加或相减,取绝对值较大数的符号,并用较大的绝对值减去较小的绝 对值。
详细描述
当两个有理数符号不同时,结果的符号取绝对值较大的数的符号。同时,结果 的绝对值是较大的绝对值减去较小的绝对值。例如,+3和-5相加得到-2,-7和 +4相加得到-3。
整数和小数的混合加减法规则
06
习题和练习
基础习题
总结词
针对有理数加减法的基本概念和规则进行练习。
详细描述
包括正数、负数和零的加法运算,减法运算转化为加法运算,以及整数、分数和 小数的混合运算。
进阶习题
总结词
在掌握基础习题的基础上,进一步提高解题技巧和思维能力 。
详细描述
涉及更复杂的运算,如多步运算、分数的约分、有理数的乘 除法等,以及解决实际问题中的数学模型。
计算 (-5) + (-3):首先确定符号为 负,然后计算绝对值5和3,最后相 加得到结果-8。
示例2
计算 (-7) - (-4):首先确定符号为 负,然后计算绝对值7和4,最后相 减得到结果-3。
运算技巧和策略
利用分配律简化运算
例如,a + (b + c) = (a + b) + c 和 a - (b - c) = (a - b) + c。

七年级数学上册《第二章 有理数及其运算1》课件

七年级数学上册《第二章 有理数及其运算1》课件

负分数:如 -1/5、-3.5、-5/6、-2.8
规定了原点、正方向和单位长度的直线叫做数轴。 1、数轴的特点
(1)数轴是一条直线 (2)数轴有原点(0点) (3)数轴有正方向(通常取向右为正方向)
(4)数轴有单位长度
2、数形结合
任何一个有理数都可以用数轴上的一个点来表示。
3、数轴的画法
(1)取原点 (2)规定正方向,通常取向右为正方向 (3)选取适当的长度为单位长度
像10、1.2、17„这样的数叫做正数,它们都比0大。 0既不是正数,也不是负数 在正数前面加上“-”号的数叫做负数,例如-10,-3 „ 我们常用正数和负数表示一些相反意义的量。 如:向东走10米记为+10米,向西走15米记为-15米。
整数与分数统称为有理数。
整数
有 理 数 分数 正整数:如 1、2、3…… 零: 0 负整数:如-1、-2、-3… 正分数: 如 1/2 、1/3、5.2、3.5
任何数的绝对值都是非负数。 1、一个数本身与它的绝对值的关系
正数的绝对值是它本身,|+3|=3 负数的绝对值是它的相反数,|-3|=3 0的绝对值是0,|0|=0
绝对值大于1而小于5的所有整数的和是______
2、利用绝对值比较两个负数的大小
两个负数比较大小,绝对值大的反而小。
例、比较-5和-8的大小
有理数乘法法则
两数相乘,同号得正,异号得负,绝对值相乘。 任何数与0相乘,积仍得0。 当负因数有奇数个时,积为负;当负因数有偶数 个时,积为正;有因数为零时,积就为零。 倒数的概念
乘积为1的两个有理数互为倒数。 5 求 3、 、 6 、 0.5、 0.125的倒数 7
乘法的交换律:两个数相乘,交换因数的位置,积不

有理数PPT课件(北师大版)

有理数PPT课件(北师大版)
(2)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02克,那么﹣0.03克表示什么? (3)某大米包装袋上标注着:“净重量: 10kg±150g”, 这里的“10kg±150g” 表示什么?
解:(1)沿顺时针方向转了12圈记作-12圈;
(2)-0.03克表示乒乓球的质量低于标准质量 0.03克;
例4、把下列各数填在相应的大括号里:
1
- 11,4.8,+73,12,- 100.5…
2,7, 6
7
,12
Hale Waihona Puke ,- 83,正数集合:{4.8,+73,7,1 ,7 ,12… }
6 12
负数集合:{ -11,-2,- 8 ,-100.5… }
3
三、实际应用
例 (1)某人转动转盘,如果用+5圈表示沿逆时针方向 转了5圈,那么沿顺时针方向转了12圈怎样表示?
…………
西

