初中数学常见8种最值问题

合集下载

初中数学“最值问题”集锦(一)

初中数学“最值问题”集锦(一)

“最值问题”集锦(一)●平面几何中的最值问题 (01)●几何的定值与最值 (07)●最短路线问题 (14)●对称问题 (18)●巧作“对称点”妙解最值题 (22)●平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。

取点A关于直线L的对称点A’,则AP’= AP,在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。

1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3. 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以 S△ABC≥S△AKL.5. 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则 PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则 PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则 P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.6. 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.7. 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等; (2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变 思路点拨 先考虑当圆心在正三角形的顶点C 时, 其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下, 动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为 △ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,⌒⌒从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值; (2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.(1)求证:MN∥AB;(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.9.已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F.(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( )25 D.14A.8 B.12 C.211.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( )A.23+3+ D.21+ C.22+ B.212.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案111213●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短”为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上A、B二点之间的最短路线如何求呢?我们用过A、B两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上A、B两点之间不超过半个圆周的弧线就是所求的A、B两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从A地出发,去B地取情报.在去B地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点A关于河岸的对称点 A′,即作 AA′垂直于河岸,与河岸交于点C,且使AC=A′C,连接A′B交河岸于一点P,这时 P点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P点的另一点P′,连接P′A,P′B, P′A′.∵P′A+P′B=P′A′+P′B>A′B=PA′+PB=PA+PB,而这里不等式 P′A′+P′B>A′B成立的理由是连接两点的折线段大于直线段,所以PA+PB是最短路线.此例利用对称性把折线APB化成了易求的另一条最短路线即直线段A′B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上A点,爬到邻近的另一面墙壁β上的B点捕蛾,它可以沿许多路径到达,但哪一条是最近的路线呢?14解:我们假想把含B点的墙β顺时针旋转90°(如下页右图),使它和含A点的墙α处在同一平面上,此时β转过来的位置记为β′,B点的位置记为B′,则A、B′之间最短路线应该是线段AB′,设这条线段与墙棱线交于一点P,那么,折线4PB就是从A点沿着两扇墙面走到B点的最短路线.证明:在墙棱上任取异于P点的P′点,若沿折线AP′B走,也就是沿在墙转90°后的路线AP′B′走都比直线段APB′长,所以折线APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体ABCD—A′B′C′D′中,AB=4,A′A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到B点,问这只小虫怎样爬距离最短?