初中数学最值问题 专题

合集下载

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。

题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。

例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。

初中数学几何模型与最值问题09专题-一元二次方程在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题09专题-一元二次方程在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题专题9 一元二次方程在实际应用中的最值问题【应用呈现】1、 近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.2、如图,要建造一个四边形花圃ABCD ,要求AD 边靠墙,CD ⊥AD ,AD ∥BC ,AB ∶CD =5∶4,且三边的总长为20 m .设AB 的长为5x m . (1)请求AD 的长;(用含字母x 的式子表示)(2)若该花圃的面积为50 m 2,且周长不大于30 m ,求AB 的长.【方法总结】一、一元二次方程判别式求解1、已知x 、y 为实数,且满足x y m ++=5,xy ym mx ++=3,求实数m 最大值与最小值。

2、已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7 B .11 C .12 D .16二、配方法求最值1、设a 、b 为实数,那么a ab b a b 222++--的最小值为_______。

2、将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA =5,AB =6,AB =1:3,则MD +的最小值为 .三、 “夹逼法”求最值1、不等边三角形∆ABC 的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。

1、国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口1万人,通过各方面的共同努力,2019年底该地区贫困人口减少到0.25万人,求该地区2017年底至2019年底贫困人口年平均下降的百分率.2、某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?3、2020年,我国脱贫攻坚在力度、广度、深度和精准度上都达到了新的水平,重庆市深度贫困地区脱贫进程明显加快,作风治理和能力建设初见成效,精准扶贫、精准脱贫取得突破性进展.为助力我市脱贫攻坚,某村村委会在网上直播销售该村优质农产品礼包,该村在今年1月份销售256包,2、3月该礼包十分畅销,销售量持续走高,在售价不变的基础上,3月份的销售量达到400包.(1)若设2、3这两个月销售量的月平均增长率为a%,求a的值;(2)若农产品礼包每包进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若该农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?4、某商场第一年销售某品牌手机5000部,如果每年的销售量比上年增长相同的百分率x,且第三年比第二年多销售了1200部,求x的值.5、某通讯公司规定:一名客户如果一个月的通话时间不超过A分钟,那么这个月这名客户只要交10元通话费;如果超过A分钟,那么这个月除了仍要交10元通话费外,超过部分还要按每分钟元交费.(Ⅰ)某名客户7月份通话90分钟,超过了规定的A分钟,则超过部分应交通话费元(用含A的代数式表示);(Ⅱ)下表表示某名客户8月份、9月份的通话情况和交费情况:月份通话时间/分钟通话费总数/元8月份80 259月份45 10根据上表的数据,求A的值.6、在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角,墙DF足够长,墙DE长为9米,现用20米长的篱笆围成一个矩形花园ABCD,点C在墙DF上,点A在墙DE上,(篱笆只围AB,BC两边).(Ⅰ)根据题意填表;BC(m) 1 3 5 7矩形ABCD面积(m2)(Ⅱ)能够围成面积为100m2的矩形花园吗?如能说明围法,如不能,说明理由.专题9 一元二次方程在实际应用中的最值问题 答案【应用呈现】2、 近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.【解析】(1)设每年平均增长的百分率为x . 60002)1(x +=8640,2)1(x +=1.44,∵1+x >0, ∴1+x =1.2, x =20%.答:每年平均增长的百分率为20%;(2)2012年该县教育经费为8640×(1+20%)=10368(万元)>9500万元. 故能实现目标.2、如图,要建造一个四边形花圃ABCD ,要求AD 边靠墙,CD ⊥AD ,AD ∥BC ,AB ∶CD =5∶4,且三边的总长为20 m .设AB 的长为5x m . (1)请求AD 的长;(用含字母x 的式子表示)(2)若该花圃的面积为50 m 2,且周长不大于30 m ,求AB 的长.【解析】(1)作BH ⊥AD 于点H ,则AH =3x ,由BC =DH =20-9x 得AD =20-6x (2)由2(20-9x )+3x +9x ≤30得x ≥53,由12[(20-9x )+(20-6x )]×4x =50得3x 2-8x +5=0,∴x 1=53,x 2=1(舍去),∴5x =253.答:AB 的长为253米 【方法总结】一、一元二次方程判别式求解1、已知x 、y 为实数,且满足x y m ++=5,xy ym mx ++=3,求实数m 最大值与最小值。

