第3章 电化学分析导论 第2节 化学电池与电极电位

合集下载

电极电位

电极电位

MnO4- + Fe2+ + H+ → Mn2+ + Fe3+ + H2O 解 配平半反应(电极反应)
Fe2+
Fe3+ + e-
MnO4- + 8 H+ + 5e电池组成式
Mn2+ + 4 H2O
(-) Pt|Fe3+,Fe2+ | | MnO4-,Mn2+,H+|Pt (+)
上页 下页 目录 返回
这就是电池电动势的Nernst方程。
上页 下页 目录 返回
对于一个氧化还原反应:
aOx1+bRed2 dRed1+eOx2
Q

c c d
e
Red1 Ox2
c c a
b
Ox1 Red 2
代入电池电动势的Nernst方程
E



RT zF
ln
c c d
e
Red1 Ox2
c c a
b
Ox1 Red2
E
电池电动势是指电池正负极※之间的“平衡” 电位差。这里“平衡”是指电极反应达到平衡, 而不是指电池反应达到平衡,则在测量原池电 势时使用电位差计以“动对消法”来测定。
上页 下页 目录 返回
第二节 电极电位
一、电极电位的产生 二、电极电位的测定 三、标准电极电位表
上页 下页 目录 返回
上页 下页 目录 返回
如Cl在BrCl中;在含氧化合物中按氧化物决 定,如ClO2中Cl的氧化值为+4。
(6) 电中性的化合物中所有原子的氧化值的和为 零。多原子离子中所有原子的氧化值的和等于离 子的电荷数。 氧化值可为整数,也可为分数。

电化学基本原理与应用-第3章

电化学基本原理与应用-第3章

净电荷
α
偶极层
3.2.1 “孤立相”的几种电位
(1)外电位(Ψα)
将试验电荷自无穷远处移至距球面约 10-4~10-5厘米处。在这一过程中可以认为 球体与试验电荷之间的短程力尚未开始作 用。根据电位的定义,此时所做的功为:
W1 = Zie0ψ α
ψ α = W1
Z ie0
球体α的外部电位
试验电荷电量
当试验电荷从相内逸出到相外时,这一过 程所涉及的能量变化(-Wiα)相当于试验电荷从 该相逸出而必须摆脱与该相物质之间的短程 相互作用及越过表面时对表面电势所做的功。 这部分功称为试验电荷在α相的“逸出功”, 显然应满足下列关系式:
−Wiα = μiα + Zi Fχ α
3.2.1 “孤立相”的几种电位
(b)内电位差,又称“伽伐尼(Galvani) 电位差”,定义为φα-φβ。直接接触的两相 间的内电位差,用 αΔβφ 表示。由于表面电 位无法测量,所以该值不能测量。也无法理 论计算。
3.2.2 相间电位差
φα −φ β = (χ α +ψ α ) − (χ β +ψ β ) = (ψ α − ψ β ) + ( χ α − χ β )
(1)相间电位差的种类 两相之间出现“相间电位差”的原因只可
能是界面层中带电粒子或偶极子的非均匀分 布,并形成了界面荷电层。
根据以上关于孤立相电位的讨论不难推 想,所谓α、β两相之间的电位差也因此可 能有各种不同的定义,其中较常用的有下面 三种:
3.2.2 相间电位差
(a) 外电位差,又称“伏打(Volta)电位 差”,定义为ψα-ψβ。直接接触的两相间的 外电位差,用 αΔβψ 表示。两相均为金属 时,为金属接触电位差,可直接测量。

