2018年四川省宜宾市中考数学模拟试卷(二)
四川省宜宾市中考数学二模考试试卷

四川省宜宾市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2018九上·永定期中) 如图,在中,,分别交,于点,.若,,则的值为()A .B .C .D .2. (2分)(2018·淮南模拟) 如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A . 200tan20°米B . 米C . 200sin20°米D . 200cos20°米3. (2分)二次函数y=ax2+bx+c的图像如图,正确的是()A . a>0B . b<0C . c<0D . a+b+c<04. (2分)下列四组图形中不一定相似的是()A . 有一个角等于40°的两个等腰三角形B . 有一个角为50°的两个直角三角形C . 直角三角形被斜边上的高分成的两个直角三角形D . 有一个角是60°的两个等腰三角形5. (2分) (2019九上·黄浦期末) 已知、、都是非零向量.下列条件中,不能判定∥ 的是()A . | |=| |B . =3C . ∥ ,∥D . =2 ,=-26. (2分)已知⊙O1和⊙O2的半径分别为3cm和4cm, 且O1 O2 = 8cm,则⊙O1与⊙O2的位置关系是()A . 外离B . 相交C . 相切D . 内含二、填空题 (共12题;共13分)7. (1分)(2019·上海模拟) 计算:3( -2 )﹣2( -3 )=________.8. (1分) (2019九上·高邮期末) 某一时刻,长为1m的标杆影长为0.8m,此时身高为1.75m的小明影长为________m.9. (1分)如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=________.10. (1分) (2018九上·肇庆期中) 将一个正六边形绕着其中心,至少旋转________度可以和原来的图形重合.11. (1分)已知△ABC~△DEF, BC边上的高与EF边上的高之比为2:3,则△ABC与△DEF的面积的比为________.12. (1分) (2019九上·秀洲期末) 如果点 P 是线段 AB 的黄金分割点,且 AP < PB ,那么的值为________.13. (1分) (2017九上·乐昌期末) 二次函数y=(x﹣2)2+1的顶点坐标是________.14. (1分)(2017·呼兰模拟) 抛物线y=x2﹣2x﹣1的对称轴为________.15. (1分) (2019七上·大庆期末) 等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为________cm.16. (2分) (2020九上·温州期末) 如图,AB是半圆O的直径,D是半圆O上一点,C是的中点,连结AC变BD于点E,连结AD,若BE=4DE,CE=6,则AB的长为________。
2018年四川省宜宾市中考数学试卷

2018年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A.B.3 C.﹣3 D.±2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C .D .8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A .B .C.34 D.10二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=.10.(3分)不等式组1<x﹣2≤2的所有整数解的和为.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分.12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=.(结果保留根号)14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.2018年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.【解答】解:3的相反数是﹣3,故选:C.2.【解答】解:65000=6.5×104,故选:B.3.【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.4.【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.5.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.6.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.7.【解答】解:如图,=9、S△A′EF=4,且AD为BC边的中线,∵S△ABC∴S=S△A′EF=2,S△ABD=S△ABC=,△A′DE∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.8.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.【解答】解:2a3b﹣4a2b2+2ab3,=2ab(a2﹣2ab+b2),=2ab(a﹣b)2.10.【解答】解:由题意可得,解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.11.【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分,故答案为:78.8分.12.【解答】解:由题意A(﹣,),∵A、B关于y轴对称,∴B(,),故答案为(,).13.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,=6×××1=2.∴S=6S△ABO故答案为:2.14.【解答】解:∵点P(m,n)在直线y=﹣x+2上,∴n+m=2,∵点P(m,n)在双曲线y=﹣上,∴mn=﹣1,∴m2+n2=(n+m)2﹣2mn=4+2=6.故答案为:6.15.【解答】解:连接AD,BC.∵AB是半圆的直径,∴∠ADB=90°,又DE⊥AB,∴∠ADE=∠ABD,∵D是的中点,∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴FA=FD;∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,∴∠EDB=∠CGB,又∠DGF=∠CGB,∴∠EDB=∠DGF,∴FA=FG,∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,在Rt△ADE中,AD==4k,∵AB是直径,∴∠ADG=∠GCB=90°,∵∠AGD=∠CGB,∴cos∠CGB=cos∠AGD,∴=,在Rt△ADG中,DG==2k,∴==,故答案为:.16.【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.【解答】解:(1)原式=+1﹣+4=5;(2)原式=•=x+1.18.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.19.【解答】解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为=.20.【解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.21.【解答】解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30﹣x)米,在Rt△AHC中,HC==(30﹣x),则BD=CH=(30﹣x),∴ED=(30﹣x)﹣10,在Rt△CDE中,=tan∠CED,即=,解得,x=15﹣,答:立柱CD的高为(15﹣)米.22.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OPA﹣S△OAQ==7.5.23.【解答】解:(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠PEF==.24.【解答】解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=,∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:,解得:,,∴点A的坐标为(1,),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=﹣1,∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,)、B′(4,﹣3)代入y=kx+b,得:,解得:,∴直线AB′的解析式为y=﹣x+,当y=﹣1时,有﹣x+=﹣1,解得:x=,∴点P的坐标为(,﹣1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m﹣x0)2+(n﹣y0)2=(n+1)2,∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=m2﹣m+1,∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1,整理得:(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0.∵m为任意值,∴,∴,∴定点F的坐标为(2,1).。
四川省宜宾市中考数学试卷含答案解析(Word版)

2018年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A.B.3 C.﹣3 D.±2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A .2 B.3 C.D.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.10二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=.10.(3分)不等式组1<x﹣2≤2的所有整数解的和为.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分.教师成绩甲乙丙笔试80分82分78分面试76分74分78分12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=.(结果保留根号)14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.2018年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A.B.3 C.﹣3 D.±【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:3的相反数是﹣3,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球【考点】U3:由三视图判断几何体.【分析】综合该物体的三种视图,分析得出该立体图形是圆柱体.【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.【点评】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0【考点】AB:根与系数的关系.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】L5:平行四边形的性质.【分析】想办法证明∠E=90°即可判断.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.【点评】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.【考点】Q2:平移的性质.【分析】由S△ABC =9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:如图,∵S△ABC =9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE =S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.10【考点】M8:点与圆的位置关系;LB:矩形的性质.【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=2ab(a﹣b)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2ab,再对余下的多项式利用完全平方公式继续分解.【解答】解:2a3b﹣4a2b2+2ab3,=2ab(a2﹣2ab+b2),=2ab(a﹣b)2.【点评】本题考查提公因式法,公式法分解因式,难点在于提取公因式后要继续进行二次分解因式.10.(3分)不等式组1<x﹣2≤2的所有整数解的和为15.【考点】CC:一元一次不等式组的整数解.【分析】先解不等式组得到6<x≤8,再找出此范围内的整数,然后求这些整数的和即可.【解答】解:由题意可得,解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分78.8分.甲乙丙教师成绩笔试80分82分78分面试76分74分78分【考点】W2:加权平均数.【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分,故答案为:78.8分.【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为(,).【考点】F8:一次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;【解答】解:由题意A(﹣,),∵A、B关于y轴对称,∴B(,),故答案为(,).【点评】本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= 2.