初中数学函数最值问题培优专题训练

初中数学函数最值问题培优专题训练

初中数学函数最值问题培优专题训练1. 引言函数最值问题是初中数学中的一个重要课题,它涉及到如何确定一个函数在特定区间内的最大值和最小值。

正确解决函数最值问题对于提高学生的数学分析和问题解决能力具有重要意义。

本文将提供一些初中数学函数最值问题的培优专题训练,帮助学生加深对这一知识点的理解和掌握。

2. 常见类型的函数最值问题在函数最值问题中,常见的类型包括线性函数最值问题、二次函数最值问题和分段函数最值问题。

我们将分别介绍这些类型的问题和解题方法。

2.1 线性函数最值问题线性函数最值问题是最简单的一类问题。

线性函数的图像为一条直线,最大值和最小值通常出现在函数的两个端点上。

解决线性函数最值问题,只需要找到函数的两个端点,并比较它们的函数值即可。

例如,对于线性函数$y=2x+1$,最大值和最小值分别出现在$x$的最小值和最大值上。

我们将$x$的最小值和最大值代入函数,可以得到最大值和最小值的函数值。

2.2 二次函数最值问题二次函数最值问题是一类稍复杂的问题。

二次函数的图像通常为抛物线,最大值或最小值出现在抛物线的顶点上。

解决二次函数最值问题,需要找到函数的顶点,并判断该顶点对应的函数值是最大值还是最小值。

例如,对于二次函数$y=x^2+2x+1$,顶点坐标为$(-1, 0)$。

我们可以通过求导数等方法得到这一结果。

根据抛物线的形状,我们可以判断该顶点对应的函数值为最小值,因为$y$值随着$x$的增大而增大。

2.3 分段函数最值问题分段函数最值问题是一类较为复杂的问题。

分段函数由多个部分组成,每个部分可能具有不同的表达式。

解决分段函数最值问题,需要分别考虑每个部分的最值,并比较它们的函数值。

例如,对于分段函数$y=\begin{cases}x^2, &\text{if } x<0\\2x,&\text{if } x\geq0\end{cases}$,我们可以分别求出$x<0$和$x\geq0$两个部分的最值,并比较它们的函数值。

初中数学最值问题01专题-将军饮马模型与最值问题(含答案)

初中数学最值问题01专题-将军饮马模型与最值问题(含答案)

初中数学最值问题专题1 将军饮马模型与最值问题【模型导入】 什么是将军饮马?“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

【模型描述】如图,将军在图中点A 处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【模型抽象】如图,在直线上找一点P 使得P A +PB 最小?这个问题的难点在于P A +PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段. 【模型解析】作点A 关于直线的对称点A ’,连接P A ’,则P A ’=P A ,所以P A +PB =P A ’+PB 当A ’、P 、B 三点共线的时候,P A ’+PB =A ’B ,此时为最小值(两点之间线段最短)B 将军军营河P【模型展示】【模型】一、两定一动之点点在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P ’M +MN +NP ’’,当P ’、M 、N 、P ’’共线时,△PMN 周长最小.【例题】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.BBP OBAMNP''A【模型】二、两定两动之点点在OA 、OB 上分别取点M 、N 使得四边形PMNQ 的周长最小。

考虑PQ 是条定线段,故只需考虑PM +MN +NQ 最小值即可,类似,分别作点P 、Q 关于OA 、OB 对称,化折线段PM +MN +NQ 为P ’M +MN +NQ ’,当P ’、M 、N 、Q ’共线时,四边形PMNQ 的周长最小。