(见图(1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、B两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D′B间的最短路线就是连结这两点的直线段,这样,从D′点出发,到B点共有六条路线供选择.①从D′点出发,经过上底面然后进入前侧面到达B点,将这两个面摊开在一个平面上(上页图(2)),这时在这个平面上D′、B间的最短路线距离就是连接D′、B两点的直线段,它是直角三角形ABD′的斜边,根据勾股定理,D′B2=D′A2+AB2=(1+2)2+42=25,∴D′B=5.②容易知道,从D′出发经过后侧面再进入下底面到达B点的最短距离也是5.③从D′点出发,经过左侧面,然后进入前侧面到达B点.将这两个面摊开在同一平面上,同理求得在这个平面上D′、B两点间的最短路线(上页图(3)),有:D′B2=22+(1+4)2=29.④容易知道,从D′出发经过后侧面再进入右侧面到达B点的最短距离的平方也是29.⑤从D′点出发,经过左侧面,然后进入下底面到达B点,将这两个平面摊开在同一平面上,同理可求得在这个平面上D′、B两点间的最短路线(见图),1516D ′B 2=(2+4)2+12=37.⑥容易知道,从D ′出发经过上侧面再进入右侧面到达B 点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D ′点出发,经过上底面然后进入前侧面到达B 点(上页图(2)),或者经过后侧面然后进入下底面到达B 点的路线是最短路线,它的长度是5个单位长度.利用例2、例3中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上A 和B 两点之间的最短路线问题(下左图),同样可以把A 、B 两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接A 、B 成线段AP1P2B ,P1、P2是线段AB 与两条侧棱线的交点,则折线AP1P2B 就是AB 间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在A 点,绕一周之后终点为B 点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线AB 剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时,A ′、B ′分别与A 、B 重合),连接AB ′,再将上页右图还原成上页左图的形状,则AB ′在圆柱面上形成的曲线就是连接AB 且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图,A 、B 在同一母线上,B 为AO 的中点,试求以A 为起点,以B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时,A′、B′分别与A、B重合),在扇形中连AB′,则将扇形还原成圆锥之后,AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的A点爬到桶内的B点去寻找食物,已知A点沿母线到桶口C点的距离是12厘米, B点沿母线到桶口 D点的距离是8厘米,而C、D两点之间的(桶口)弧长是15厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于B点在里面,不便于作图,设想将BD延长到F,使DF=BD,即以直线CD为对称轴,作出点B的对称点F,用F代替B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长BD到F,使DF=BD,即作点B关于直线CD 的对称点F,连结AF,交桶口沿线CD于O.因为桶口沿线CD是 B、F的对称轴,所以OB=OF,而A、F之间的最短线路是直线段AF,又AF=AO+OF,那么A、B之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O点后,转向桶内B点爬去.延长AC到E,使CE=DF,易知△AEF是直角三角形,AF是斜边,EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2 =(12+8)2+152=625=252,解得AF=25.即蚂蚁爬行的最短路程是25厘米.例7 A、B两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使A、B两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从A点作河岸的垂线,并在垂线上取AC等于河宽,就相当于把河宽预先扣除,找出B、C两点之间的最短路线,问题就可以解决.17解:如上图,过A点作河岸的垂线,在垂线上截取AC的长为河宽,连结BC交河岸于D点,作DE垂直于河岸,交对岸于E点,D、E两点就是使两村行程最短的架桥地点.即两村的最短路程是AE+ED+DB.例8 在河中有A、B两岛(如下图),六年级一班组织一次划船比赛,规则要求船从A岛出发,必须先划到甲岸,又到乙岸,再到B岛,最后回到A岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作A、B关于甲岸线、乙岸线的对称点A′和B′,连结A′、B′分别交甲岸线、乙岸线于E、F两点,则A→E→F→B→A是最短路线,即最短路程为:AE +EF+FB+BA.证明:由对称性可知路线A→E→F→B的长度恰等于线段A′B′的长度.而从A岛到甲岸,又到乙岸,再到B岛的任意的另一条路线,利用对称方法都可以化成一条连接A′、B′之间的折线,它们的长度都大于线段 A′B′,例如上图中用“·—·—·”表示的路线A→E′→F′→B的长度等于折线AE′F′B的长度,它大于A′B′的长度,所以A→E →F→B→A是最短路线.1819B ●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。