(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,=6×××1=2.∴S=6S△ABO故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为6【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.【解答】解:∵点P(m,n)在直线y=﹣x+2上,∴n+m=2,∵点P(m,n)在双曲线y=﹣上,∴mn=﹣1,∴m2+n2=(n+m)2﹣2mn=4+2=6.故答案为:6.【点评】此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间关系是解题关键.15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】由AB是直径,推出∠ADG=∠GCB=90°,因为∠AGD=∠CGB,推出cos ∠CGB=cos∠AGD,可得=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,想办法求出DG、AG即可解决问题;【解答】解:连接AD,BC.∵AB是半圆的直径,∴∠ADB=90°,又DE⊥AB,∴∠ADE=∠ABD,∵D是的中点,∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴FA=FD;∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,∴∠EDB=∠CGB,又∠DGF=∠CGB,∴∠EDB=∠DGF,∴FA=FG,∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,在Rt△ADE中,AD==4k,∵AB是直径,∴∠ADG=∠GCB=90°,∵∠AGD=∠CGB,∴cos∠CGB=cos∠AGD,∴=,在Rt△ADG中,DG==2k,∴==,故答案为:.【点评】本题考查的是圆的有关性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)利用特殊角的三角函数值、零指数幂和负整数指数的意义计算;(2)先把括号内通分,再把除法运算化为乘以运算,然后把x2﹣1分解因式后约分即可.【解答】解:(1)原式=+1﹣+4=5;(2)原式=•=x+1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【考点】KD:全等三角形的判定与性质.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.【点评】考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.【解答】解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.【考点】B7:分式方程的应用.【分析】设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E 间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作CH⊥AB于H,得到BD=CH,设CD=x米,根据正切的定义分别用x 表示出HC、ED,根据正切的定义列出方程,解方程即可.【解答】解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30﹣x)米,在Rt△AHC中,HC==(30﹣x),则BD=CH=(30﹣x),∴ED=(30﹣x)﹣10,在Rt△CDE中,=tan∠CED,即=,解得,x=15﹣,答:立柱CD的高为(15﹣)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的概念、仰角俯角的定义是解题的关键.22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OPA﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.【分析】(1)说明OC是△BDA的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE是圆O的切线.(2)利用直径上的圆周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,从而得到PC=PE=5.然后求出sin∠PEF的值.【解答】解:(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠PEF==.【点评】本题考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x﹣2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.【解答】解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=,∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:,解得:,,∴点A的坐标为(1,),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=﹣1,∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,)、B′(4,﹣3)代入y=kx+b,得:,解得:,∴直线AB′的解析式为y=﹣x+,当y=﹣1时,有﹣x+=﹣1,解得:x=,∴点P的坐标为(,﹣1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m﹣x0)2+(n﹣y0)2=(n+1)2,∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=m2﹣m+1,∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1,整理得:(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0.∵m为任意值,∴,∴,∴定点F的坐标为(2,1).【点评】本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.。
2018年四川省宜宾市中考数学试卷及答案

2018年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A.B.3 C.﹣3 D.±解:3的相反数是﹣3,故选:C.2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104解:65000=6.5×104,故选:B.3.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.解:如图,=9、S△A′EF=4,且AD为BC边的中线,∵S△ABC=S△A′EF=2,S△ABD=S△ABC=,∴S△A′DE∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.10解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN 取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=2ab(a﹣b)2.解:2a3b﹣4a2b2+2ab3,=2ab(a2﹣2ab+b2),=2ab(a﹣b)2.10.(3分)不等式组1<x﹣2≤2的所有整数解的和为15.解:由题意可得,解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分78.8分.解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分,故答案为:78.8分.12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为(,).解:由题意A(﹣,),∵A、B关于y轴对称,∴B(,),故答案为(,).13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=2.(结果保留根号)解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S=6×××1=2.△ABO故答案为:2.14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为6解:∵点P(m,n)在直线y=﹣x+2上,∴n+m=2,∵点P(m,n)在双曲线y=﹣上,∴mn=﹣1,∴m2+n2=(n+m)2﹣2mn=4+2=6.故答案为:6.15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.解:连接AD,BC.∵AB是半圆的直径,∴∠ADB=90°,又DE⊥AB,∴∠ADE=∠ABD,∵D是的中点,∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴FA=FD;∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,∴∠EDB=∠CGB,又∠DGF=∠CGB,∴∠EDB=∠DGF,∴FA=FG,∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,在Rt△ADE中,AD==4k,∵AB是直径,∴∠ADG=∠GCB=90°,∵∠AGD=∠CGB,∴cos∠CGB=cos∠AGD,∴=,在Rt△ADG中,DG==2k,∴==,故答案为:.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.解:(1)原式=+1﹣+4=5;(2)原式=•=x+1.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为=.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x 万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E 间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30﹣x)米,在Rt△AHC中,HC==(30﹣x),则BD=CH=(30﹣x),∴ED=(30﹣x)﹣10,在Rt△CDE中,=tan∠CED,即=,解得,x=15﹣,答:立柱CD的高为(15﹣)米.22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OPA﹣S△OAQ==7.5.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.解:(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠PEF==.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=,∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:,解得:,,∴点A的坐标为(1,),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=﹣1,∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,)、B′(4,﹣3)代入y=kx+b,得:,解得:,∴直线AB′的解析式为y=﹣x+,当y=﹣1时,有﹣x+=﹣1,解得:x=,∴点P的坐标为(,﹣1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m﹣x0)2+(n﹣y0)2=(n+1)2,∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=m2﹣m+1,∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1,整理得:(1﹣﹣y0)m2+(2﹣2x0+2y0)m+x02+y02﹣2y0﹣3=0.∵m为任意值,∴,∴,∴定点F的坐标为(2,1).。
四川省宜宾市2018年中考数学试题(含解析)(推荐)