初中数学常见8种最值问题

初中数学常见8种最值问题

的方程 3 B.初中数学常见8种最值问题最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题. 这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一. 配方法例 1. (2005 年全国初中数学联赛武汉 CASIO 杯选拔赛)可取得的最小值为.解:原式 由此可知,当时,有最小值 .二. 设参数法例 2. (《中等数学》奥林匹克训练题)已知实数满足 .则 的最大值为.解:设 ,易知,由,得从而,.由此可知,是关于 t 的两个实根.于是,有,解得.故的最大值为 2.例 3. (2004 年全国初中联赛武汉选拔赛)若,则可取得的最小值为( )A. C.D. 6取得最小值 .故选(B ).解:设 ,则从而可知,当时,解:由 得解得由是非负实数,得 , 解得又 ,故, 三. 选主元法例 4. (2004 年全国初中数学竞赛) 实数满足.则 z 的最大值是.解:由 得.代入 消去 y 并整理成以为主元的二次方程,由 x 为实数,则判别式 . 即 ,整理得 解得 .所以,z 的最大值是 .四. 夹逼法例 5. (2003 年北京市初二数学竞赛复赛)是非负实数,并且满足.设,记 为 m 的最小值,y 为 m 的最大值.则.五. 构造方程法例 6. (2000 年山东省初中数学竞赛).于是,因此.已知矩形 A 的边长为 a 和 b ,如果总有另一矩形 B 使得矩形 B 与矩形 A 的周长之比与面积之比都等于 k ,试求 k 的最小值.解:设矩形 B 的边长为 x 和 y ,由题设可得 .从而x 和y 可以看作是关于t 的一元二次方程 的两个实数 根,则 ,因为 ,所以 ,解得,所以 k 的最小值是.六. 由某字母所取的最值确定代数式的最值例 7. (2006 年全国初中数学竞赛)已知为整数,且.若,则的最大值为.解:由得,代入得.而由和可知的整数.所以,当时,取得最大值,为.七. 借助几何图形法例 8. (2004 年四川省初中数学联赛)函数的最小值是.解:显然,若,则.因而,当取最小值时,必然有. 如图1,作线段AB=4,,且AC=1,BD=2.对于AB 上的任一点O,令OA=x,则.那么,问题转化为在 AB 上求一点 O,使 OC+OD 最小.图 1设点 C 关于 AB 的对称点为 E,则 DE 与 AB 的交点即为点 O,此时,.作 EF//AB 与DB 的延长线交于 F.在中,易知,所以,.因此,函数的最小值为5.八. 比较法例 9. (2002 年全国初中数学竞赛)某项工程,如果有甲、乙两队承包天完成,需付180000 元;由乙、丙两队承包天完成,需付150000 元;由甲、丙两队承包天完成,需付160000 元. 现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解:设甲、乙、丙单独承包各需天完成,则解得又设甲、乙、丙单独工作一天,各需付元,则解得于是,由甲队单独承包,费用是(元);由乙队单独承包,费用是(元);而丙队不能在一周内完成,经过比较得知,乙队承包费用最少.。

完整)初中数学《几何最值问题》典型例题

完整)初中数学《几何最值问题》典型例题

完整)初中数学《几何最值问题》典型例题初中数学《最值问题》典型例题一、解决几何最值问题的通常思路解决几何最值问题的理论依据是:两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。

根据不同特征转化是解决最值问题的关键。

通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段。

几何最值问题中的基本模型举例:1.三角形三边关系在三角形ABC中,M,N分别是边AB,BC上的动点,求AM+BN的最小值。

解析:先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点。

2.图形对称在△ABC中,M,N两点分别是边AB,BC上的动点,将△XXX沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值。

解析:转化成求AB'+B'N+NC的最小值。

二、典型题型1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△XXX的周长的最小值为.解析:作P关于OA,OB的对称点C,D,连接OC,OD。