二次函数中的最值问题【八大题型】(学生版)-初中数学

二次函数中的最值问题【八大题型】(学生版)-初中数学

二次函数中的最值问题【八大题型】【题型1几何图形中线段最值问题】 1【题型2两线段和的最值问题】 5【题型3周长的最值问题】 13【题型4面积的最值问题】 21【题型5线段和差倍分的最值】 28【题型6由二次函数性质求二次函数的最值】 36【题型7由二次函数的最值求字母的值】 40【题型8由二次函数的最值求字母的取值范围】 46【题型1几何图形中线段最值问题】1.(23-24九年级·广西钦州·期中)如图,线段AB =10,点P 在线段AB 上,在AB 的同侧分别以AP ,BP 为边长作正方形APCD 和BPEF ,点M ,N 分别是EF ,CD 的中点,则MN 的最小值是()A.2B.3C.5D.62.(23-24九年级·安徽合肥·阶段练习)如图,AB =6,点C 是AB 上的动点,以AC 、BC 为边在AB 同侧作等边三角形,M 、N 分别是CD 、BE 中点,MN 最小值=()A.3B.32C.322D.3323.(23-24九年级·广东江门·阶段练习)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x0<x<3.(1)填空:PC=,FC=;(用含x的代数式表示)(2)若△PEF的面积为S,求S与x的函数关系及△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.4.(23-24九年级·广东广州·期中)如图,在正方形ABCD中,AB=7,F是边CD上的动点,将△ADF绕点A顺时针旋转90°至△ABE,将△ADF沿AF翻折至△AGF,连接EF、BD交于点H,连接GH,则△EGH面积的最大值为.【题型2两线段和的最值问题】5.((23-24·安徽合肥·一模)如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标,若不存在,请说明理由.6.((23-24·江苏宿迁·模拟预测)如图,在平面直角坐标系中,抛物线y=14x2-14x-3与x轴交于A,B两点,点C为y轴正半轴上一点,且OC=OB,D是线段AC上的动点(不与点A,C重合).(1)写出A、B、C三点坐标;(2)如图1,当点D关于x轴的对称点刚好落在抛物线上时,求此时D点的坐标;(3)如图2,若点E是线段AB上的动点,连接BD、CE,当CD=AE时,求BD+CE的最小值.7.((23-24·辽宁抚顺·模拟预测)如图,直线y=x-4与y轴交于点A,与x轴交于点B,抛物线y=x2+ bx+c经过A,B两点,与x轴负半轴交于点C,长度为22的线段DF在直线AB上滑动,以DF为对角线作正方形DEFG.(1)求抛物线的解析式;(2)当正方形DEFG与抛物线有公共点时,求D点横坐标的取值范围;(3)连接CE,OD,直接写出CE+OD的最小值.8.((23-24·海南省直辖县级单位·二模)如图,抛物线y=ax2+3ax+c经过点B1,0,交x轴、C0,-3于另一点A(点A在点B点的左侧),点P是该抛物线上的动点.(1)求抛物线的解析式;S△AOC时,请求出点P的横坐标;(2)当点P在直线AC下方且S△P AC=34(3)在抛物线的对称轴l上是否存在点Q,使得QC+QB最小?若存在,请求出这个最小值;若不存在,请说明理由;(4)若点E在x轴上,是否存在以P、A、C、E为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【题型3周长的最值问题】9.((23-24·辽宁丹东·模拟预测)如图,对称轴为直线x=-1的抛物线y=a(x-h)2+k a≠0图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,其中点B的坐标为2,0.,点C的坐标为0,4(1)求该抛物线的解析式;(2)如图1,若点P为抛物线上第二象限内的一个动点,点M为线段CO上一动点,当△APC的面积最大时,求△APM周长的最小值;(3)如图2,将原抛物线绕点A旋转180°,得新抛物线y ,在新抛物线y 的对称轴上是否存在点Q使得△ACQ为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.10.(23-24九年级·山东淄博·期中)如图,在平面直角坐标系中,抛物线y=-1x2+bx+c与x轴交于4A-2,0两点,与y轴交于点C,点P为直线BC上方抛物线上一动点.,B6,0(1)求抛物线的解析式;(2)过点A作AD∥BC交抛物线于D,若点E为对称轴上一动点,求△BED周长的最小值及此时点E的坐标;(3)过点A作AD∥BC交抛物线于D,过点E为直线AD上一动点,连接CP,CE,BP,BE,求四边形BPCE面积的最大值及此时点P的坐标.11.(23-24九年级·全国·期末)如图抛物线y=ax2+bx+c经过点A(-1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E是直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.12.