2018年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A B.3 C.﹣3 D2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 CD8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A.34 D.10二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3= .10.(3分)不等式组1﹣2≤2的所有整数解的和为.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分.12.(3分)已知点A是直线y=x+1B与点A关于y轴对称,则点B的坐标为.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= .(结果保留根号)14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=m2+n2的值为15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G= .16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,③当A、F、C三点共线时,④当A、F、C三点共线时,△CEF≌△AEF.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(20180﹣2﹣1+|﹣4|;(2)化简:(118.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)22.(10分)如图,已知反比例函数m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.2018年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A B.3 C.﹣3 D【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:3的相反数是﹣3,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球【考点】U3:由三视图判断几何体.【分析】综合该物体的三种视图,分析得出该立体图形是圆柱体.【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.【点评】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0【考点】AB:根与系数的关系.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定【考点】L5:平行四边形的性质.【分析】想办法证明∠E=90°即可判断.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠BAD,∠ADC,∴∠EAD+∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.【点评】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.(3分)如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3CD 【考点】Q2:平移的性质.【分析】由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE △A′EF =2,S △ABD △ABCDAB 2【解答】解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE △A′EF =2,S △ABD △ABC∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C', ∴A′E∥AB , ∴△DA′E∽△DAB ,22解得A′D=2或故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A.34 D.10【考点】M8:点与圆的位置关系;LB:矩形的性质.【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3= 2ab(a﹣b)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2ab,再对余下的多项式利用完全平方公式继续分解.【解答】解:2a3b﹣4a2b2+2ab3,=2ab(a2﹣2ab+b2),=2ab(a﹣b)2.【点评】本题考查提公因式法,公式法分解因式,难点在于提取公因式后要继续进行二次分解因式.10.(3分)不等式组1﹣2≤2的所有整数解的和为15 .【考点】CC:一元一次不等式组的整数解.【分析】先解不等式组得到6<x≤8,再找出此范围内的整数,然后求这些整数的和即可.解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分 78.8分 .【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分,故答案为:78.8分.【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.12.(3分)已知点A 是直线y=x+1B 与点A 关于y 轴对称,则点B【考点】F8:一次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;【解答】解:由题意A∵A、B关于y轴对称,∴B【点评】本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴∴=6∴S=6S△ABO故答案为:【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=m2+n2的值为 6【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.【解答】解:∵点P(m,n)在直线y=﹣x+2上,∴n+m=2,∵点P(m,n)在双曲线y=∴mn=﹣1,∴m2+n2=(n+m)2﹣2mn=4+2=6.故答案为:6.【点评】此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间关系是解题关键.15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】由AB是直径,推出∠ADG=∠GC B=90°,因为∠AGD=∠CGB,推出cos∠CGB=cos∠AGD=EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,想办法求出DG、AG即可解决问题;【解答】解:连接AD,BC.∵AB是半圆的直径,∴∠ADB=90°,又DE⊥AB,∴∠ADE=∠ABD,∵D∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴FA=FD;∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,∴∠EDB=∠CGB,又∠DGF=∠CGB,∴∠EDB=∠DGF,∴FA=FG,EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,在Rt△ADE中,,∵AB是直径,∴∠ADG=∠GCB=90°,∵∠AGD=∠CGB,∴cos∠CGB=cos∠AGD,在Rt△ADG中,,【点评】本题考查的是圆的有关性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,③当A、F、C三点共线时,④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴∴如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=2)2+(3﹣x)2,∴∴如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(20180﹣2﹣1+|﹣4|;(2)化简:(1【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)利用特殊角的三角函数值、零指数幂和负整数指数的意义计算;(2)先把括号内通分,再把除法运算化为乘以运算,然后把x2﹣1分解因式后约分即可.【解答】解:(1)原式=5;(2)原式=x+1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【考点】KD:全等三角形的判定与性质.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,∴△ABC≌△ADC(AAS),∴CB=CD.【点评】考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.【解答】解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:2种结果,【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.【考点】B7:分式方程的应用.【分析】设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作CH⊥AB于H,得到 BD=CH,设CD=x米,根据正切的定义分别用x表示出HC、ED,根据正切的定义列出方程,解方程即可.【解答】解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30﹣x)米,在Rt△AHC中,30﹣x),则30﹣x),∴30﹣x)﹣10,在Rt△CDE∠CED解得,x=15答:立柱CD的高为(15【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的概念、仰角俯角的定义是解题的关键.22.(10分)如图,已知反比例函数m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数 m≠0)的图象经过点(1,4),m=4一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴一次函数的表达式y=﹣x﹣5;(2∴点P(﹣1,﹣4),在一次函数y=﹣x ﹣5中,令y=0,得﹣x ﹣5=0,解得x=﹣5,故点A (﹣5,0),S △OPQ =S △OPA ﹣S △OAQ .【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.23.(10分)如图,AB 为圆O 的直径,C 为圆O 上一点,D 为BC 延长线一点,且BC=CD ,CE ⊥AD 于点E .(1)求证:直线EC 为圆O 的切线;(2)设BE 与圆O 交于点F ,AF 的延长线与CE 交于点P ,已知∠PCF=∠CBF ,PC=5,PF=4,求sin ∠PEF 的值.【考点】ME :切线的判定与性质;M5:圆周角定理;T7:解直角三角形. 【分析】(1)说明OC 是△BDA 的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE 是圆O 的切线.(2)利用直径上的圆周角,得到△PEF 是直角三角形,利用角相等,可得到△PEF ∽△PEA 、△PCF ∽△PAC ,从而得到PC=PE=5.然后求出sin ∠PEF 的值. 【解答】解:(1)证明:∵CE ⊥AD 于点E ∴∠DEC=90°, ∵BC=CD ,∴C 是BD 的中点,又∵O 是AB 的中点, ∴OC 是△BDA 的中位线, ∴OC ∥AD∴∠OCE=∠CED=90°∴OC ⊥CE ,又∵点C 在圆上,∴CE是圆O的切线.(2)连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠【点评】本题考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x ﹣2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(10)m2﹣(2﹣2x﹣2y)m+x2+y2﹣2y﹣3=0,由m的任意性可得出关于x0、y的方程组,解之即可求出顶点F的坐标.【解答】解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:∴抛物线的解析式为x﹣2)22﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:∴点A的坐标为(1B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B (4,1),直线l 为y=﹣1, ∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b (k ≠0),将A (14,﹣3)代入y=kx+b ,得:∴直线AB′的解析式为y=当y=﹣1﹣1,解得:∴点P 1).(3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m ﹣x 0)2+(n ﹣y 0)2=(n+1)2, ∴m 2﹣2x 0m+x 02﹣2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴2﹣m+1,∴m 2﹣2x 0m+x 02﹣2y 02﹣m+1)+y 02=22﹣m+1)+1,整理得:(10)m 2﹣(2﹣2x 0﹣2y 0)m+x 02+y 02﹣2y 0﹣3=0. ∵m 为任意值,∴定点F的坐标为(2,1).【点评】本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y的方程组.。
【精选】四川省宜宾市2018年中考数学试题(含解析)