仪器分析学习课件 第3章 电位分析法

仪器分析学习课件 第3章 电位分析法

+ 0 .2 8 2 8
+ 0 .2 4 3 8
温度校正,对于SCE,t ℃ 时的电极电位为:
Et= 0.2438- 7.6×10-4(t-25) (V)
银-氯化银电极:
银丝镀上一层AgCl沉淀,浸在一定浓度 的KCl溶液中即构成了银-氯化银电极。
电极反应:AgCl + e- == Ag + Cl-
电极内溶液的Cl-活度 一定,甘汞电极电位固定。
参比电极
表 甘汞电极的电极电位( 25℃)
0 .1 m o l/L 甘 汞 电 极标 准 甘 汞 电 极 (N C E ) 饱 和 甘 汞 电 极 (S C E )
K C l浓 度
0 .1m o l/L
1 .0m o l/L
饱 和 溶 液
电 极 电 位 ( V ) + 0 .3 3 6 5
参比电极
甘汞电极 电极反应:Hg2Cl2 + 2e- = 2Hg + 2 Cl半电池符号:Hg,Hg2Cl2(固)KCl 电极电位(25℃):
EH2gCl/H gEH O22gCl/H g0.025l9ga2(aH (H)g2agC 2(2C l)l) EH2gCl/H gEH O22gCl/H 0 g.05lg 9a(Cl)
第二类电分析化学法是以电物理量的突变作为滴定分 析中终点的指示,所以又称为电容量分析法。属于这类分 析方法的有:电位滴定,电导滴定,电流滴定等。
第三类电分析化学法是将试液中某一个待测组分通过 电极反应转化为固相,然后由工作电极上析出物的质量来 确定该组分的量。称为电重量分析法(电子做“沉淀剂” ),即电解分析法。
1、直接电位法: 零电流条件下测量指示电极相 对于参比电极的电位,据电位 与浓度的关系计算被测物含量。

第三章_电位分析法_(三)

第三章_电位分析法_(三)

五.影响测定准确度的因素 1. 温度 2. 电动势测量 ——直接电位法的固有误差 直接电位法的固有误差 由于K”受多因素影响 受多因素影响, 由于 受多因素影响,产生电位值波动 通常在1mv数量级 通常在 数量级 产生: 价离子测定 产生相对误差4% 价离子测定。 产生:1价离子测定。 产生相对误差 2价离子测定。 产生相对误差 价离子测定。 价离子测定 产生相对误差8% 3. 干扰离子 4. 溶液 溶液pH 适当的 工作范围 适当的pH工作范围 5. 待测离子线性范围 10-1——10-6 M 6. 响应时间 一般〈10 s 一般〈
辐射波长——————————————光谱法 光谱法 辐射波长 辐射强度 (Байду номын сангаас生能级迁移) 发生能级迁移)
辐射方向——————————————非光谱法 非光谱法 辐射方向 辐射速度 (不发生能级迁移) 不发生能级迁移) (折射,散射干涉,衍射,偏振)
二. 电磁辐射基础
1. 光 < 电磁波 = 电磁辐射 =光子流:高速传播,无需媒介 光子流: 光子流 高速传播, 2. 电磁辐射 波粒二象性:波动性 波参数: 波粒二象性:波动性——波参数:波长λ,频率ν,波数γ 波参数 波长λ 频率ν 波数γ 粒子性——量子化 粒子性 量子化 以光子为最小单位 一粒一粒的不连续传输 3. 波长λ:——(一个)波动长(度) 波长λ (一个)波动长( lamda) ---- λ (lamda) 单位: ---- 单位:长度单位 m=103mm=106μm=109nm 10 A=1nm
C x = ∆ C (10
∆E / S
− 1)
−1
单标准加入法
2 . 303 RT S = nF ∆E = Ex − Es V sC ∆C = Vx