则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长。

根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解。

解答:作P关于OA,OB的对称点C,D,连接OC,OD。

则当M,N是CD与OA,OB的交点时,△XXX的周长最短,最短的值是CD的长。

PC关于OA对称,∴∠COP=2∠AOP,OC=OP。

同理,∠DOP=2∠BOP,OP=OD。

COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD。

COD是等腰直角三角形。

则CD=2OC=2×32=64.分析】首先,把题目中的图形画出来,理清楚纸片折叠后的几何关系。

然后,可以利用勾股定理求出三角形的边长,再根据两点之间线段最短的原理,确定点A′在BC边上可移动的最大距离。

初中数学 几何最值专题

初中数学 几何最值专题

初中数学几何最值专题初中数学中,几何最值问题是一个常见的专题。

以下是一些常见的几何最值问题的类型和解决方法:一、两点之间线段最短原理:两点之间线段最短。

应用:在解决几何最值问题时,常常需要利用这个原理来找到两个点之间的最短路径。

例如,在一个矩形中,从一个顶点到另一个顶点的最短路径是通过矩形的对角线。

二、三角形三边关系原理:三角形两边之和大于第三边,两边之差小于第三边。

应用:在解决几何最值问题时,可以利用这个原理来判断三角形的形状和大小。

例如,在一个三角形中,已知两边长分别为a和b,第三边长为c,则c的取值范围是|a-b|<c<a+b。

当c取最小值时,三角形为直角三角形;当c取最大值时,三角形为等腰三角形。

三、利用对称性求最值原理:利用对称性可以简化问题,找到最值。

应用:在解决几何最值问题时,可以利用对称性来找到最值。

例如,在一个圆内,从一个点到一个定直线的距离的最值可以通过作该点关于定直线的对称点来找到。

同样地,在一个矩形内,从一个点到一个定点的距离的最值也可以通过作该点关于矩形中心的对称点来找到。

四、利用旋转和平移求最值原理:利用旋转和平移可以改变图形的位置和方向,从而找到最值。

应用:在解决几何最值问题时,可以利用旋转和平移来找到最值。

例如,在一个三角形中,已知两边长分别为a和b,夹角为θ,则可以通过旋转和平移将三角形转化为直角三角形,从而找到第三边长的最值。

五、利用相似性和全等性求最值原理:利用相似性和全等性可以将复杂问题转化为简单问题,从而找到最值。

应用:在解决几何最值问题时,可以利用相似性和全等性来找到最值。

例如,在两个相似的三角形中,已知其中一个三角形的三边长分别为a、b、c,则可以通过相似性找到另一个三角形的三边长的最值。

同样地,在两个全等的图形中,可以通过全等性找到它们之间的最短距离或最大面积等。

含参数二次函数的最值问题(初中数学中考专题)

含参数二次函数的最值问题(初中数学中考专题)
解得 综上所述m=1,n=﹣1或m=﹣1,n=﹣1.
变式练习 (1)、当 - 2 x 1时,二次函数 y x2 4ax 3a的最小值等于 -1,求a的值.
(2)、当﹣1≤x≤1时,函数y=﹣x2﹣ax+b+1(a>0)的最小值是﹣4, 最大值是0,求a、b的值.
(3)、当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4, 求实数m的值.
变式练习 (1)、当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,求a的值.
(2)、已知二次函数y=﹣x2+6x﹣5.当t≤x≤t+3时,函数的最 大值为m,最小值为n,若m﹣n=3,求t的值.
变式练习 (3)、设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数 x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数, 它在给定的闭区间上都有最小值.求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1] (t为任意实数)上的最小值f(x)的解析式.
5 55
是闭区间[a,b]上的“闭函数”,求a+b的值.
变式练习
(5)、已知关于x的二次函数y=x2+bx+c(实数b,c为常数).若b2﹣c= 0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值.
初中数学中考专题讲解 二次函数含参数的最值问题
引例 引例.对于二次函数 (1)求它的最小值和最大值. (2)当1≤x≤4时,求它的最小值和最大值. (3)当-2≤x≤1时,求它的最小值和最大值. (4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出 现在哪些位置?
二次函数三要素:开口方向,对称轴,自变量取值范围,画 草图,数形结合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学最值问题【例题1】(经典题)二次函数y=2(x ﹣3)2﹣4的最小值为 .【例题2】(2018)如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是 .【例题3】(2019)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值; (4)若点Q 为线段OC 上的一动点,问AQ +21QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.练 习1.(2018)要使代数式x 32-有意义,则x 的( ) A.最大值为32 B.最小值为32C.最大值为23D.最大值为23 2.(2018)不等边三角形∆ABC 的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。

3.(2018)设a 、b 为实数,那么a ab b a b 222++--的最小值为_______。

4.(2018)如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为 .5.(2018)某水果店在两周,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第 15天在第14天的价格基础上最多可降多少元?6.(2018荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R 、P 与x 的关系式分别为R x =+50030,P x =-1702。

(1)当日产量为多少时,每日获得的利润为1750元; (2)当日产量为多少时,可获得最大利润?最大利润是多少?7.(2018)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少?8.(经典题)求x x x x 2211-+++的最大值与最小值。