2018年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A B.3 C.﹣3 D2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 CD8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()AC.34 D.10二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=.10.(3分)不等式组1﹣2≤2的所有整数解的和为.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分.12.(3分)已知点A是直线y=x+1B与点A关于y轴对称,则点B的坐标为.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=.(结果保留根号)14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=m2+n2的值为15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G=.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,③当A、F、C三点共线时,④当A、F、C三点共线时,△CEF≌△AEF.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(20180﹣2﹣1+|﹣4|;(2)化简:(118.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)22.(10分)如图,已知反比例函数m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.2018年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A B.3 C.﹣3 D【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:3的相反数是﹣3,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球【考点】U3:由三视图判断几何体.【分析】综合该物体的三种视图,分析得出该立体图形是圆柱体.【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.【点评】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0【考点】AB:根与系数的关系.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.【点评】5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】L5:平行四边形的性质.【分析】想办法证明∠E=90°即可判断.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠BAD,∠∠ADC,∴∠EAD+∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.【点评】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C D【考点】Q2:平移的性质.=9、S△A′EF=4且AD为BC边的中线知S△A′DE△A′EF=2,S△ABD 【分析】由S△ABCDA′E∽△DAB2△ABC【解答】解:如图,=9、S△A′EF=4,且AD为BC边的中线,∵S△ABC=2,S△ABD△ABC∴S△A′DE△A′EF∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,22解得A′D=2或A′D=故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A C.34 D.10【考点】M8:点与圆的位置关系;LB:矩形的性质.【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=2ab(a﹣b)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2ab,再对余下的多项式利用完全平方公式继续分解.【解答】解:2a3b﹣4a2b2+2ab3,=2ab(a2﹣2ab+b2),=2ab(a﹣b)2.【点评】本题考查提公因式法,公式法分解因式,难点在于提取公因式后要继续进行二次分解因式.10.(3分)不等式组1﹣2≤2的所有整数解的和为15.【考点】CC:一元一次不等式组的整数解.【分析】先解不等式组得到6<x≤8,再找出此范围内的整数,然后求这些整数的和即可.【解答】解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分 78.8分 .【考点】W2:加权平均数.【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分,故答案为:78.8分.【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.12.(3分)已知点A 是直线y=x +1B 与点A 关于y 轴对称,则点B【考点】F8:一次函数图象上点的坐标特征;P5:关于x 轴、y 轴对称的点的坐标.【分析】利用待定系数法求出点A 坐标,再利用轴对称的性质求出点B 坐标即可;【解答】解:由题意A∵A 、B 关于y 轴对称,∴B【点评】本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴∴=6∴S=6S△ABO故答案为:【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=m2+n2的值为6【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.【解答】解:∵点P(m,n)在直线y=﹣x+2上,∴n+m=2,∵点P(m,n)在双曲线y=∴mn=﹣1,∴m2+n2=(n+m)2﹣2mn=4+2=6.故答案为:6.【点评】此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间关系是解题关键.15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】由AB是直径,推出∠ADG=∠GCB=90°,因为∠AGD=∠CGB,推出cos∠CGB=cos∠AGD EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,想办法求出DG、AG即可解决问题;【解答】解:连接AD,BC.∵AB是半圆的直径,∴∠ADB=90°,又DE⊥AB,∴∠ADE=∠ABD,∵D∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴FA=FD;∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,∴∠EDB=∠CGB,又∠DGF=∠CGB,∴∠EDB=∠DGF,∴FA=FG,EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,在Rt△ADE中,,∵AB是直径,∴∠ADG=∠GCB=90°,∵∠AGD=∠CGB,∴cos∠CGB=cos∠AGD,在Rt△ADG中,,,【点评】本题考查的是圆的有关性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,③当A、F、C三点共线时,④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴∴如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=2)2+(3﹣x)2,∴∴如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(20180﹣2﹣1+|﹣4|;(2)化简:(1【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)利用特殊角的三角函数值、零指数幂和负整数指数的意义计算;(2)先把括号内通分,再把除法运算化为乘以运算,然后把x2﹣1分解因式后约分即可.【解答】解:(1)原式14=5;(2)原式=x+1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【考点】KD:全等三角形的判定与性质.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,∴△ABC≌△ADC(AAS),∴CB=CD.【点评】考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.【解答】解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.【考点】B7:分式方程的应用.【分析】设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作CH⊥AB于H,得到BD=CH,设CD=x米,根据正切的定义分别用x 表示出HC、ED,根据正切的定义列出方程,解方程即可.【解答】解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30﹣x)米,在Rt△AHC中,=30﹣x),则30﹣x),∴30﹣x)﹣10,在Rt△CDE=tan∠CED解得,x=15答:立柱CD的高为(15【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的概念、仰角俯角的定义是解题的关键.22.(10分)如图,已知反比例函数m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数m≠0)的图象经过点(1,4),m=4一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴一次函数的表达式y=﹣x﹣5;(2∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OPA﹣S△OAQ.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.【分析】(1)说明OC是△BDA的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE是圆O的切线.(2)利用直径上的圆周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,从而得到PC=PE=5.然后求出sin∠PEF的值.【解答】解:(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠=【点评】本题考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x ﹣2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(10)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.【解答】解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:∴抛物线的解析式为x﹣2)22﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:∴点A的坐标为(1B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=﹣1,∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b(k≠0),将A(1B′(4,﹣3)代入y=kx+b,得:∴直线AB′的解析式为y=当y=﹣1﹣1,解得:∴点P1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m﹣x0)2+(n﹣y0)2=(n+1)2,∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴2﹣m+1,∴m2﹣2x0m+x02﹣2y02﹣m+1)+y02=22﹣m+1)+1,整理得:(10)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0.∵m为任意值,∴定点F的坐标为(2,1).【点评】本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.。
四川省宜宾市2018年中考数学试题
2018年四川省宜宾市中考数学试卷一.选择题<共8小题)1.<2018宜宾)﹣3的倒数是< )A.B. 3 C.﹣3 D.﹣考点:倒数。
解答:解:根据倒数的定义得:﹣3×<﹣)=1,因此倒数是﹣.故选:D.2.<2018宜宾)下面四个几何体中,其左视图为圆的是< )A.B.C.D.考点:简单几何体的三视图。
解答:解:A.圆柱的左视图是矩形,不符合题意;B.三棱锥的左视图是三角形,不符合题意;C.球的左视图是圆,符合题意;D.长方体的左视图是矩形,不符合题意.故选C.3.<2018宜宾)下面运算正确的是< )A.7a2b﹣5a2b=2 B.x8÷x4=x2 C.<a﹣b)2=a2﹣b2 D.<2x2)3=8x6dHVehzJb4t考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
解答:解:A.7a2b﹣5a2b=2a2b,故本选项错误;B.x8÷x4=x4,故本选项错误;C.<a﹣b)2=a2﹣2ab+b2,故本选项错误;D.<2x2)3=8x6,故本选项正确.故选D.4.<2018宜宾)宜宾今年5月某天各区县的最高气温如下表:南溪0,考点:众数;中位数。
解答:解:在这一组数据中32是出现次数最多的,故众数是32;按大小排列后,处于这组数据中间位置的数是31、32,那么由中位数的定义可知,这组数据的中位数是31.5.dHVehzJb4t故选:A.5.<2018宜宾)将代数式x2+6x+2化成<x+p)2+q的形式为< )A.<x﹣3)2+11 B.<x+3)2﹣7 C.<x+3)2﹣11 D.<x+2)2+4 考点:配方法的应用。
解答:解:x2+6x+2=x2+6x+9﹣9+2=<x+3)2﹣7.故选B.6.<2018宜宾)分式方程的解为< )A. 3 B.﹣3 C.无解D.3或﹣3考点:解分式方程。
四川省宜宾市数学中考二模试卷
