函数的单调性与导数
函数的单调性与导数(IV)

导数定义为函数在某一点处的切线的斜率,表示函数在该点附近的变化率。对于可导函数,其在某一点的导数值 可以通过极限来定义,即lim(x->0) [f(x+h) - f(x)] / h,其中h是一个无穷小量。
导数的计算方法
总结词
导数的计算方法包括多项式函数的导数、复合函数的导数、幂函数的导数以及三角函数的导数等。
在物理学中,速度和加速度是描述物体运动状态 的重要物理量,而速度和加速度可以通过对位移 函数求导得到。
斜率场和流场
在物理学中,斜率场和流场是描述物理现象的重 要概念,而斜率场和流场的分布可以通过对物理 量函数求导得到。
弹性碰撞
在弹性碰撞中,两个物体碰撞后的速度可以通过 对动能函数求导得到,利用导数的性质可以求解 出碰撞后的速度。
详细描述
对于可导函数,其在某一点的导数值即为该点处的切线斜率 。切线的斜率决定了函数在该点的增减性,斜率为正表示函 数在该点处单调递增,斜率为负表示函数在该点处单调递减 。
03 导数与函数单调性的关系
导数与单调增函数
总结词
导数大于零的区间内,函数单调递增
详细描述
当函数在某区间内的导数大于零时,意味着函数在该区间 内的变化率是正的,即函数值随自变量的增加而增加,因 此函数在该区间内单调递增。
函数的单调性与导数(iv)
目 录
• 函数的单调性 • 导数的概念与性质 • 导数与函数单调性的关系 • 导数在实际问题中的应用 • 综合案例分析
01 函数的单调性
单调性的定义
单调增函数
对于函数$f(x)$,如果在区间$I$上,对于任意$x_1 < x_2$,都有$f(x_1) < f(x_2)$,则称$f(x)$在区间$I$上单调增。
函数单调性与导数的关系

函数单调性与导数的关系
函数的单调性与函数的导数有着密不可分的关系。
单调性指函数f(x)在一个区
间上,对傍端改变都呈现某一种状态(升序或者降序),而函数的导数则指在一个特定点上,其自变量发生变化后,函数值变化率快慢的大小。
首先,单调递增函数f(x)其一阶导数只可能是正值。
反之,单调递减函数f(x)
其一阶导数只可能是负值。
换句话说,在变化的密度上,对于单调递增函数,其变化率是正向的,而对于单调递减函数,其变化率是负向的。
此外,当某一函数的一阶导数f'(x)在定义区间内的值恒为正值时,那么函数
f(x)在定义区间内就是单调递增函数;而当某一函数的一阶导数f'(x)在定义区间内
的值恒为负值时,那么函数f(x)在定义区间内就是单调递减函数。
因此,函数的单调性与函数的导数有着紧密的联系。
函数内部变化率的大小,反映在一阶导数值上;一阶导数是正值或负值,反映在函数的单调性上。
准确地说,函数的单调性与函数的导数形成了一个严密的套路,使函数的变化更加的精密明晰,有几何的结构性表述。
3.3.1 函数的单调性与导数

A.
π 2
,
3π 2
B.(π,2π)
C.
3π 2
,
5π 2
D.(2π,3π)
思路分析:只需判断在哪个区间上导函数的值大于零即可.
答案:B
解析:y'=cos x-xsin x-cos x=-xsin x,若 y=f(x)在某区间内是增
函数,只需在此区间内 y'恒大于零即可.
∴只有选项 B 符合题意,当 x∈(π,2π)时,y'>0 恒成立.
(2)求函数 f(x)=x2-ln x 的单调区间.
思路分析:求函数的单调区间,即求定义域上满足 f'(x)>0 或 f'(x)<0 的区间.
解:函数 f(x)的定义域为(0,+∞),
f'(x)=2x-1������ = (
∴当 t<0 时,f(x)的递增区间为
-∞,
������ 2
,(-t,+∞),递减区间为
������ 2
,-t
;
当 t>0 时,f(x)的递增区间为(-∞,-t),
������ 2
,
+
∞
,递减区间为
-������,
������ 2
.
迁移与应用 已知函数 f(x)=12ax2+ln x(a∈R),求 f(x)的单调区间.
则(-9,0)是 3x2-2mx<0 的解集,
∴3×(-9)2-2×(-9)×m=0,m=-227.
∴a≤(2x3)min.∵x∈[2,+∞),y=2x3 是增函数,
函数的单调性与导数-图课件