电分析化学导论ppt课件-2024鲜版

电分析化学导论ppt课件-2024鲜版

03
利用微纳米技术实现对生物样品的高灵敏度、高选择性检测,
如细胞内外物质的分析、生物大分子的检测等。
32
光谱技术在电分析中应用
01
光谱电化学
结合光谱技术和电化学方法,研究电极过程的动力学和机理,以及电极
材料的结构和性质。
02
表面增强拉曼光谱在电分析中的应用
利用表面增强拉曼光谱技术提高电分析的灵敏度和选择性,实现对痕量
2024/3/28
电解分析法
通过电解过程对物质进行定性和定量分 析。
库仑分析法
基于法拉第电解定律,通过测量电解过 程中所消耗的电量进行分析。
6
电分析化学在各个领域应用
环境监测
用于水质、大气、土壤等环境样品的检 测和分析。
食品工业ቤተ መጻሕፍቲ ባይዱ
用于食品营养成分、添加剂和有害物质 的分析和检测。
生物医学
在生物样品分析、药物研发和临床医学 等领域有广泛应用。
34
THANKS
2024/3/28
35
电分析化学定义与发展
利用物质的电学和电化学性质 进行表征和测量的科学。
02
发展历程
01
电分析化学定义
2024/3/28
从伏打电池的发现到现代电化学 分析技术的不断革新。
5
电分析化学研究内容
电导分析法
通过测量溶液的电导率来分析溶液中的 离子浓度。
电位分析法
利用电极电位与待测物质浓度之间的关 系进行分析。
物质的检测。
2024/3/28
03
光电化学传感器
将光电转换技术与电化学传感器相结合,构建高灵敏度、高选择性的光
电化学传感器,用于环境、生物等领域的分析检测。

理论电化学第三章

理论电化学第三章
曲线特征:具有最高点的抛物线
1、双电层界面带有剩余电荷,产生排 斥作用,使界面扩大,界面张力减小。
2、带点界面的张力比不带电的要小。 3、电极表面电荷越多,界面张力就越
小,q=0时,界面张力最大,但φ 不一 定为0.
电毛细曲线微分方程的推导
由Gibbs等温吸附方程:界面张力的变化 与表面剩余量Гi有关
第三章 电极/溶液界面的结构 与性质
重点要求
研究双电层结构的主要方法的基本原理、 优缺点和用途;
界面结构的物理图像(模型); 特性吸附对双电层结构、性质的影响; 相关概念
第一节 概述
一. 研究电极/溶液界面性质的意义 电极材料的化学性质和表面状态对电极
反应速度和反应机理有很大影响 界面电场强度对电极反应速度可控制的、
对理想极化电极: di 0无反应
∴ =-q
或:
q



u
电毛细曲线微分方程 ( Lippmann方程 )
对电毛细曲线微分方程的实验解释
当电极表面存在正的剩余电荷时:
q 0 : 0
对应电毛细曲线左半部分(上升分支); 当电极表面存在负的剩余电荷时,
基本线路
交流讯 号源
交流电桥
直流极 化回路
电极电位测量 回路
交流电桥法测定微分电容的基本线路
电解池的设计及其等效电路分析
Cab
Ra
a
Rf
R
, f
Rl
Rb
b
Cd
C
, d
由于电极本身是金属材料,导电性能好, 可不考虑Ra和Rb;同时由于两电极间距离 大,所以Cab<<Cd,此时,电路简化为:

电化学分析---电化学分析导论

第一章

电分析化学导论
化学电池
Electrochemical Cell
电极电位
Electrode Potential
液接电位与盐桥
Liquid Junction Potential and Salt Bridge
电极的极化与超电位
Polarization on Electrodes and Overpotential
Hg
2+
0.059V 2/Hg+ 2
lg
Ksp1, Hg2C2O4 Ksp2 , Ca2C2O4
所以 E = K +
0.059V 2
lgaca2+
(四)零类电极: 由惰性金属与含有可溶性的氧化和还原质的溶 液。 例如Pt|Fe2+,Fe3+电极,
电极反应为: 电极电位为: Fe3+ + e E= Eθ Fe2+ + 0.059V lg
5、写出下列电池的半电池反应及电池反应,计算 其电动势,该电池是电解池还是原电池?
Zn│ZnSO4(0.1mol/L) ║AgNO3(0.01mol/L) │Ag 6、下述电池的电动势为0.413V, Pt,H2(101325Pa)|HA(0.215mol/L),NaA(0.116mol/L) ║SCE Esce=0.2443V,计算弱酸HA的解离常数。 7、下述电池的电动势为0.921V, Cd |CdX2-4(0.200mol/L),X-(0.150mol/L) ║SCE EθCd2+/Cd=-0.403V,Esce=0.2443V,计算Cd2-4的形成常数。 8、下述电池的电动势为0.893V, Cd |CdX2(饱和),X-(0.02mol/L) ║SCE EθCd2+/Cd=-0.403V,Esce=0.2443V,计算CdX2的溶度积常数。