四川省宜宾市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018七上·北京月考) 数轴上一点A,一只蚂蚁从A出发向右爬了4个单位长度到了原点,则点A所表示的数是()A . 4B . ﹣4C . ±4D . ﹣22. (2分)(2016·泰安) 国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A . 6.767×1013元B . 6.767×1012元C . 6.767×1011元D . 6.767×1014元3. (2分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A .B .C .D .4. (2分)不等式组的解集在数轴上表示为()A .B .C .D .5. (2分)如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,这一做法用到三角形全等的判定方法是()A . SSSB . SASC . ASAD . HL6. (2分)(2017·益阳) 如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC 的长度为(A、D、B在同一条直线上)()A .B .C .D . h•cosα7. (2分) (2018九上·皇姑期末) 在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A .B .C .D .8. (2分) (2018九上·天台月考) 如图,一次函数y=-x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连接OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.若S△OAF+S四边形EFBC=6,则m的值是()A . 1B .C .D .二、填空题 (共6题;共6分)9. (1分) (2019八上·南岗期末) 分解因式: ________.10. (1分)(2011·湖州) 如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片________张才能用它们拼成一个新的正方形.11. (1分)如图,AB切⊙O于点B,OA=,∠BAO=60°,弦BC∥OA,则的长为________ (结果保留π).12. (1分)(2017·永定模拟) 在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1 ,已知在AC上一点P(2.4,2)平移后的对应点为P1 ,点P1绕点O逆时针旋转180°,得到对应点P2 ,则P2点的坐标为________.13. (1分) (2018八下·灵石期中) 小强想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高度是________米.14. (1分) (2017八上·郑州期中) 一次函数y= x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的点C的坐标为________.三、解答题 (共10题;共104分)15. (5分) (2018九下·新田期中) 先化简,再求值其中16. (10分)某校九年级共有6个班,需从中选出两个班参加一项重大活动,九(1)班是先进班集体必须参加,再从另外5个班中选出一个班.九(4)班同学建议用如下方法选班:从装有编号为1,2,3的三个白球的A 袋中摸出一个球,再从装有编号也为1,2,3的三个红球的B袋中摸出一个球(两袋中球的大小、形状与质地完全一样),摸出的两个球编号之和是几就派几班参加.(1)请用列表或画树状图的方法求选到九(4)班的概率(2)这一建议公平吗?请说明理由.17. (5分) (2018八上·许昌期末) 如图,在平面直角坐标系第一象限中有一点B. 要求:用尺规作图作一条直线AC,使它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC全等.(1)小明的作法是:过B点分别向x 轴、y 轴作垂线,垂足为A、C,连接A、C,则直线AC即为所求.请你帮助小明在图 中完成作图(保留作图痕迹);(2)请在图 中再画出另一条满足条件的直线AC,并说明理由.18. (10分) (2020七上·永春期末) 某商场计划用900元从生产厂家购进50台计算器,已知该厂家生产三种不同型号的计算器,出厂价分别为A种每台15元,B种每台21元,C种毎台25元.(1)商场同时购进两种不同型号的计算器50台,用去900元.①若同时购进A、B两种时,则购进A、B两种计算器各多少台?;②若同时购进A、C两种时,则购进A、C两种计算器各多少台?;(2)若商场销售一台A种计算器可获利5元,销售一台B种计算器可获利8元,销售一台C种计算器可获利12元,在同时购进两种不同型号的计算器方案中,为了使销售时获利最多,你选择哪种方案?19. (10分)(2017·顺义模拟) 如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,∠P=∠B.(1)求∠P的度数;(2)连接PB,若⊙O的半径为a,写出求△PBC面积的思路.20. (16分) (2020八下·河北期中) 阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).阅读时间分组统计表组别阅读时间x(h)人数A0≤x<10aB10≤x<20100C20≤x<30bD30≤x<40140E x≥40c请结合以上信息解答下列问题:(1)求a,b,c的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.21. (11分)(2018·黔西南) 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22. (6分)(2017·平顶山模拟) 如图1,边长为2的正方形ABCD中,点P在AB边上(不与点A、B重合),点Q在BC边上(不与点B、C重合)第一次操作:将线段PQ绕点Q顺时针旋转,当点P落在正方形上时,记为点M;第二次操作:将线段QM绕点M顺时针旋转,当点Q落在正方形上时,记为点N;依次操作下去…(1)如图2,经过两次操作后得到△PQD、△PQD的形状是________,求此时线段PQ的长________ ;(2)若经过三次操作可得到四边形PQMN.①请直接判断四边形PQMN的形状,直接写出此时此刻AP与BQ的数量关系;②以①中的结论为前提,直接写出四边形PQMN的面积的取值范围.23. (16分)(2020·上海模拟) 如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,,点O是边BC 上的动点,以OB为半径的与射线BA和边BC分别交于点E和点M,联结AM,作∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.(1)当点E为边AB的中点时,求DF的长;(2)分别联结AN、MD,当AN//MD时,求MN的长;(3)将绕着点M旋转180°得到,如果以点N为圆心的与都内切,求的半径长.24. (15分)(2018·山西) 综合与探究如图,抛物线y= 与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共104分)15-1、16-1、16-2、17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
2018年四川省宜宾市中考模拟试卷数学
2018 年四川省宜宾市中考模拟试卷数学一、选择题 ( 本大题共8 小题,每题3 分,共 24 分)1. 计算 (a 3) 2的结果是 ()5A.aB.a 6C.a 8D.a 9326分析:依据幂的乘方,底数不变,指数相乘即可求.(a ) =a .2.太阳的半径约为 696000km,把 696000 这个数用科学记数法表示为 ( ) A.6.96 × 103× 1055× 10× 106分析:科学记数法的表示形式为 a× 10n的形式,此中 1≤ |a| < 10,n 为整数 . 确立要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数 . 5答案: C n 的值时,. 当原数3. 如下图的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.分析:俯视图是从物体上边看所获得的图形. 从几何体上边看,是左侧 2 个,右边 1 个正方形.答案: D4. 已知对于x 的一元二次方程x2+2x-a=0 有两个相等的实数根,则 a 的值是 ( )A.4B.-4C.1D.-1=22-4 · (-a)=0,解得a=-1.分析:依据题意得△答案: D5. 为了观察某种小麦的长势,从中抽取了10 株麦苗,测得苗高( 单位:cm)为:则这组数据的中位数和极差分别是()A.13 , 16B.14 , 11C.12 , 11D.13 , 11分析:将数据从小到大摆列为:8, 9, 10, 11, 12, 14, 16, 16, 17, 19,中位数为: 13;极差 =19-8=11.答案: D6. 如图,∠ 1=∠ 2,∠ 3=40°,则∠ 4 等于 ( )A.120 °B.130 °C.140 °D.40 °分析:∵∠ 1=∠ 2,∴ a∥ b,∴∠ 3=∠5,∵∠ 3=40°,∴∠ 5=40°,∴∠ 4=180° -40 ° =140° .答案: C7. 如图,有一矩形纸片 ABCD , AB=6, AD=8,将纸片折叠使 AB 落在 AD 边上,折痕为 AE ,再 将△ ABE 以 BE 为折痕向右折叠, AE 与 CD 交于点 F ,则CF的值是 ( )CDA.1B. 12 1 C.3 1D.4分析:由题意知: AB=BE=6,BD=AD-AB=2, AD=AB-BD=4; ∵CE ∥ AB ,∴△ ECF ∽△ ADF ,得答案: CCECF 1 ,即 DF=2CF ,因此 CF : CD=1: 3.ADDF28. 如图,二次函数 y=ax 2+bx+c(a ≠0) 的图象的极点在第一象限,且过点(0 , 1) 和 (-1 , 0).以下结论:① ab < 0,② b 2> 4a ,③ 0< a+b+c < 2,④ 0< b <1,⑤当 x >-1 时, y > 0,此中正确结论的个数是 ( )A.5 个B.4 个C.3 个D.2 个分析:∵二次函数 y=ax2+bx+c(a ≠ 0) 过点 (0 , 1) 和 (-1 ,0) ,∴ c=1, a-b+c=0.①∵抛物线的对称轴在y 轴右边,∴ x=b 0,∴ a 与 b 异号,∴ ab < 0,正确;>2a②∵抛物线与 x 轴有两个不一样的交点,∴ b 2-4ac > 0,∵ c=1,∴ b 2-4a >0, b 2> 4a ,正确; ④∵抛物线张口向下,∴a < 0,∵ ab < 0,∴ b > 0. ∵a-b+c=0 , c=1,∴ a=b-1 ,∵ a <0,∴b-1 < 0, b < 1,∴ 0< b < 1,正确;③∵ a-b+c=0 ,∴ a+c=b ,∴ a+b+c=2b > 0. ∵b < 1, c=1, a < 0,∴ a+b+c=a+b+1< a+1+1=a+2< 0+2=2,∴ 0< a+b+c < 2,正确;2 ⑤抛物线 y=ax +bx+c 与 x 轴的一个交点为 (-1 , 0) ,设另一个交点为 (x 0, 0) ,则 x 0> 0,由图可知,当 x 0> x > -1 时, y >0,错误;答案: B二、填空题 ( 本大题共 8 小题,每题3 分,共 24 分)9. 分解因式: ax 2+2ax-3a=.22答案: a(x+3)(x-1)10. 将抛物线 y=x 2-2 向上平移一个单位后,得一新的抛物线,那么新的抛物线的表达式是.分析: y=x 2-2 的极点坐标为 (0 ,-2) ,把点 (0 ,-2) 向上平移一个单位后所得对应点的坐标为 (0 , -1) ,因此新的抛物线的表达式是 y=x 2-1.答案: y=x 2-111. 某商品的原价为 100 元,假如经过两次降价,且每次降价的百分率都是 m ,那么该商品此刻的价钱是元 ( 结果用含 m 的代数式表示 ).分析:第一次降价后价钱为 100(1-m) 元,第二次降价是在第一次降价后达成的,因此应为100(1-m)(1-m) 元,即 100(1-m) 2 元 .答案: 100(1-m) 2x 3x 的值是.12. 若的值为零,则x 22x 3分析:由分子 |x|-3=0 ,得 x ±3,而当 x=3 时,分母 2,此时该分式无心义,x -2x-3=0 因此当 x=-3 ,故若x 3 的值为零,则 x 的值是 -3.2x 3x 2答案: -313. 如图,在对角线长分别为 12 和 16 的菱形 ABCD 中, E 、 F 分别是边 AB 、 AD 的中点, H 是对角线 BD 上的随意一点,则 HE+HF 的最小值是.分析:如:作EE′⊥ BD交 BC于 E′,接E′ F,接 AC交 BD于 O.E′ F 就是 HE+HF的最小,∵E、 F 分是 AB、 AD的中点,∴ E′F 平行且等于 AB,而由已知△ AOB中可得 AB= (12 2)2(16 2)236 64100 10 ,故 HE+HF的最小 10.答案: 1014. 如,已知⊙O是以数的原点O 心,半径 1 的,∠运,若点 P 且与 OA平行的直与⊙O有公共点,OP=x,AOB=45°,点x 的取范是P 在数上.分析:切点C,接 OC,的半径OC=1,OC⊥ PC,∵∠ AOB=45°, OA∥PC,∴∠OPC=45°,∴ PC=OC=1,∴ OP= 2 ,同理,原点左的距离也是 2 ,且段是正数,∴x 的取范是0< x≤ 2 .答案:0< x≤215.如,古希腊人常用小石子在沙上成各样形状来研究数. 比如:称中的数 1, 5,12, 22⋯五形数,第 6 个五形数是.分析:∵ 5-1=4 , 12-5=7 , 22-12=10 ,∴相邻两个图形的小石子数的差值挨次增添3,∴第 5 个五边形数是22+13=35,第 6 个五边形数是 35+16=51.答案: 5116. 在平面直角坐标系中,对于随意两点A(x 1, y1) ,B(x 2, y2) ,规定运算:(1)A ⊕ B=(x 1+x2, y1+y2) ;(2)A ⊙ B=x1x2+y1y2;(3) 当 x1=x2且 y1=y2时, A=B.有以下四个命题:①如有 A(1 , 2) , B(2 , -1) ,则 A⊕ B=(3, 1) ,A⊙ B=0;②如有 A⊕B=B⊕ C,则 A=C;③如有 A⊙B=B⊙ C,则 A=C;④(A ⊕ B) ⊕C=A⊕ (B⊕ C)对随意点 A、 B、 C 均建立 .此中正确的命题为(只填序号).分析:①∵ A(1 , 2) , B(2 , -1) ,∴ A⊕ B=(1+2, 2-1) , A⊙ B=1× 2+2× (-1) ,即A⊕B=(3 ,1), A⊙ B=0,故①正确;②设 C(x 3,y3) ,则 A⊕ B=(x 1+x2,y1+y2) ,B⊕ C=(x2+x3,y2+y3) ,而 A⊕ B=B⊕ C,因此x1+x2=x2+x3, y1+y2 =y2+y3,则 x1=x3, y1=y 3,因此 A=C,故②正确;③A⊙ B=x1x2+y1y2,B⊙C=x2x3+y2y3,而 A⊙B=B⊙ C,则 x1x2+y1y2=x2x3+y 2y3,不可以获得 x1=x3,y1=y3,因此 A≠ C,故③不正确;④由于 (A ⊕B) ⊕ C=(x 1+x2+x3, y1+y2+y3) , A⊕(B ⊕ C)=(x 1+x2+x3, y1+y2+y3) ,因此 (A ⊕ B)⊕C=A ⊕(B ⊕ C),故④正确 .