9.(经典题)求代数式x x 12-的最大值和最小值。

10.(经典题)求函数y x x =--+-||||145的最大值。

11. (2018)已知x 、y 为实数,且满足x y m ++=5,xy ym mx ++=3,数m 最大值与最小值。

12.(2019年省市)如图,在Rt △ABC 中,∠A =90°.AB =8cm ,AC =6cm ,若动点D 从B 出发,沿线段BA 运动到点A 为止(不考虑D 与B ,A 重合的情况),运动速度为2cm /s ,过点D 作DE ∥BC 交AC 于点E ,连接BE ,设动点D 运动的时间为x (s ),AE 的长为y (cm ). (1)求y 关于x 的函数表达式,并写出自变量x 的取值围; (2)当x 为何值时,△BDE 的面积S 有最大值?最大值为多少?13.(2019年)如图,在△ABC 中,∠A =90°,AB =3,AC =4,点M ,Q 分别是边AB ,BC 上的动点(点M 不与A ,B 重合),且MQ ⊥BC ,过点M 作BC 的平行线MN ,交AC 于点N ,连接NQ ,设BQ 为x . (1)试说明不论x 为何值时,总有△QBM ∽△ABC ;(2)是否存在一点Q ,使得四边形BMNQ 为平行四边形,试说明理由; (3)当x 为何值时,四边形BMNQ 的面积最大,并求出最大值.本题考查的是相似三角形的判定和性质、平行四边形的判定、二次函数的性质,掌握相似三角形的判定定理、二次函数的性质是解题的关键.14. (2019)如图所示,抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC . (1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值, (3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.15.(2019广西省贵港)已知:ABC ∆是等腰直角三角形,90BAC ∠=︒,将ABC ∆绕点C 顺时针方向旋转得到△A B C '',记旋转角为α,当90180α︒<<︒时,作A D AC '⊥,垂足为D ,A D '与B C '交于点E .(1)如图1,当15CA D ∠'=︒时,作A EC ∠'的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA EC EF '+=;(2)如图2,在(1)的条件下,设P 是直线A D '上的一个动点,连接PA ,PF ,若AB 求线段PA PF +的最小值.(结果保留根号). 16.(2019省市)如图,抛物线y =21x 2+bx +c 与直线y =21x +3分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知A (0,3),C (﹣3,0). (1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MC |的值最大,并求出这个最大值;(3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.17.(2019广西贺州)如图,在平面直角坐标系中,已知点B 的坐标为(1,0)-,且4OA OC OB ==,抛物线2(0)y ax bx c a =++≠图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标; (2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.18.(2019)如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过点B 、C ,与x 轴另一交点为A ,顶点为D . (1)求抛物线的解析式;(2)在x 轴上找一点E ,使EC +ED 的值最小,求EC +ED 的最小值;(3)在抛物线的对称轴上是否存在一点P ,使得∠APB =∠OCB ?若存在,求出P 点坐标;若不存在,请说明理由.19.(2019•)如图一,抛物线y=ax2+bx+c过A(﹣1,0)B(3.0)、C(0,)三点(1)求该抛物线的解析式;(2)P(x1,y1)、Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD、CB,点F为线段CB的中点,点M、N分别为直线CD和CE上的动点,求△FMN周长的最小值.20.(2019•)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=﹣x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?(3)若点M是平面的任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.【例题1】(经典题)二次函数y=2(x﹣3)2﹣4的最小值为.【答案】﹣4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.【例题2】(2018)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【答案】.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.【例题3】(2019)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC =3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求P点坐标及最大面积的值;(4)若点Q 为线段OC 上的一动点,问AQ +12QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【思路分析】(1)将A 、B 、C 三点坐标代入抛物线的解析式即可求出a 、b 、c 的值(当然用两根式做更方便);(2)先证四边形AMBD 为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .再由S △PBC =S △PBE +S △CPE ,转化为12PE•OB =12×3×(-m 2+3m ),最后将二次函数化为顶点式即可锁定S △PBC 的最大值与点P 坐标;(4)解决本问按两步走:一找(如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC1(3)2t -,取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小)、二求(由 AQ =12QC ,解关于t 的方程即可).【解题过程】(1)∵抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点, ∴令抛物线解析为y =a (x -1)(x -3). ∵该抛物线过点C (0,3),∴3=a ×(0-1)×(0-3),解得a =1.∴抛物线的解析式为y =(x -1)(x -3),即y =x 2-4x +3. ∵y =x 2-4x +3=(x -2)2-1, ∴抛物线的顶点D 的坐标为(2,-1).综上,所求抛物线的解析式为y =x 2-4x +3,顶点坐标为(2,-1). (2)如答图1,连接AD 、BD ,易知DA =DB .∵OB =OC ,∠BOC =90°, ∴∠MBA =45°. ∵D (2,-1),A (3,0), ∴∠DBA =45°. ∴∠DBM =90°. 同理,∠DAM =90°. 又∵AM ⊥BC ,∴四边形ADBM 为矩形. 又∵DA =DB ,∴四边形ADBM 为正方形.(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .∵S △PBC =S △PBE +S △CPE =12PE •BF +12PE •OF =12PE •OB =12×3×(-m 2+3m )图3图2图1=-32(m -32)2+278,∴当m =32时,S △PBC 有最大值为278,此时P 点的坐标为(32,-34).(4)如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC1(3)2t -, 取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小, 此时,√t 2+1=12(3−t),解得t =2√63-1, 于是AQ +12QC 的最小值为3-t =3-(2√63-1)=4-2√63.1.(2018)要使代数式√2−3x 有意义,则x 的( ) A.最大值为23 B.最小值为23 C.最大值为32 D.最大值为32 【答案】A.【解析】要使代数式√2−3x 有意义,必须使2-3x ≥0,即x ≤23,所以x 的最大值为23。

相关文档
最新文档