解:-60m表示向西走60m
1、填空:
(1)-50元表示支出50元,那么+100元表示 _收__入__1_0_0_元___.
(2)正常水位为0m ,水位高于正常水位0.2m记 作_+_0_._2_m_,低于正常水位0.3m记作
-_0_._3_m__.
(3)乒乓球比标准重量重0.039kg记作 +_0_._0_3_9_k_g__; 比标准重量轻0.019kg记作_-_0_._0_1_9_k_g; 同标准重量一致记作_0_k_g___.
正整数:如1,2,3
整数 零:0
有理数
分数
负整数:如-1,-2,… 正分数:如 12,13 5,.2 … 负分数:如 15, 3.5 , 65 ,…

《有理数的运算》课件

《有理数的运算》课件
乘方是指将一个数自乘若干次,开方则是指 求一个数的平方根。在进行有理数的混合运 算时,应熟练掌握乘方和开方的定义及运算 规则,以便正确进行计算。
CHAPTER 04
有理数运算的应用
在日常生活中的应用
购物计算
在购物时,我们需要计算找零、 折扣等,有理数运算可以帮助我
们快速准确地完成这些计算。
金融计算
VS
详细描述
交换律是指加法或乘法中的数可以任意交 换位置而不改变结果,结合律则是指加法 或乘法中的数可以任意组合成组而不改变 结果。这些运算律在有理数的混合运算中 非常重要,可以帮助简化计算过程。
乘方和开方的定义及运算规则
总结词
乘方和开方是有理数混合运算中的重要概念 ,需要掌握其定义和运算规则。
详细描述
CHAPTER 03
有理数的混合运算
顺序与符号
总结词
运算顺序和符号的确定是有理数混合 运算中的重要环节。
详细描述
在进行有理数的混合运算时,应遵循 先乘除后加减的顺序,同时要特别注 意符号的处理。在运算过程中,应先 确定每个数的符号,再根据运算法则 进行计算。
运算的交换律和结合律
总结词
交换律和结合律是有理数混合运算中的 基本运算律。
有理数加法运算的基本法则
详细描述
同号数相加,取相同的符号,并把绝对值相加;异号数相加,取绝对值较大的数的符号,并用较大的绝对值减去 较小的绝对值;任何数与0相加,仍得这个数本身。
减法运算
总结词
有理数减法运算的基本法则
详细描述
有理数的减法运算可以转化为加法运算,即a-b=a+(-b)。
乘法运算
总结词
几何图形
在解决几何图形问题时, 有理数运算可以帮助我们 计算面积、周长等几何量 。

《有理数》PPT课件 (共10张PPT)

《有理数》PPT课件 (共10张PPT)
601 4
133 5.32= 25
150 .25=

思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。

有理数ppt课件

有理数ppt课件

03
有理数的混合运算
运算顺序
先算乘方或开方,再 算乘除,最后算加减 。
同一级运算按从左到 右的顺序进行。
如果有括号,先算括 号里面的,再算括号 外面的。
运算律
加法交换律:a+b=b+a
分配律:a(b+c)=ab+ac 乘法结合律:(ab)c=a(bc)
加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba
几何应用
有理数在几何学中常被用于描述 长度、面积和体积等几何量。
借助有理数的运算,可以方便地 求解几何量之间的关系,如计算 两点之间的距离、三角形或四面
体的面积和体积等。
有理数在几何作图中的应用也十 分广泛,如绘制直线、圆、椭圆 等图形时,有理数可以提供重要
的数学依据。
实际应用
有理数在实际生活中有着广泛的应用 ,如物理学中的力学、热学、电磁学 等都离不开有理数的运算。
有理数ppt课件
目录
• 有理数的定义 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义
整数
整数的分类
整数可以分为正整数、负整数和 零。
整数的性质
整数具有封闭性、可数性等性质。
整数的运算
整数可以进行加、减、乘、除等运 算。
分数
01
02
03
分数的定义
在信息科学领域,有理数被用于计算 机编码、信息压缩、加密和纠错等技 术中。
在金融领域,有理数被用于计算利息 、汇率、投资回报等经济指标。
在统计学中,有理数被用于描述数据 分布特征、进行假设检验和回归分析 等。
05