综上所述,正确的命题为①②④.答案:①②④三、解答题 ( 本大题共 8 个题,共72 分)17.计算:11(1)32201003tan30.3(2)2a2 a 1a21.a1a22a1分析: (1) 依据绝对值、零次幂、负整数指数幂、特别角的三角函数值计算即可.(2) 依据分式的混淆运算法例化简即可.答案: (1) 原式 = 2 3 136 ;3 332 a 11 a 1 a 12a 1 1 a(2) 原式 =2a 1 a 11.a 1 a 1 a 1 a 118. 已知:如图,点E, F 分别为 ?ABCD的 BC, AD边上的点,且∠1=∠ 2. 求证: AE=FC.分析:依据平行四边形的性质可得 AB=CD,∠ B=∠ D,又∠ 1=∠ 2,依据 ASA易得△ ABE≌△CDF,即可得 AE=CF.答案:∵四边形ABCD是平行四边形,∴AB=CD,∠ B=∠ D.12,在△ ABE与△ CDF中,AB CD,∴△ABE≌△CDF,∴AE=CF.B D,19.如图,暑期快要到了,某市准备组织同学们分别到 A,B,C,D 四个地方进行夏令营活动,前去四个地方的人数 .(1)去 B 地参加夏令营活感人数占总人数的40%,依据统计图求去 B 地的人数?(2)若一对姐弟中只好有一人参加夏令营,姐弟俩建议让父亲决定. 父亲说:现有 4 张卡片上分别写有 1, 2,3, 4 四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张. 若抽取的两张卡片上的数字之和是 5 的倍数则姐姐参加,若抽取的两张卡片上的数字之和是 3 的倍数则弟弟参加 . 用列表法或树形图剖析这类方法对姐弟俩能否公正?分析: (1) 假定出去 B 地的人数为 x,依据去 B 地参加夏令营活感人数占总人数的40%,从而得出方程求出即可;(2)依据已知列表得出全部可能,从而利用概率公式求出即可.答案: (1) 设去 B 地的人数为 x ,则由题意有:x=40%;解得: x=40.30 x 20 10∴去 B 地的人数为 40 人.(2) 列表:∴姐姐能参加的概率 P( 姐 )=4 1 ,弟弟能参加的概率为 P(弟)=5 ,16 416∵ P ( 姐)= 4 <P(弟)= 5,∴不公正 .16 1620. 甲、乙两名学生练习计算机打字, 甲打一篇 1000 字的文章与乙打一篇 900 字的文章所用的时间同样 . 已知甲每分钟比乙每分钟多打 5 个字,问:甲、乙两人每分钟各打多少个字?分析: 设乙每分钟打 x 个字,则甲每分钟打 (x+5) 个字,依据工作时间 =工作总量÷工作效率 联合甲打一篇 1000 字的文章与乙打一篇 900 字的文章所用的时间同样,即可得出对于x 的分式方程,解之经查验后即可得出结论.答案:设乙每分钟打 x 个字,则甲每分钟打 (x+5) 个字,依据题意得:1000 900,解得: x=45 ,x 5 x经查验, x=45 是原方程的解,且切合题意, ∴ x +5=50.答:甲每分钟打 50 个字,乙每分钟打 45 个字 .21. 如图,为了丈量出楼房 AC 的高度,从距离楼底C 处 603 米的点 D(点 D 与楼底 C 在同一水平面上 ) 出发,沿斜面坡度为i=1 :3 的斜坡 DB 行进 30 米抵达点 B ,在点 B 处测得楼顶 A 的仰角为 53°,求楼房 AC 的高度 ( 参照数据: sin53 ° = 4 ,cos35 ° = 3 ,tan53 ° = 4,55 33 ≈1.732 ,结果精准到 0.1 米 )分析:如图作 BN⊥ CD于 N, BM⊥AC于 M,先在 RT△ BDN中求出线段 BN,在 RT△ ABM中求出AM,再证明四边形 CMBN是矩形,得 CM=BN即可解决问题 . 答案:如图,作 BN⊥ CD于 N,BM⊥ AC于 M.在 Rt △ BDN中, BD=30, BN:ND=1:3 ,∴BN=15,DN=15 3 ,∵∠ C=∠ CMB=∠ CNB=90°,∴四边形CMBN是矩形,603153453,∴CM=BN=15, BM=CN=AM4在 Rt △ ABM中, tan ∠ ABM=,∴ AM=60 3,∴ AC=AM+CM=15+603≈ 118.9.BM322. 如图,已知反比率函数y= k的图象与直线y=-x+b 都经过点 A(1 , 4) ,且该直线与x 轴x 的交点为 B.(1)求反比率函数和直线的分析式;(2)求△ AOB的面积 .分析: (1) 把 A 点坐标分别代入y= k和 y=-x+b 中分别求出k 和 b 即可获得两函数分析式;x(2)利用一次函数分析式求出 B 点坐标,而后依据三角形面积公式求解.答案:(1) 把A(1 , 4) 代入y=k得k=1× 4=4,因此反比率函数的分析式为y=4 ;x x把 A(1 , 4) 代入 y=-x+b 得 -1+b=4 ,解得 b=5,因此直线分析式为y=-x+5 ;(2) 当 y=0 时, -x+5=0 ,解得 x=5,则 B(5 , 0) ,因此△ AOB 的面积 =1× 5× 4=10.223. 如图,△ ABC 内接于⊙ O ,∠ B=60°, CD 是⊙ O 的直径,点 P 是 CD 延伸线上的一点,且 AP=AC.(1) 求证: PA 是⊙ O 的切线;(2) 若 PD= 3 ,求⊙ O 的直径 .分析: (1) 连结 OA 、 AD ,如图,利用圆周角定理获得∠ CAD=90°,∠ ADC=∠ B=60°,则∠ ACD=30°,再利用 AP=AC 获得∠ P=∠ACD=30°,接着依据圆周角定理得∠ AOD=2∠ ACD=60°,OAP=90°,于是依据切线的判断定理可判断(2) 连结 AD ,证得△ AOD 是等边三角形,获得∠ OAD=60°,求得 AD=PD= 3 ,获得 OD= 3 , 即可获得结论 .答案: (1) 连结 OA ,∵∠ B=60°,∴∠ AOC=2∠ B=120°, 又∵ OA=OC ,∴∠ OAC=∠ OCA=30°,又∵ AP=AC ,∴∠ P=∠ ACP=30°,∴∠ OAP=∠ AOC-∠ P=90°, ∴OA ⊥ PA ,∴ PA 是⊙ O 的切线 . (2) 在 Rt △OAP 中,∵∠ P=30°,∴ PO=2OA=OD+PD , 又∵ OA=OD ,∴ PD=OA , ∵PD=3 ,∴ 2OA=2PD=2 3 . ∴⊙ O 的直径为 2 3 .24. 如图,抛物线于点 C ,作直线y=ax 2+bx+c 的图象经过点BC ,连结 AC ,CD.A(-2,0),点B(4 ,0) ,点D(2, 4) ,与y 轴交而后依据三角形内角和定理可计算出∠相切;(1) 求抛物线的函数表达式;(2)E 是抛物线上的点,求知足∠ECD=∠ACO的点 E 的坐标;(3) 点 M在 y 轴上且位于点 C 上方,点 N 在直线 BC上,点 P 为第一象限内抛物线上一点,若以点 C, M, N, P 为极点的四边形是菱形,求菱形的边长.分析: (1) 用待定系数法求出抛物线分析式即可.(2)分①点 E 在直线 CD上方的抛物线上和②点 E 在直线 CD下方的抛物线上两种状况,用三角函数求解即可;(3) 分① CM为菱形的边和②CM为菱形的对角线,用菱形的性质进行计算.答案: (1) ∵抛物线y=ax 2+bx+c 的图象经过点 A(-2 , 0),点 B(4 , 0) ,点 D(2, 4) ,∴设抛物线分析式为y=a(x+2)(x-4) ,∴ -8a=4 ,∴ a=- 1 ,2∴抛物线分析式为 y=-1(x+2)(x-4)=-1x2+x+4;22(2) 如图 1,①点 E 在直线 CD上方的抛物线上,记E′,连结 CE′,过 E′作 E′ F′⊥ CD,垂足为F′,由(1) 知, OC=4,∵∠ ACO=∠E′ CF′,∴ tan ∠ACO=tan∠ E′ CF′,∴设线段 E′F′ =h,则 CF′ =2h,∴点 E′ (2h , h+4) ,∵点 E′在抛物线上,AO E F 1 ,CO CF2∴1(2h) 2+2h+4=h+4,∴ h=0( 舍 ) , h=1,∴ E′ (1 ,9) ,222②点 E 在直线 CD下方的抛物线上,记E,连结 CE ,过 E 作 EF ⊥ CD ,垂足为 F , 由(1) 知, OC=4,∵∠ ACO=∠ECF ,∴ tan ∠ ACO=tan ∠ ECF ,∴AOEF 1 ,COCF2设线段 EF=h ,则 CF=2h ,∴点 E(2h , 4-h)∵点 E 在抛物线上,∴ -1(2h) 2+2h+4=4-h ,∴ h=0( 舍) , h=3,∴ E(3, 5),222点 E 的坐标为 (1,9),(3 ,5)2 2(3) ① CM 为菱形的边,如图 2,在第一象限内取点 P ′,过点 P ′作 P ′ N ′∥ y 轴,交 BC 于 N ′,过点 P ′作 P ′ M ′∥ BC ,交y 轴于 M ′,∴四边形 CM ′ P ′ N ′是平行四边形, ∵四边形 CM ′ P ′ N ′是菱形, ∴P ′ M ′ =P ′ N ′,过点 P ′作 P ′ Q ′⊥ y 轴,垂足为 Q ′, ∵OC=OB ,∠ BOC=90°, ∴∠ OCB=45°, ∴∠ P ′ M ′C=45°,1 2设点 P ′ (m , -m+m+4),2在 Rt △ P ′M ′ Q ′中, P ′ Q ′=m , P ′ M ′ = 2 m ,∵ B (4 , 0) , C(0, 4) ,∴直线 BC 的分析式为 y=-x+4 ,∵ P ′ N ′∥ y 轴,∴ N ′ (m , -m+4) ,∴P ′ N ′ =-1221m+m+4-(-m+4)=-2221 22 ,m+2m ,∴m=-m+2m ,∴ m=0(舍 ) 或 m=4-22菱形 CM ′P ′N ′的边长为2 4 2 24 2 4 .②CM 为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点 P 作 PM∥ BC,交 y 轴于点 M,连结 CP,过点 M作 MN∥ CP,交 BC于 N,∴四边形 CPMN是平行四边形,连结 PN交 CM于点 Q,∵四边形 CPMN是菱形,∴ PQ⊥ CM,∠ PCQ=∠ NCQ,∵∠ OCB=45°,∴∠ NCQ=45°,∴∠ PCQ=45°,∴∠ CPQ=∠ PCQ=45°,∴ PQ=CQ,设点P(n ,-1n2+n+4),∴ CQ=n, OQ=n+4,∴ n+4=-1n2+n+4,∴ n=0( 舍 ) ,22∴此种状况不存在. ∴菱形的边长为4 2 -4.。
四川省宜宾市中考数学试卷2018年全国各地中考数学试题及解析
2018年四川省宜宾市初中学业水平考试数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A. B.3 C.-3 D.±2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10-4B.6.5×104C.-6.5×104D.65×1043.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球4.(3分)一元二次方程x2-2x=0的两根分别为x1和x2,则x1x2为()A.-2B.1C.2D.05.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2%B.4.4%C.20%D.44%7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C. D.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A.B. C.34 D.10二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b-4a2b2+2ab3=.10.(3分)不等式组1<x-2≤2的所有整数解的和为.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分.12.(3分)已知点A是直线y=x+1上一点,其横坐标为-,若点B与点A关于y 轴对称,则点B的坐标为.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=.(结果保留根号)14.(3分)已知:点P(m,n)在直线y=-x+2上,也在双曲线y=-上,则m2+n2的值为15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE 交AC于点F,DB交AC于点G,若=,则=.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018-)0-2-1+|-4|;(2)化简:(1-)÷.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=-x +b的图象经过反比例函数图象上的点Q(-4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE ⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF =4,求sin∠PEF的值.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=-1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.2018年四川省宜宾市初中学业水平考试数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A. B.3 C.-3 D.±【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【试题解答】解:3的相反数是-3,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10-4B.6.5×104C.-6.5×104D.65×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【试题解答】解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球【考点】U3:由三视图判断几何体.