第二课-电位法的基础知识


电极电位
液接界电位
电极电位
(L-S) (25℃, a = 1mol/L )
(L-L)
(L-S)
阳极 = - 0.763 V
j = 0
阴极= 0.799V
E = 阴极 阳极 + j = 0.799 - ( - 0.763 )+ 0 =1.562 V
计算 E 得正值,原电池(自发电池)
计算 E 得负值,电解池。
2019年8月11日
2
上次课重点
3.为什么仪器分析测微量,化学分析测常量? 仪器分析误差大,测定常量测不准;化学分析测微量,
消耗标准溶液少(不到1滴)检测不出来 4.仪器分析有哪些特点?
灵敏度高、选择性高、误差较大、操作简便、样品用 量少、价格高 5.仪器分析测定一般过程是什么?
待测试样x——转换器——电信号——测定电信号求出 被测物质含量。
Zn2+ + 2e 还原反应
Zn 阴极
Ag
Ag+ +e
氧化反应 阳极
电池总反应 Zn + 2 Ag +
Zn 2+ + 2 Ag
2019年8月11日
12
原电池表示法
(-)Zn l Zn 2+(a Zn 2+ mol/L) l l Ag + (a Ag + mol/L) l Ag (+)
阳 (氧化)
阴(还原)
29
常用电极
甘汞电极使用注意事项 使用前检查KCl溶液高度和是否饱和,取下两个胶冒,检
查是否有气泡和多孔物质是否畅通。 电极安装垂直溶液中,溶液的液面应该低于电极内溶液。 测定Cl-、Ag+、S2+应加KNO3盐桥 使用温度低于80℃

电化学分析电位法

3. Hg(II)可与一些离子发生反应。
Ag/AgCl电极
• 结构:同甘汞电极,只是将 HgHg2Cl2换成涂有AgCl的银丝。
• KCl溶液:3.5M或饱和。
– 电极组成:Ag AgCl, KCl
– 电极反应:AgCl + e = Ag + Cl-

电极电位:
o Ag /Ag
0.059lgaCl
2 lgKsp,CaC2O4 2 lgaCa2
0.059 K 2 lgaCa2
零类电极
• 亦称惰性电极 • Pt/Fe3+,Fe2+,Pt/Ce4+,Ce3+…… • 电极反应:Fe3+ + e = Fe2+ • 电极电位:
0 0.0592lg aFe3 aFe2
•Pt 未参加电极反应,只提供Fe3+及Fe2+之间电子交换场所。
电分析方法特点
1. 快速、灵敏、在线; 2. 仪器简单、便宜; 3. 可得到许多有用的信息
① 活度而非浓度; ② 元素形态分析:如Ce(III)及Ce(IV)分析; ③ 界面电荷转移的化学计量学和速率; ④ 传质速率; ⑤ 吸附或化学吸附特性; ⑥ 化学反应的速率常数和平衡常数测定等。
第一节 电化学分析基础
0 0.0592 lg aO
n
aR
电池反应的Nernst方程
• 若电池的总反应为:aA + bB = cC + dD
电池电动势为:
E
0
0.0592 n
lg
(aC (aA
)c (aD )a (aB
)d )b
• 其中0为所有参加反应的组份都处于标准状态时
的电动势。

9第三章电化学分析导论 第二节

电位差:+0.799 V;
银电极的标准电极电位:+0.799 V。
在298.15 K 时,以水为溶剂,当氧化态和还原态的活度等 于1 时的电极电位称为:标准电极电位。
01:00:22
01:00:22