《有理数》有理数及其运算PPT课件

《有理数》有理数及其运算PPT课件

+10分 +20分 0分 -10分
现在我们可以用带有“+”号和“-”号的数表示各 队每道题的得分情况.试完成下表:
第1题 第2题 第3题 第4题 第5题 合计 第一组 +10 -10 +10 +10 - 10 +10
第二组 - 10 +10
0 +10 +10 +20
第三组 +10 +10 - 10 - 10
做一做
随堂练习
3、某厂计划每天生产零件800个,第一天生产零 件850个,第二天生产零件800个,第三天生产零 件750个,
你能正、负数表示该厂每天的超产量吗?
解:第一天超产零件是50个. 第二天超产零件是0个. 第三天超产零件是-50个
关键:以800个零件为正、负数的标准(分界限)
必做题
1、在-2;+1/2;-3.5;11中,正数 是 +1/2、 11 ;负数是-2、 -3。.5
对于比0分高的得分,可以在前面加上“+”号, 如+10(读作:正10)表示比0分高10的数。
加10分表示+10分 扣10分表示-10分 得0分表示0分
第一题 第二题 第三题 第四题 第五题 最后得分
第一队 第二队 第三队 第四队
+10分 -10分 +10分 +10分 -10分 -10分 +10分 0分 +10分 +10分 +10分 +10分 -10分 -10分 0分 +10分 -10分 +10分 -10分 -10分
注意:小数≠分数
请你将到目前为止学过的数进行
分类,并与你的同伴进行交流。
正有理数
整数

0


正整数:如 1、2、3…… 零: 0 负整数:如-1、-2、-3…

北师大版七年级数学上册第二章有理数及其运算2.4有理数的加法第1课时有理数的加法课件(共20张PPT

北师大版七年级数学上册第二章有理数及其运算2.4有理数的加法第1课时有理数的加法课件(共20张PPT
解:①冬季某天早晨温度为0度,到中午气 温上升了3度,再到下午又下降了3度,下午气 温为0度;
②取向东为正方向,先向西走了1 km,后 又走了2 km,一共向西走了3 km.
课堂小结
有理数加法的运算步骤:
一要辨别加数的类型(同号、异号); 二要确定和的符号; 三要计算绝对值的和(或差).
课后作业
先向左移动 3 个单位,再向右移动 2 个单位.
.
解:(1)( - 25 ) + ( - 7 ) = - ( 25 + 7 ) = - 32.
一个数同 0 相加,仍得这个数.
(4)45 + ( - 45 ) .
某班举行知识竞赛,评分标准是:答对一题加 1 分,答错一题扣 1 分,不回答得 0 分.
(2) 4+(-6);
(2)( - 13 ) + 5 = -( 13 – 5 ) = - 8. (3)( - 23 ) + 0 = -23. (4)45 + ( - 45 ) = 0.
练习
1. 土星表面的夜间平均温度为 - 150 ℃,白天比 夜间高 27 ℃,那么白天的平均温度是多少?
解:( - 150 ) + 27 = - ( 150 - 27 ) = -123 ( ℃ )
(2)( - 13 ) + 5 = -( 13 – 5 ) = - 8.
解:(1)( - 25 ) + ( - 7 ) = - ( 25 + 7 ) = - 32.
= - ( 10 + 1 ) 因此,(-3)+2 = -1.
因此,(-3)+2 = -1.
在数轴上,先先向左移动 2 个单位,再向左移动 3 个单位.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档