(23-24九年级·广东广州·阶段练习)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为-1,0.,点C的坐标为0,-3(1)求抛物线的解析式;(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为0,-2,①求DE+EF的最小值②求△DEF周长的最小值;(3)如图2,N为射线CB上的一点,M是地物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,且AM∥CN,当△AMN为等腰三角形时,求点N的坐标.(直接写出点N的坐标,不要求写解答过程)【题型4面积的最值问题】13.(23-24九年级·云南红河·期中)如图,抛物线y=ax2+bx-4与x轴交于A-3,0两点,与y、B4,0轴交于点C.(1)求抛物线解析式;(2)点H是抛物线对称轴上的一个动点,连接AH、CH,求出△ACH周长的最小值时点H的坐标;(3)若点G是第四象限抛物线上的动点,求△BCG面积的最大值以及此时点G的坐标;14.(23-24九年级·甘肃武威·阶段练习)如图,抛物线y=ax2+bx+c与x轴交于点A-2,0,和点B4,0与y轴交于点C0,4.(1)求抛物线的解析式.(2)点D在抛物线的对称轴上,当AD+CD取得最小值时,求此时点D的坐标.(3)点P是直线BC上方抛物线上一动点,连接CP、BP,求△PBC的面积的最大值,并求此时点P的坐标.15.(23-24九年级·山东·期末)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=1,OB=OC=4.(1)求抛物线的解析式;(2)若连接AC、BC.动点D从点A出发,在线段AB上以每秒1个单位长度向点B做匀速运动;同时,动点E从点B出发,在线段BC上以每秒2个单位长度向点C做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE,设运动时间为t秒.在D、E运动的过程中,当t为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M是抛物线上位于x轴上方的一点,点N在x轴上,是否存在以点M为直角顶点的等腰直角三角形CMN?若存在,求出点M的坐标,若不存在,请说明理由.16.(23-24九年级·福建福州·期中)已知抛物线y=ax2+bx+c a≠0,顶点为与y轴交于点A0,-5 B2,-1直线与抛物线交于D,E两点(点D在点E的左侧).,过点C2,-5(1)求抛物线的解析式;(2)求△BDE面积的最小值;(3)若D,E两点都在第四象限,过点D作直线y=-1的垂线,垂足为F,直线EB与直线DF交于点G,连接CF,求证:四边形BCFG是平行四边形.【题型5线段和差倍分的最值】17.(23-24·山东济南·一模)抛物线y =-12x 2+a -1 x +2a 与x 轴交于A b ,0 ,B 4,0 两点,与y 轴交于点C 0,c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若S △PMB S △AMB =14,求点P 的坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为α(0°<α<90°),连接E 'B ,E C ,求E B +34E C 的最小值.18.(23-24九年级·安徽合肥·阶段练习)如图,在平面直角坐标系中,抛物线y=-x2+23x的顶点为A点,且与x轴的正半轴交于点B.(1)连接AO,AB,则△AOB为三角形;(2)P点为该抛物线对称轴上一点,当OP+1AP取最小值时,OP=.219.(23-24九年级·安徽阜阳·阶段练习)已知抛物线与x轴相交于A,B两点,与y轴相交于点C0,6,顶点为D2,8.(1)求此抛物线的解析式;(2)如图1,点P为抛物线对称轴(直线l)上的动点,求当PB-PC取得最小值时点P的坐标;(3)如图2,在第一象限内,抛物线上有一动点M,求△BCM面积的最大值.20.(23-24九年级·广东东莞·期中)如图,已知抛物线y=ax2+bx+c(a≠0)与y轴相交于点C0,-2,与x轴分别交于点B3,0和点A,且∠CAO=45°.(1)求抛物线解析式;(2)抛物线上是否存在一点Q,使得∠BAQ=∠ABC,若存在,请求出点Q坐标,若不存在,请说明理由;(3)抛物线的对称轴交x轴于点D,在y轴上是否存在一个点P,使2PC+PD的值最小,若存在,请求2出最小值,若不存在,请说明理由.【题型6由二次函数性质求二次函数的最值】21.(23-24九年级·陕西西安·阶段练习)如图,抛物线y=ax2+bx+3与x轴交于点A1,0,与y轴,B3,0交于点C.(1)求抛物线的解析式;(2)点M x1,y1,求y1-y2的最小值. ,N x2,y2是抛物线上不同的两点且x1+x2=4x1-x222.(23-24九年级·江西赣州·期中)观察下列两个数的乘积,说明其中哪个积最大.1×100,2×99,3×98,4×97,⋅⋅⋅,99×2,100×1.【观察发现】(1)发现所列各组式子中两个因数的和都为.【问题解决】(2)若设其中一个因数为x(1≤x≤100,且为正整数),所列两个数的积为y,请说明哪个积最大,最大值是多少.