01:00:22
三、液体接界电位与盐桥
liquid junction potential and salt bridge
第三章 电化学分析导论
an introduction to electrochemical analysis
一、化学电池
chemical cell
二、电极电位与测量
electrode potential and detect
三、液接电位与盐桥
liquid junction potential and salt 第二节 bridge 化学电池与电极电位 四、电极与电极分类
二个相界面,常用作参比电极。
01:00:22
指示电极
(3)第三类电极──汞电极
金属汞(或汞齐丝)浸入含有少量Hg2+-EDTA配合物及被测 金属离子的溶液中所组成。根据溶液中同时存在的Hg2+和Mn+ 与EDTA间的两个配位平衡,可以导出以下关系式(25°C):
E(Hg22+/Hg )= E (Hg22+/Hg ) - 0.059lgaMn+
01:00:22
2.指示电极
(1)第一类电极──金属-金属离子电极
例如:Ag-AgNO3电极(银电极),Zn-ZnSO4电极(锌电极)等
电极电位为(25°C) :
EMn+ /M = E Mn+ /M - 0.059lgaMn+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01:01:43
01:01:43
原电池
阳极:发生 氧化反应的 电极(负 极); 阴极:发生 还原反应的 电极(正 极); 阳极≠正极 阴极≠负极 电极电位较 正的为正极
01:01:43
电解电池
阳极:发生氧 化反应的电极 (正极); 阴极:发生还 原反应的电极 (负极); 阳极=正极 阴极=负极
构成。 膜内外被测离子活度的不同而产生电位差。
01:01:43
膜电极
将膜电极和参比电极一起插到被测溶液中,组成电池。 则电池结构为:
外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极
(敏感膜) 内外参比电极的电位值固定,且内 充溶液中离子的活度也一定,则电池电 动势为:
RT E E ln ai nF
01:01:43
选择内容:
第一节
第二节
电化学分析概述
化学电池与电极电位
generalization of electrochemical analysis chemical cell and electrode potential
结束
01:01:43
01:01:43
二、电极电位
electrode potential and detect 1.平衡电极电位
可以将金属看成离子和自由电子构成。以锌-硫酸锌为例
当锌片与硫酸锌溶液接触时,金属锌中 Zn2+ 的化学势大 于溶液中 Zn2+ 的化学势,则锌不断溶解到溶液中,而电子留 在锌片上。结果:金属带负电,溶液带正电;形成双电层。 双电层的形成建立了相间的电位差; 电位差排斥Zn2+继续进入溶液; 金属表面的负电荷又吸引Zn2+ ; 达到动态平衡,相间平衡电位 ——平衡电极电位。
在两种不同离子的溶液或两种不同浓度的溶液接触界面 上,存在着微小的电位差,称之为液体接界电位。 液体接界电位产生的原因:各种离子具有不同的迁移速率 而引起。
盐桥: 饱和KCl溶液 中加入3%琼脂; K+、Cl-的扩 散速度接近,液接 电位保持恒定 1-2mV。
01:01:43
四、电极与电极分类
electrode and classification of electrodes 1.参比电极 标准氢电极
KCl 浓度 电极电位(V)
温度校正,对于SCE,t ℃时的电极电位为: Et= 0.2438- 7.6×10-4(t-25) (V)
01:01:43
银-氯化银电极:
银丝镀上一层AgCl沉淀,浸在一定浓度 的KCl溶液中即构成了银-氯化银电极。 电极反应:AgCl + e- == Ag + Cl半电池符号:Ag,AgCl(固)KCl 电极电位(25℃): EAgCl/Ag = EAgCl/Ag - 0.059lgaCl表 银-氯化银电极的电极电位(25℃)
O EHg2Cl/Hg EHg 0 . 059 lg a ( Cl ) 2 Cl/Hg
2
电极内溶液的Cl-活度一定,甘汞电极电位固定。
01:01:43

