数学物理方程第二版习题解答 第三章教学文稿
数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。
定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。
解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。
仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。
x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。
且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。
§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。
数理方程第二版 课后习题答案教学教材

数理方程第二版课后习题答案第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。
数理方程第二版 课后习题答案

第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。
数学物理方程答案(全)

化简之后,可以得到定解问题为
utt (Y / )uxx a2uxx u |x0 0,ux |xL 0
u
|t 0
0, ut
|t 0
I
(x
L)
5.高频传输线,原点端施以电动势 E,另一端接地,初始电流为(x) ,电压为 (x) 。
试建立电压的定解问题。(忽略电阻和介质的电导)
Q3 c 4 r2drdu
Q3 Q1 Q2
c 4 r2drdu kur (r dr,t)4 (r dr)2 dt kur (r,t)4 r2dt
4
k
r
(r
2ur
)drdt
即
ut
k c
1 r2
r
(r2ur )
3.设物体表面的绝对温度为 u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定 律正比于 u4 ,即 dQ ku4dSdt ,设物体与周围介质之间,只有热辐射而无热传
习题 2.4 1.判断下列方程的类型 (1) auxx 4auxy auyy bux cuy u 0 4a2 a2 0 ,双曲型 (2) auxx 2auxy auyy bux cuy u 0 a2 a2 0 ,抛物型 (3) 2auxx 2auxy auyy 2bux 2auy u 0 a2 2a2 0 ,椭圆型 (4) uxx xuxy 0
ut
k c
ux
2k1 cr
(u
u1 )
0
2.导出匀质且在每一个同心球上等温的孤立球体的热传导方程。
S1
S2
r r+dr
解: dt 时间内通过 S1 流入壳层的能量 Q1 kur (r,t)4 r2dt dt 时间内通过 S2 流入壳层的能量 Q2 kur (r dr,t)4 (r dr)2 dt dt 时间内壳层升高 du 所需的能量
数学物理方程习题讲义

t
=
0
:
v
=
(h
−
x)ϕ(x),
∂v ∂t
=
(h
−
x)ψ(x)
因此
v(x, t)
=
1 2
((h
−
x
+
at)ϕ(x − at) + (h
−
x
−
at)ϕ(x + at))
+
1 2a
x+at
(h − ξ)ψ(ξ)dξ,
x−at
从而
u(x, t)
=
1 2(h − x)
((h
−
x
+
at)ϕ(x
−
at)
+
(h
−
(x
+
∆x,
t)
−
E
(x)
S
(x)
∂u ∂x
(x,
t)
=
∂ ∂x
E
(x∗)
S
(x∗)
∂u ∂x
(x∗,
t)
∆x
-1-
1.2 习题选讲
其中x∗ ∈ (x, x + ∆x).约去∆x并令∆x → 0,即得
∂ ∂t
ρ
(x)
S
(x)
∂u ∂t
=
∂ ∂x
E
(x)
S
(x)
∂u ∂x
当S(x)为常数时,即为
∂ ∂t
第四章 二阶线性偏微分方程的分类与总结. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1 学习要求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 习题选讲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
数学物理方程答案谷超豪

数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
数学物理方程课后参考答案第三章
解:令
又 故取 则 满足调和方程
即
代入原定解问题,得 满足
用分离变量法零解 ,得
.
所以
再由另一对边值得
所以 .
得
最后得
8.举例与说明在二维调和方程的狄利克莱外问题,如对解 不加在无穷远处为有界的限制,那末定解问题的解以不是唯一的。
是区域 中的调和函数(无穷远点除外).