【拓展应用】(3)若大于0的a、b满足a+b=4,求a2+b2的最小值.23.((23-24·贵州·模拟预测)已知二次函数y=ax2-4x+c(a≠0,a,c为常数)的图象经过点1,-6,-4,-1(1)求二次函数的表达式;(2)当-1≤x<0时,求二次函数的最大值;(3)当m≤x≤0时,二次函数的最大值与最小值的和为2m,求m的值.24.(23-24九年级·湖南长沙·开学考试)在平面直角坐标系中,我们将形如1,-1,-2.1,2.1这样,纵坐标与横坐标互为相反数的点称之为“互补点”.(1)直线y=2x-3上的“互补点”的坐标为;(2)直线y=kx+2k≠0上是否有“互补点”,若有,请求出点的坐标,若没有请说明理由;(3)若函数y=14x2+n-k-1x+m+k-2的图象上存在唯一的一个“互补点”,且当-1≤n≤2时,m的最小值为k,求k的值.【题型7由二次函数的最值求字母的值】25.((23-24九年级·全国·专题练习)已知在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a、b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,-6),求函数y1的表达式;;(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点1r,0(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m、n的值.26.(23-24九年级·河南许昌·期末)如图,已知二次函数y=x2+ax+a-4的图象经过点P-2,-2.(1)求a的值和二次函数图象的顶点坐标.(2)已知点Q m,n在该二次函数图象上.①当m=-3时,求n的值;②当m≤x≤m+1时,该二次函数有最小值1,请结合函数图像求出m的值.27.(23-24九年级·湖南长沙·阶段练习)已知拋物线y=a x-h2+k与x轴交于A,B两点(A在B的左边),与y轴交于点C.顶点为M.(1)如图,若该拋物线可以由抛物线y=ax2先向右平移5个单位,在向上平移4个单位得到,点C坐标为0,-21.(i)求A,B两点的坐标;(ii)若线段AM的垂直平分线交x轴交于点D,交y轴交于点E,交AM交于点P,求证:四边形ADME 是菱形;(2)已知a=1,抛物线顶点M在直线y=2x-5上,若在自变量x的值满足2h≤x≤2h+3的情况下,对应函数值y的最小值为14,求h的值.28.((23-24·广西贺州·二模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx-3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且OB=3OA=3.(1)求这个二次函数的解析式;(2)若点M是线段BC下方抛物线上的一个动点(不与点B,点C重合),过点M作直线MN⊥x轴于点D,交线段BC于点N.是否存在点M使得线段MN的长度最大,若存在,求线段MN长度的最大值,若不存在,请说明理由;(3)当二次函数y=ax2+bx-3的自变量x满足t≤x≤t+1时,此函数的最大值与最小值的差为2,求出t的值.【题型8由二次函数的最值求字母的取值范围】29.(23-24九年级·江苏南通·阶段练习)用好错题本可以有效的积累解题策略,减少再错的可能.下面是小颖同学错题本上的一道题,请仔细阅读,并完成相应任务.*年*月*日 星期天错题***在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1,B m+2,y2.①求此抛物线的对称轴;(用含m的式子表示)②记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C(0,a),过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;任务一:请帮助小颖完成上述错题订正;任务二:若点M2,y3也是此抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,直接写出m的取值范围.30.(23-24九年级·河南郑州·阶段练习)如图,已知二次函数y=-x2+bx+c的图象经过点A4,1,点B0,5.(1)求该二次函数的表达式,并求出对称轴和顶点坐标;(2)点C m,n在该二次函数图象上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图象直接写出m的取值范围.31.((23-24·浙江温州·模拟预测)已知二次函数y=ax2-2ax+3图象的一部分如图所示,它经过-1,0.(1)求这个二次函数的表达式,并在图中补全该图象;(2)当-2≤x≤t时,函数的最大值为m,最小值为n,若m-n=9,求t的取值范围.32.(23-24九年级·湖北·周测)已知抛物线y=x2+bx+c经过点B,与y轴交于点A,顶点P在直线OB上.如图1,若点B的坐标为3,6,点P的横坐标为1.(1)试确定抛物线的解析式;(2)若当m≤x≤4时,y=x2+bx+c的最小值为2,最大值为11,请求出m的取值范围;(3)已知:点M在抛物线上,点N的坐标为2,3,且∠MNA=∠BAN,请直接写出符合题意的点M的坐标.。