甘汞电极的电极电位( 25℃)
0.1mol/L 甘汞电极 标准甘汞电极(NCE) 1.0 mol / L +0.2828 饱和甘汞电极(SCE) 饱和溶液 +0.2438 0.1 mol / L +0.3365
01:01:43
2.电极电位的测量
无法测定单个电极的绝对电极电位;相对电极电位。 规定:将标准氢电极作为负极与待测电极组成电池,电 位差即该电极的相对电极电位,比标准氢电极的电极电位高 的为正,反之为负;
Pt|H2(101 325 Pa ),H+(1mol/dm)||Ag2+(1mol/dm)|Ag
电位差:+0.799 V;
银电极的标准电极电位:+0.799 V。
在298.15 K 时,以水为溶剂,当氧化态和还原态的活度等 于1 时的电极电位称为:标准电极电位。
01:01:43
01:01:43

01:01:43
三、液体接界电位与盐桥
liquid junction potential and salt bridge
基准,电位值为零(任何温度)。
甘汞电极
电极反应:Hg2Cl2 + 2e- = 2Hg + 2 Cl半电池符号:Hg,Hg2Cl2(固)KCl 电极电位(25℃): 0.059 a(Hg 2 Cl2 ) O EHg2Cl/Hg EHg2 Cl/Hg lg 2 2 2 a (Hg ) a 2 (Cl )
(4)惰性金属电极
电极不参与反应,但其晶格间的自由电子可与溶液进行交 换.故惰性金属电极可作为溶液中氧化态和还原态获得电子或 释放电子的场所。
01:01:43
(5)膜电极
特点: 仅对溶液中特定离子有选择性响应(离子选择性电极)。 膜电极的关键:是一个称为选择膜的敏感元件。
敏感元件:单晶、混晶、液膜、高分子功能膜及生物膜等
第三章 电化学分析导论
an introduction to electrochemical analysis
一、化学电池
chemical cell
二、电极电位与测量
electrode potential and detect
三、液接电位与盐桥
liquid junction potential and salt 第二节 bridge 化学电池与电极电位 四、电极与电极分类
electrochemical cell and electrode potential
electrode and classification of electrodes
01:01:43
一、化学电池
chemical cell
电极:将金属放入对应的溶液后所组成 的系统。 化学电池:由两支电极构成的系统;化 学能与电能的转换装置; 电化学分析法中涉及到两类化学电池: 原电池:自发地将化学能转变成电能; 电解电池:由外电源提供电能,使电流 通过电极,在电极上发生电极反应的装 置。 电池工作时,电流必须在电池内部和外 部流过,构成回路。 溶液中的电流:正、负离子的移动。
01:01:43
2.指示电极
(1)第一类电极──金属-金属离子电极
例如:Ag-AgNO3电极(银电极),Zn-ZnSO4电极(锌电极)等
电3; /M = E Mn+ /M - 0.059lgaMn+
第一类电极的电位仅与金属离子的活度有关。
(2)第二类电极──金属-金属难溶盐电极
0.1mol/LAg-AgCl 电极 KCl 浓度 电极电位(V) 0.1 mol / L +0.2880 标准 Ag-AgCl 电极 1.0 mol / L +0.2223 饱和 Ag-AgCl 电极 饱和溶液 +0.2000
温度校正,(标准Ag-AgCl电极),t ℃时的电极电位为: Et= 0.2223- 6×10-4(t-25) (V)
二个相界面,常用作参比电极。
01:01:43
指示电极
(3)第三类电极──汞电极
金属汞(或汞齐丝)浸入含有少量Hg2+-EDTA配合物及被测 金属离子的溶液中所组成。根据溶液中同时存在的Hg2+和Mn+ 与EDTA间的两个配位平衡,可以导出以下关系式(25°C):
E(Hg22+/Hg )= E (Hg22+/Hg ) - 0.059lgaMn+
相关文档
最新文档