如果区域 为球面K以外的无界区域,则函数u 在 中除去原点O外是调和的,函数 称为函数 的凯尔文(Kelvin)变换。
证明:只需证明 满足 。
=
=
代入 的表达式,有
=
=
若u在包含原点O的有界区域内处处式调和的即 ,则除无穷远点(O的反演点)外, 即除 点外v是调和的。若u在无界域 上是调和的,则除去O点外,v也是调和的。证毕。
且矩阵( )是正定的,即
由于矩阵( )是非正定的,故 可以写成 的线性齐次式的平方和,即
=
所以
于是
因此在 点
与 在 点满足方程是矛盾的,故 不能在 内部达到正的最大值。
7.证明第6题中讨论的椭圆形方程第一边值问题的唯一性与稳定性。
证:唯一性。只须证明方程在齐次边值条件只的零解。
设 在 内满足方程,在 边界 上 。因 在 上连续,故 是有界的,
第三章调和方程
§1建立方程定解条件
1.设 是n维调和函数(即满足方程
),试证明
其中 为常数。
证: ,
即方程 化为
所以
若 ,积分得
即 ,则
若 ,则 故
即 ,则
2.证明拉普拉斯算子在球面坐标 下,可以写成
数学物理方程第二版答案
2u u g [(l x) ] 。 2 x x t
5. 验证
u ( x, y , t )
1 t x y
2 2 2
在锥 t x y >0 中都满足波动方程
2 2 2
2u 2u 2u 1 2 2 2 在锥 t x y >0 内对变量 2 2 证:函数 u ( x, y, t ) 2 2 2 2 t x y t x y
同理,若 x 0 为自由端,则相应的边界条件为
(3)若 x l 端固定在弹性支承上, 而弹性支承固定于某点, 且该点离开原来位置的 偏移由函数 v(t ) 给出,则在 x l 端支承的伸长为 u(l , t ) v(t ) 。由虎克定律有
u ∣ x 0 0 x
E
u ∣ x l k[u(l , t ) v(t )] x u u ) ∣ x l f (t ) x
利用微分中值定理,消去 x ,再令 x 0 得
2u u u x sx 2 . ES b x s x t x x t
若 s( x) 常数,则得
x
2 u u u E b x 2 x x t t
其中 ( x) 表示 T ( x) 方向与 x 轴的夹角 又 于是得运动方程
sin tg
u x.
x
2u u u [l ( x x)] ∣ x x g [l x] ∣ x g 2 x x t
利用微分中值定理,消去 x ,再令 x 0 得
+
x at 1 (h ) ( )d . 2a(h x) x at
即为初值问题的解散。 2. 问初始条件 ( x) 与 ( x) 满足怎样的条件时, 齐次波动方程初值问题的解仅由右传 播波组成? 解:波动方程的通解为 u=F(x-at)+G(x+at) 其中 F,G 由初始条件 ( x) 与 ( x) 决定。初值问题的解仅由右传播组成,必须且只须对 于任何 x,
数学物理方程 2-3章课后部分习题答案 李明奇主编 电子科技大学出版社
数学物理方程 李明奇主编 电子科技大学出版社2-3章部分习题答案习题2.14.一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。
试写出定解问题。
解:由Newton 定律: tt x x Sdxu t x YSu t dx x SYu ρ=-+),(),(,其中,Y 为杨氏模量,S 为均匀细杆的横截面积,x u 为相对伸长率。
化简之后,可以得到定解问题为:⎪⎪⎩⎪⎪⎨⎧-==========)(|,0|0|,0|)/(0002L x Iu u u u u a u Y u t t t L x x x xx xx tt δρρ。
习题2.23.设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定律正比于4u ,即dSdt ku dQ 4=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数),,,(t z y x ϕ,。
试写出边界条件。
解:由Fourier 热传导实验定律dSdt nuk dQ ∂∂-=1,其中1k 称为热传导系数。