初中数学最值问题典型例题(含答案分析)

初中数学最值问题典型例题(含答案分析)
(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线
MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存
在,说明理由.
例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a且),点F在
AD上(以下问题的结果可用a,b表示)

(3)如图7,由题意可知,∠NMD=∠MDB,
NMMD
MDBD
要使,△DNM∽△BMD,只要使
即可,
NMBD
………………………………⑤
即:MD
2
设点M的坐标为(a,0),由MN∥BD,可得
△AMN∽△ABD,
NMAM

BD
AB
再由(1)、(2)可知,AM=1+a,BD=32
,AB=4
AMBD(1a)3232
与抛物线
2
点A在x轴上,点B的纵坐标为3。点P是直线AB下方的抛物线上一动点(不与A,B重
合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D
(1)求a,b及sinACP的值
(2)设点P的横坐标为m
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个
=x-2x
2
解之,得
2.∴抛物线的解析式为y
.
2
b=-2
(2)连接AC交OB于E.
∵直线m切⊙C于A∴AC⊥m,∵弦AB=AO,∴ABAO
.∴AC⊥OB,∴m∥OB.
3
3
∴∠OAD=∠AOB,∵OA=4tan∠AOB=,∴OD=OA·tan∠OAD=4×=3.

初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题

初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题

动点最值问题永远都是中考最难的压轴类题目,很多同学都反应不知道该怎么下手寻找思路。

其实这类题目的题型有限,全部总结归纳就是这19种,希望同学们对每一种都能掌握技巧,再遇见类似的就能及时找到思路。

PS:可下载电子版打印高清版本,链接文末获取!
1、将军饮马模型(对称点模型)
2、利用三角形两边差求最值
3、手拉手全等取最值
4、手拉手相似取最值
5、平移构造平行四边形求最小
6、两点对称勺子型连接两端求最小
7、两点对称折线连两端求最小
8、时钟模型,中点两定边求最小值
9、时钟模型,相似两定边求最小值
10、转化构造两定边求最值
11、面积转化法求最值
12、相似转化法求最值
13、相似系数化一法求最值
14、三角函数化一求最值
15、轨迹最值
16、三动点的垂直三角形
17、旋转最值
18、隐圆最值-定角动弦
19、隐圆最值-动角定弦。

初中八年级(初二)数学课件 最大值、最小值问题

初中八年级(初二)数学课件 最大值、最小值问题
f (1) 7; f (4) 142. 比较得 最大值 f (4) 142, 最小值 f (1) 7.
实际问题求最值应注意: (1)建立目标函数; (2)求最大值或最小值; 若目标函数只有唯一驻点,则该点处的函数值 即为所求的最大值或最小值.
例2 某房地产公司有50套公寓要出租,当租 金定为每月180元时,公寓会全部租出去.当租金 每月增加10元时,就有一套公寓租不出去,而租出 去的房子每月需花费20元的整修维护费.试问房租 定为多少可获得最大收入?
注意:如果函数在区间内只有一个极值,则这个 极值就是最大值或最小值.
二、应用
例1 求函数 y 2x3 3x2 12x 14 的在 [3,4]
上的最大值与最小值.
解 f ( x) 6( x 2)( x 1)
解方程 f ( x) 0,得 x1 2, x2 1.
计算 f (3) 23; f (2) 34;
R(350)
(350
20)
6831500 108 Nhomakorabea0 (元).
例4 由直线 y 0,x 8 及抛物线 y x2 围
成一个曲边三角形,在曲边 y x2 上求一点,使 曲线在该点处的切线与直线 y 0 及 x 8 所围成 的三角形面积最大.
解 如图,
设所求切点为P( x0 , y0 ),
x0 16 (舍去).
P
oA
T B
Cx
S(16) 8 0. S(16) 4096 为极大值 .
3
3 217
故 S(16) 4096为所有三角形中面积的最大者. 3 27
则切线 PT 为 y y0 2x0( x x0 ),
y
P
oA
T B
Cx
y0 x02 ,