【分析】综合该物体的三种视图,分析得出该立体图形是圆柱体.【试题解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.【点评】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.4.(3分)一元二次方程x2-2x=0的两根分别为x1和x2,则x1x2为()A.-2B.1C.2D.0【考点】AB:根与系数的关系.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【试题解答】解:∵一元二次方程x2-2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】L5:平行四边形的性质.【分析】想办法证明∠E=90°即可判断.【试题解答】解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.【点评】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于初中学业水平考试常考题型.6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2%B.4.4%C.20%D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【试题解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.【考点】Q2:平移的性质.【分析】由S△ABC =9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.【试题解答】解:如图,∵S△ABC =9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE =S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=-(舍),故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B. C.34 D.10【考点】M8:点与圆的位置关系;LB:矩形的性质.【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.【试题解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN-MP=EF-MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b-4a2b2+2ab3=2ab(a-b)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2ab,再对余下的多项式利用完全平方公式继续分解.【试题解答】解:2a3b-4a2b2+2ab3,=2ab(a2-2ab+b2),=2ab(a-b)2.【点评】本题考查提公因式法,公式法分解因式,难点在于提取公因式后要继续进行二次分解因式.10.(3分)不等式组1<x-2≤2的所有整数解的和为15.【考点】CC:一元一次不等式组的整数解.【分析】先解不等式组得到6<x≤8,再找出此范围内的整数,然后求这些整数的和即可.【试题解答】解:由题意可得,解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分 78.8分 .【考点】W2:加权平均数.【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【试题解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分), 乙的综合成绩为82×60%+74×40%=78.8(分), 丙的综合成绩为78×60%+78×40%=78(分), ∴被录取的教师为乙,其综合成绩为78.8分, 故答案为:78.8分.【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.12.(3分)已知点A 是直线y =x +1上一点,其横坐标为-,若点B 与点A 关于y 轴对称,则点B 的坐标为 (,) .【考点】F8:一次函数图象上点的坐标特征;P5:关于x 轴、y 轴对称的点的坐标. 【分析】利用待定系数法求出点A 坐标,再利用轴对称的性质求出点B 坐标即可; 【试题解答】解:由题意A(-,), ∵A 、B 关于y 轴对称, ∴B(,), 故答案为(,).【点评】本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知识,属于初中学业水平考试常考题型.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=2.(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【试题解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S=6×××1=2.△ABO故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.14.(3分)已知:点P(m,n)在直线y=-x+2上,也在双曲线y=-上,则m2+n2的值为6【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.【试题解答】解:∵点P(m,n)在直线y=-x+2上,∴n+m=2,∵点P(m,n)在双曲线y=-上,∴mn=-1,∴m2+n2=(n+m)2-2mn=4+2=6.故答案为:6.【点评】此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间关系是解题关键.15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】由AB是直径,推出∠ADG=∠GCB=90°,因为∠AGD=∠CGB,推出cos∠CGB=cos∠AGD,可得=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,想办法求出DG、AG即可解决问题;【试题解答】解:连接AD,BC.∵AB是半圆的直径,∴∠ADB=90°,又DE⊥AB,∴∠ADE=∠ABD,∵D是的中点,∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴FA=FD;∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,∴∠EDB=∠CGB,又∠DGF=∠CGB,∴∠EDB=∠DGF,∴FA=FG,∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,在Rt△ADE中,AD==4k,∵AB是直径,∴∠ADG=∠GCB=90°,∵∠AGD=∠CGB,∴cos∠CGB=cos∠AGD,∴=,在Rt△ADG中,DG==2k,∴==,故答案为:.【点评】本题考查的是圆的有关性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于初中学业水平考试常考题型.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【试题解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3-x,AF=-2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(-2)2+(3-x)2,∴x=,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于初中学业水平考试填空题中的压轴题.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018-)0-2-1+|-4|;(2)化简:(1-)÷.【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)利用特殊角的三角函数值、零指数幂和负整数指数的意义计算;(2)先把括号内通分,再把除法运算化为乘以运算,然后把x2-1分解因式后约分即可.【试题解答】解:(1)原式=+1-+4=5;(2)原式=•=x+1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【考点】KD:全等三角形的判定与性质.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【试题解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.【点评】考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.【试题解答】解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50-(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A 或B的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.【考点】B7:分式方程的应用.【分析】设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x 万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【试题解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:-=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)【考点】TA:解直角三角形的应用-仰角俯角问题.【分析】作CH⊥AB于H,得到BD=CH,设CD=x米,根据正切的定义分别用x表示出HC、ED,根据正切的定义列出方程,解方程即可.【试题解答】解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30-x)米,在Rt△AHC中,HC==(30-x),则BD=CH=(30-x),∴ED=(30-x)-10,在Rt△CDE中,=tan∠CED,即=,解得,x=15-,答:立柱CD的高为(15-)米.【点评】本题考查的是解直角三角形的应用-仰角俯角问题,掌握锐角三角函数的概念、仰角俯角的定义是解题的关键.22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=-x +b的图象经过反比例函数图象上的点Q(-4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【试题解答】解:(1)反比例函数y=( m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=-x+b的图象与反比例函数的图象相交于点Q(-4,n),∴,解得,∴一次函数的表达式y=-x-5;(2)由,解得或,∴点P(-1,-4),在一次函数y=-x-5中,令y=0,得-x-5=0,解得x=-5,故点A(-5,0),S△OPQ=S△OPA-S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE ⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF =4,求sin∠PEF的值.【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.【分析】(1)说明OC是△BDA的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE是圆O的切线.(2)利用直径上的圆周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,从而得到PC=PE=5.然后求出sin∠PEF的值.【试题解答】解:(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠PEF==.【点评】本题考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=-1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1--y0)m2-(2-2x0-2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.【试题解答】解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=,∴抛物线的解析式为y=(x-2)2=x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:,解得:,,∴点A的坐标为(1,),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,)、B′(4,-3)代入y=kx+b,得:,解得:,∴直线AB′的解析式为y=-x+,当y=-1时,有-x+=-1,解得:x=,∴点P的坐标为(,-1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m-x0)2+(n-y0)2=(n+1)2,∴m2-2x0m+x02-2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=m2-m+1,∴m2-2x0m+x02-2y0(m2-m+1)+y02=2(m2-m+1)+1,整理得:(1--y0)m2-(2-2x0-2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴,∴,∴定点F的坐标为(2,1).【点评】本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
; 21.