可得dSdt u k dSdt nuk )(441ϕ-=∂∂-,即可得边界条件:)(441ϕ--=∂∂u k k nus。
习题2.34.由静电场Gauss 定理⎰⎰⎰⎰⎰⋅=⋅VsdV dS E ρε01,求证:0ερ=⋅∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅=⋅VVsdV dV divE dS E ρε01,所以可以得到:0ερ=divE 。
由E divE ⋅∇=与u E -∇=,可得静电势u 所满足的Poisson 方程:2ερ-=∇u 。
习题2.42.求下列方程的通解:(2):;032=-+yy xy xx u u u (5):;031616=++yy xy xx u u u解:(2):特征方程:03)(2)(2=--dx dy dx dy解得:1-=dx dy 和3=dxdy。
新编[理学]普通物理学第二版第三章课后习题答案
第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。
解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)12257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。
解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。
解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',最小值为)s /m (92.38.94.0g a 20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。
2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x = r sinθ cosϕ , y = r sinθ sinϕ , z = r cosθ
(1)
∆u = ∂ 2u + ∂ 2u + ∂ 2u ∂x 2 ∂y 2 ∂z 2
为作变量的置换,首先令 ρ = ρ sinθ ,则变换(1)可分作两步进行
x = ρ cosϕ , y = ρ sin ϕ
(2)
∂ϕ ρ
= sinϕ ∂ ( ∂u sinϕ + ∂u ⋅ cosϕ ) +
∂ρ ∂ρ
∂ϕ ρ
+ cosϕ ∂ ( ∂u sinϕ + ∂u ⋅ cosϕ )
ρ ∂ϕ ∂ρ
∂ϕ ρ
= sin 2 ∂ 2u + 2sin ϕ cosϕ ∂ 2u + cos2 ϕ ⋅ ∂ 2u −
∂ρ 2
ρ
∂ρ∂ϕ ρ 2 ∂ϕ 2
⋅
∂2u ∂ϕ 2
=
0
3. 证明拉普拉斯算子在柱坐标 (r,θ , z) 下可以写成
∆u
=
1 r
⋅
∂ ∂r
(r
∂u ) ∂r
+
1 r2
⋅
∂2u ∂θ 2
+
∂2u ∂z 2
证:柱坐标 (r,θ , z) 与直角坐标 (x, y, z) 的关系
x = r cosθ , y = r sinθ , z = z
第三章 调 和 方 程
§1 建 立 方 程 定 解 条 件
1. 设 u(x1, x2 ,, xn ) = f (r) (r = x12 + + xn2 ) 是 n 维调和函数(即满足方程
∂ 2u + + ∂ 2u = 0 ),试证明
∂x12
∂xn2
f
(r)
=
c1
+
c2 r n−2
(n ≠ 2)
f
n
n
∑ ∑ ∑ n
∂2u =
xi2 f " (r) ⋅ i=1
xi2 + f ' (r) ⋅ n − f ' (r) ⋅ i=1
=
f "(r) + n −1 f '(r)
i=1 ∂xi2
r2
r
r3
r
∆u = 0 化为 f " (r) + n −1 f ' (r) = 0 r
f "(r) = − n −1
∂θ r
所以
∂ 2u + ∂ 2u + ∂ 2u = ∂ 2u + 1 ⋅ ∂ 2u + 1 ⋅ ∂u + ∂x2 ∂y 2 ∂z 2 ∂r 2 r 2 ∂θ 2 r ∂r
+ 1 ⋅ ∂ 2u + 1 (∂u sinθ + ∂u ⋅ cosθ )
r 2 sin 2 θ ∂ϕ 2 r sinθ ∂r