初中数学常见8种最值问题

初中数学常见8种最值问题

的方程 3 B.初中数学常见8种最值问题最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题. 这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一. 配方法例 1. (2005 年全国初中数学联赛武汉 CASIO 杯选拔赛)可取得的最小值为.解:原式 由此可知,当时,有最小值 .二. 设参数法例 2. (《中等数学》奥林匹克训练题)已知实数满足 .则 的最大值为.解:设 ,易知,由,得从而,.由此可知,是关于 t 的两个实根.于是,有,解得.故的最大值为 2.例 3. (2004 年全国初中联赛武汉选拔赛)若,则可取得的最小值为( )A. C.D. 6取得最小值 .故选(B ).解:设 ,则从而可知,当时,解:由 得解得由是非负实数,得 , 解得又 ,故, 三. 选主元法例 4. (2004 年全国初中数学竞赛) 实数满足.则 z 的最大值是.解:由 得.代入 消去 y 并整理成以为主元的二次方程,由 x 为实数,则判别式 . 即 ,整理得 解得 .所以,z 的最大值是 .四. 夹逼法例 5. (2003 年北京市初二数学竞赛复赛)是非负实数,并且满足.设,记 为 m 的最小值,y 为 m 的最大值.则.五. 构造方程法例 6. (2000 年山东省初中数学竞赛).于是,因此.已知矩形 A 的边长为 a 和 b ,如果总有另一矩形 B 使得矩形 B 与矩形 A 的周长之比与面积之比都等于 k ,试求 k 的最小值.解:设矩形 B 的边长为 x 和 y ,由题设可得 .从而x 和y 可以看作是关于t 的一元二次方程 的两个实数 根,则 ,因为 ,所以 ,解得,所以 k 的最小值是.六. 由某字母所取的最值确定代数式的最值例 7. (2006 年全国初中数学竞赛)已知为整数,且.若,则的最大值为.解:由得,代入得.而由和可知的整数.所以,当时,取得最大值,为.七. 借助几何图形法例 8. (2004 年四川省初中数学联赛)函数的最小值是.解:显然,若,则.因而,当取最小值时,必然有. 如图1,作线段AB=4,,且AC=1,BD=2.对于AB 上的任一点O,令OA=x,则.那么,问题转化为在 AB 上求一点 O,使 OC+OD 最小.图 1设点 C 关于 AB 的对称点为 E,则 DE 与 AB 的交点即为点 O,此时,.作 EF//AB 与DB 的延长线交于 F.在中,易知,所以,.因此,函数的最小值为5.八. 比较法例 9. (2002 年全国初中数学竞赛)某项工程,如果有甲、乙两队承包天完成,需付180000 元;由乙、丙两队承包天完成,需付150000 元;由甲、丙两队承包天完成,需付160000 元. 现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解:设甲、乙、丙单独承包各需天完成,则解得又设甲、乙、丙单独工作一天,各需付元,则解得于是,由甲队单独承包,费用是(元);由乙队单独承包,费用是(元);而丙队不能在一周内完成,经过比较得知,乙队承包费用最少.。

初中中考数学最值问题

初中中考数学最值问题

初中中考数学最值问题主要涉及两个方面:代数最值问题和几何最值问题。

1.代数最值问题:这类问题通常以应用题形式出现,常见的题型有
求一个花费最低、消耗最少、产值最高、获利最大的方案等。

这类问题的难点在于需要结合实际应用,理解并建立数学模型。

解决这类问题的关键在于根据题意,找到变量之间的关系,建立函数关系,利用函数的性质进行求解。

2.几何最值问题:主要是在一定的条件下,求平面几何图形中某个
确定的量(如线段长度、角度大小、图形面积等)的最大值或最小值。

这类问题的难点在于需要考虑图形的形状、大小、位置等多种因素,综合运用几何知识进行求解。

解决这类问题的关键在于根据题意,找到影响目标量的因素,利用不等式、函数的单调性等知识进行求解。

对于中考数学最值问题,学生需要具备扎实的数学基础和灵活的解题能力,同时要善于总结和归纳各类问题的解题方法。

在备考过程中,学生可以通过多做练习题,掌握各类问题的解题思路和技巧,提高解题效率和准确性。

巧求最值问题八种方法

巧求最值问题八种方法

如何求“最值”问题求最大值与最小值是中学数学常见的一种题型,在数学竞赛中作为一个靓点大量存在,解这类题有一定的难度和技巧,所以不少同学为之感慨,这里向大家介绍一些求最值问题的方法与技巧。

一、 利用配方求最值例1:假设x,y 是实数,则19993322+--+-y x y xy x 的最小值是 。

分析:由于是二次多项式,难以直接用完全平方公式,所以用配方法来解更为简捷。

原式=1990)96(21)96(21)2(212222++-++-++-y y x x y xy x =1990)3(21)3(21)(21222+-+-+-y x y x 显然有 (x-y)2≥0, (x-3)2≥0, (y-3)2≥0,所以 当x-y=0,x-3=0,y-3=0时 ,得x=y=3时, 代数式的值最小,最小是1990; 例2,设x 为实数,求y=312-+-xx x 的最小值。