; 22.
; 23.
;
第7页(共7页)
当 a<b 时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于 x 的函数为 y
=max{x+3,﹣x+1},则该函数的ABCD 中,AC 为对角线,E 为 AB 上一点,过点 E 作 EF∥AD,
与 AC、DC 分别交于点 G,F,H 为 CG 的中点,连接 DE,EH,DH,FH.下列结论:
.
第2页(共7页)
11.(3 分)已知一组数据:3,3,4,5,5,则它的方差为
.
12.(3 分)今年“五一”节,A、B 两人到商场购物,A 购 3 件甲商品和 2 件乙商品共支付
16 元,B 购 5 件甲商品和 3 件乙商品共支付 25 元,求一件甲商品和一件乙商品各售多少
元.设甲商品售价 x 元/件,乙商品售价 y 元/件,则可列出方程组
积最大时,求点 P 的坐标; (3)当点 P 为抛物线的顶点时,在直线 AC 上是否存在点 Q,使得以 C、P、Q 为顶点的三
角形与△ABC 相似,若存在,求出点 Q 的坐标,若不存在,请说明理由.
第6页(共7页)
2018 年四川省宜宾市中考数学模拟试卷(二)
参考答案
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分) 1.B; 2.A; 3.C; 4.B; 5.B; 6.A; 7.C; 8.A; 二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)
2018 年四川省宜宾市中考数学模拟试卷(二)
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分) 1.(3 分)﹣ 的相反数是( )
A.5
B.
C.﹣
D.﹣5
2.(3 分)已知空气的单位体积质量是 0.001 239g/cm3,则用科学记数法表示该数为( )
A.1.239×10﹣3 g/cm3
9.ab(3a+1)(3a﹣1); 10.45°; 11. ; 12.
; 13.
﹣ π; 14. ;
15.2; 16.①②③④;
三、解答题(本大题共 8 个题,共 72 分)
17.
; 18.
; 19.
; 20.
24.
;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/25 17:08:32; 用户:qgjyus er10 537;邮箱:q gjyus er10537.219 57750;学号 :21985545
F 的运动速度相同.设点 E 的运动路程为 x,△AEF 的面积为 y,能大致刻画 y 与 x 的函
数关系的图象是( )
A.
B.
C.
D.
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)
9.(3 分)因式分解:9a3b﹣ab=
.
10.(3 分)如图,直线 a∥b,∠P=75°,∠2=30°,则∠1=
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若 = ,则 3S△EDH=
13S△DHC,其中结论正确的有
.
三、解答题(本大题共 8 个题,共 72 分) 17.(10 分)(1)计算:|﹣2|﹣(π﹣2015)0+( )﹣2﹣2sin60°+ ;
第3页(共7页)
(2)先化简,再求值:
.
13.(3 分)如图,在 Rt△ABC 中,∠A=30°,BC=2 ,以直角边 AC 为直径作⊙O 交
AB 于点 D,则图中阴影部分的面积是
.
14.(3 分)已知 x1,x2 是关于 x 的方程 x2+ax﹣2b=0 的两实数根,且 x1+x2=﹣2,x1•x2=
1,则 ba 的值是
.
15.(3 分)对于实数 a,b,我们定义符号 max{a,b}的意义为:当 a≥b 时,max{a,b}=a;
第4页(共7页)
行车的销售总利润为 y 元,要求购进 B 型自行车数量不超过 A 型自行车数量的 2 倍,总 利润不低于 13 000 元,求获利最大的方案以及最大利润. 21.(8 分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼 DE,在小楼的顶端 D 处测得障碍物边缘点 C 的俯角为 30°,测得大楼顶端 A 的仰角为 45°(点 B,C,E 在同一水平直线上).已知 AB=80m,DE=10m,求障碍物 B,C 两点间的距离.(结果 保留根号)
B.1.239×10﹣2 g/cm3
C.0.123 9×10﹣2 g/cm3
D.12.39×10﹣4 g/cm3
3.(3 分)如图,立体图形的俯视图是( )
A.
B.
C.
D.
4.(3 分)如图,AB 为⊙O 的直径,点 C 在⊙O 上,若∠OCA=50°,AB=4,则 的长
为( )
A. π
B. π
C. π
24.(12 分)如图,已知抛物线 y= x2+bx+c 经过△ABC 的三个顶点,其中点 A(0,1), 点 B(﹣9,10),AC∥x 轴,点 P 是直线 AC 下方抛物线上的动点.
(1)求抛物线的解析式; (2)过点 P 且与 y 轴平行的直线 l 与直线 AB、AC 分别交于点 E、F,当四边形 AECP 的面
D. π
5.(3 分)如图,在平行四边形 ABCD 中,E 是边 CD 上一点,将△ADE 沿 AE 折叠至△AD′ E 处,AD′与 CE 交于点 F,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )
A.40°
B.36°
C.50°
D.45°
6.(3 分)如图,四边形 ABCD 是菱形,AC=8,DB=6,DH⊥AB 于 H,则 DH 等于( )
23.(10 分)如图,PB 与⊙O 相切于点 B,过点 B 作 OP 的垂线 BA,垂足为 C,交⊙O 于 点 A,连结 PA,AO,AO 的延长线交⊙O 于点 E,与 PB 的延长线交于点 D.
(1)求证:PA 是⊙O 的切线; (2)若 tan∠BAD= ,且 OC=4,求 BD 的长.
第5页(共7页)
(1)四个年级被调查人数的中位数是多少? (2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校 3 至 6
年级学生帮助父母做家务的人数大约是多少? (3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四
人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和 乙的概率.
20.(8 分)某商城销售 A,B 两种自行车.A 型自行车售价为 2 100 元/辆,B 型自行车售价 为 1 750 元/辆,每辆 A 型自行车的进价比每辆 B 型自行车的进价多 400 元,商城用 80 000 元购进 A 型自行车的数量与用 64 000 元购进 B 型自行车的数量相等.
(1)求每辆 A,B 两种自行车的进价分别是多少? (2)现在商城准备一次购进这两种自行车共 100 辆,设购进 A 型自行车 m 辆,这 100 辆自
第1页(共7页)
A.
B.
C.5
D.4
7.(3 分)使得关于 x 的不等式组
有解,且使分式方程
有非负
整数解的所有的 m 的和是( )
A.﹣1
B.2
C.﹣7
D.0
8.(3 分)如图,正方形 ABCD 的边长为 4,点 P、Q 分别是 CD、AD 的中点,动点 E 从点
A 向点 B 运动,到点 B 时停止运动;同时,动点 F 从点 P 出发,沿 P→D→Q 运动,点 E、
22.(10 分)如图,在平面直角坐标 xOy 中,正比例函数 y=kx 的图象与反比例函数 y= 的 图象都经过点 A(2,﹣2).
(1)分别求这两个函数的表达式; (2)将直线 OA 向上平移 3 个单位长度后与 y 轴交于点 B,与反比例函数图象在第四象限
内的交点为 C,连接 AB,AC,求点 C 的坐标及△ABC 的面积.
÷(2+
),其中 a= .
18.(6 分)如图,分别过点 C、B 作△ABC 的 BC 边上的中线 AD 及其延长线的垂线,垂足 分别为 E、F.求证:BF=CE.
19.(8 分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校 3 至 6 年 级的 3000 名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了 200 名 学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图 1)和扇形统计图 (图 2).