∂θ r
∂ϕ ρ
= cos2 ϕ ∂ 2u − 2sin ϕ cosϕ ⋅ ∂ 2u + sin 2 ϕ ⋅ ∂ 2u +
∂ρ 2
ρ
∂ρ∂ϕ ρ 2 ∂ϕ 2
+ 2sinϕ cosϕ ⋅ ∂u + sin 2 ϕ ⋅ ∂u
ρ2
∂ϕ ρ ∂ρ
∂ 2u = ∂ ( ∂u sinϕ + ∂u ⋅ cosϕ )
∂y 2 ∂y ∂ρ
ρ = ρ sinθ ,
z = r cosθ
由(2)
∂u = ∂u cosϕ + ∂u sinϕ
∂ρ ∂x
∂y
∂u
=
∂u
(−ρ sinϕ ) +
∂u
(ρ
cosϕ )
∂ϕ ∂x
∂y
由此解出
∂u ∂x
=
∂u ∂ρ
cosϕ
−
∂u ∂ϕ
⋅
sin ϕ ρ
∂u
=
∂u
sin ϕ
+
∂u
⋅
cosϕ
∂y ∂ρ
∂ϕ ρ
= ∂ 2u + 1 ⋅ ∂ 2u + 1 ⋅ ∂ 2u + 2 ⋅ ∂u + 1 ctgθ ∂u
∂r 2 r 2 ∂θ 2 r 2 sin 2 θ ∂ϕ 2 r ∂r r 2
∂θ
即
∆u
=
1 r2
⋅ ∂ (r 2 ∂r
∂u ) + ∂r
1 r 2 sinθ
⋅∂ ∂θ
(sinθ
∂u ) + ∂θ
1 r 2 sin 2 θ
(r)
=
c1
+
c2
In
1 r
(n = 2)
其中 c1, c2 为常数。
证:
u = f (r) , ∂u = f ' (r) ⋅ ∂r = f ' (r) ⋅ xi
∂xi
∂xi
r
即方程
∂ 2u = f " (r) ⋅ xi2 + f ' (r) ⋅ 1 − f ' (r) ⋅ xi2
∂xi2
r2
r
r3
In
1 r
2. 证明拉普拉斯算子在球面坐标 (r,θ ,ϕ ) 下,可以写成
∆u = 1 ⋅ ∂ (r 2 ∂u ) + 1 ⋅ ∂ (sinθ ∂u ) + 1 ⋅ ∂ 2u
r 2 ∂r ∂r r 2 sinθ ∂θ
∂θ r 2 sin 2 θ ∂ϕ 2
=0
证:球坐标 (r,θ ,ϕ ) 与直角坐标 (x, y, z) 的关系:
− 2sinϕ cosϕ ⋅ ∂u + cos2 ϕ ⋅ ∂u
ρ2
∂ϕ ρ ∂ρ
所以
∂ 2u + ∂ 2u = ∂ 2u + 1 ⋅ ∂ 2u + 1 ⋅ ∂u ∂x 2 ∂y 2 ∂ρ 2 ρ 2 ∂ϕ 2 ρ ∂ρ
(5)
Hale Waihona Puke ∂ 2u + ∂ 2u + ∂ 2u = ∂ 2u + ∂ 2u + 1 ⋅ ∂ 2u + 1 ⋅ ∂u ∂x 2 ∂y 2 ∂z 2 ∂ρ 2 ∂z 2 ρ 2 ∂ϕ 2 ρ ∂ρ
f '(r)
r
所以
f ' (r) = A1r −(n−1)
若 n ≠ 2 ,积分得
f
(r)
=
−
A1 n+
2
r −n+2
+
c1
即 n ≠ 2 ,则
f
(r)
=
c1
+
c2 r n−2
若 n = 2 ,则
f ' (r) = A1 r
故
f (r) = c1 + A1Inr
即 n = 2 ,则
f
(r
)
=
c1
+
c2
利用上题结果知
∂2u ∂x 2
+
∂2u ∂y 2
=
∂2u ∂r 2
+
1 r2
∂2u ∂θ 2
+
1 r
∂u ∂r
= 1 ∂ (r ∂u ) + 1 ∂ 2u r ∂r ∂r r 2 ∂θ 2
所以
40
∆u
=
1 r
∂ ∂r
(r
∂u ) + ∂r
1 r2
∂2u ∂θ 2
+
∂2u ∂z 2
4. 证明下列函数都是调和函数
再微分一次,并利用以上关系,得
(3) (4)
39
∂ 2u = ∂ ( ∂u cosϕ − ∂u ⋅ sinϕ )
∂x2 ∂x ∂ρ
∂ϕ ρ
= cosϕ ∂ ( ∂u cosϕ − ∂u ⋅ sinϕ ) −
∂ρ ∂ρ
∂ϕ ρ
sinϕ ⋅ ∂ ( ∂u cosϕ − ∂u ⋅ sinϕ )
ρ ∂ϕ ∂ρ
再用(3)式,变换 ∂ 2u + ∂ 2u 。这又可以直接利用(5)式,得 ∂ρ 2 ∂z 2
∂ 2u + ∂ 2u = ∂ 2u + 1 ⋅ ∂ 2u + 1 ⋅ ∂u ∂r 2 ∂z 2 ∂r 2 r 2 ∂θ 2 r ∂r
再利用(4)式,得
∂u = ∂u sinθ + ∂u ⋅ cosθ
∂r ∂r