分析:由于此函数只有一个未知数,容易想到配方法,但要注意只有一个完全平方式完不成,因此要考虑用两个平方完全平方式,并使两个完个平方式中的x 取值相同。

由于y=121122--+++-x x x x =1)1()1(22--+-xx x ,要求y 的最小值,必须有x-1=0,且01=-x x ,解得x=1,于是当x=1时,y=312-+-xx x 的最小值是-1。

二、 利用重要不等式求最值例3:假设xy=1,那么代数式44411y x +的最小值是 。

分析:已知两数积为定值,求两数平方和的最小值,可考虑用不等式的性质来解此题,44411y x +=2222222)(121·1·2)21()1(xy y x y x =≥+=1 所以:44411y x +的最小值是1 三、 构造方程求最值例4:已知实数a 、b 、c 满足:a+b+c=2, abc=4.求a 、b 、c 中的最大者的最小值. 分析:此例字母较多,由已知可联想到用根与系数的关系,构造方程来解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:显然,若 ,则 如图 1,作线段 AB=4, 令 OA=x,则
.因而,当 取最小值时,必然有 . ,且 AC=1,BD=2.对于 AB 上的任一点 O,
.
那么,问题转化为在 AB 上求一点 O,使 OC+OD 最小.
图1
设点 C 关于 AB 的对称点为 E,则 DE 与 AB 的交点即为点 O,此时,
解:原式 小值 .
由此可知,当
时,有最
二. 设参数法
例 2. (《中等数学》奥林匹克训练题)
已知实数 满足
.则 的最大值为________.
解:设
,易知 ,由
,得
从而,
.由此可知, 是关于 t 的方程

两个实根.于是,有
,解得 .故 的最大值为 2.
例 3. (2004 年全国初中联赛武汉选拔赛)
若 A. 3
六. 由某字母所取的最值确定代数式的最值
例 7. (2006 年全国初中数学竞赛)
已知
为整数,且
.
若 ,则
的最大值为_________.
解:由

,代入

.
而由
和 可知
的整数.
所以,当
时,
取得最大值,为
.
七. 借助几何图形法 例 8. (2004 年四川省初中数学联赛)
函数
的最小值是________.
最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题. 这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具 有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.
一. 配方法
例 1. (2005 年全国初中数学联赛武汉 CASIO 杯选拔赛)
可取得的最小值为_________.
已知矩形 A 的边长为 a 和 b,如果总有另一矩形 B 使得矩形 B 与矩形 A 的周长之 比与面积之比都等于 k,试求 k 的最小值.
解:设矩形 B 的边长为 x 和 y,由题设可得
从而 x 和 y 可以看作是关于 t 的一元二次方程
根,则
,因为 ,所以
解得
,所以 k 的最小值是
.
. 的两个实数 ,
解:设甲、乙、丙单独承包各需
天完成,则
解得
又设甲、乙、丙单独工作一天,各需付
元,则
解得
于是,由甲队单独承包,费用是
(元);由乙队单独承包,
费用是
(元);而丙队不能在一周内完成,经过比较得知,
乙队承包费用最少.
.作 EF//AB 与 DB 的延长线交于 F.

中,易知
,所以,
.
因此,函数
的最小值为 5.
八. 比较法 例 9. (2002 年全国初中数学竞赛)
某项工程,如果有甲、乙两队承包 天完成,需付 180000 元;由乙、丙两队承
包 天完成,需付 150000 元;由甲、丙两队承包 天完成,需付 160000 元. 现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?
,则
B.
C.
可取得的最小值为( ) D. 6
解:设
,则
从而可知,当
时,
取得最小值 .故选(B).
三. 选主元法
例 4. (2004 年全国初中数学竞赛)
实数
满足
.则 z 的最大值是________.
解:由 代入
即 解得

.
消去 y 并整理成以 为主元的二次方程
,由 x 为实数,则判别式 .
,整理得
.所以,z 的最大值是 .
四. 夹逼法
例 5. (2003 年北京市初二数学竞赛复赛)
是非负实数,并且满足
.设

记 为 m 的最小值,y 为 m 的最大值.则 __________.
解:由

解得

是非负实数,得

,故
, 解得
.
,于是
,因此
.
五. 构造方程法
例 6. (2000 年山东省初中数学竞赛)
相关文档
最新文档