单调减函数的性质
03
04
05
函数图像从左至右下降 。
若$f(x)$在区间$I$上单 调递减,且$a, b in I$, 且$a < b$,则有$f(a) geq f(b)$。
若函数$f(x)$在区间$I$ 上单调递减,则其反函 数在相应的区间上单调 递增。
单调性与导数的关系
01
导数与单调性的关系
如果函数在某区间的导数大于0,则该函数在此区间单调递增;如果导
数小于0,则函数在此区间单调递减。
02
导数不存在的点
对于使导数不存在的点,需要单独判断其单调性。
03
高阶导数与单调性的关系
高阶导数的符号可以提供关于函数单调性更精细的信息。例如,二阶导
数大于0表示函数在相应点处有拐点,即由单调递增变为单调递减或反
之。
02 导数在判断函数单调性中 的应用
导数大于0与函数单调性的关系
定义法判断单调性
• 定义法判断单调性是指通过比较函数在某区间内任意两点x1和x2的函数值f(x1)和f(x2),来判断函数在该区间内的单调性。 如果对于任意x1<x2,都有f(x1)<f(x2),则函数在该区间内单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则函数在该 区间内单调递减。
03 导数在实际问题中的应用
导数在经济学中的应用
边际分析
导数可以用来分析经济函数的边 际变化,例如边际成本、边际收 益等,帮助企业做出更好的经济
决策。
最优化问题
导数可以用来解决最优化问题,例 如最大利润、最小成本等,为企业 提供最优的资源配置方案。
需求弹性
导数可以用来分析需求弹性,例如 价格敏感度、需求变化等,帮助企 业制定更加精准的市场策略。
1.3.1函数的单调性与导数

∴f’(x)=3ax2+6x-1≤0在R上恒成立,
∴a<0且△=36+12a≤0,
∴a ≤-3
玉林市一中高二数学组
练习2 已知函数f (x )= 2ax - x 3,x (0, 1],a 0, 若f (x )在(0, 1]上是增函数,求a的取值范围。
'(x)>0(或<0) 但由f(xf )在这个区间上单调递增(递减) 而仅仅得到 是不够的。还有可 能导数等于0也能使f(x)在这个区间上单调,
本题用到一个重要的转化: 所以对于能否取到等号的问题需要单独验证
m≥f(x)恒成立 m f (x)max m f (x)恒成立 m f (x)min
玉林市一中高二数学组
2.用定义证明函数的单调性的一般步骤: 取值→作差→变形→定号→下结论 3. 判断函数单调性有哪些方法? 定义法
图象法
玉林市一中高二数学组
思考:那么如何求出下列函数的单调性呢? (1)f(x)=2x3-6x2+7 (2)f(x)=ex-x+1 (3)f(x)=sinx-x 发现问题:用单调性定义讨论函数单调性虽然
分析:
当x 3或x 2时,f '( x ) 0; f ( x )在此区间递增 当x 3或x 2时,f '( x ) 0. f ( x )图象在此两处
附近几乎没有升降
试画出函数
f ( x ) 图象的大致形状。
变化,切线平行x轴
y f ( x)
y A B
导数与函数的单调性

导数与函数的单调性函数的单调性在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.辨明导数与函数单调性的关系(1)f′(x)>0(或<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件.注意:由函数f(x)在区间[a,b]内单调递增(或递减),可得f′(x)≥0(或≤0)在该区间恒成立,而不是f′(x)>0(或<0)恒成立,“=”不能少.1.如图所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是()A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(-3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(-3,2)上是单调函数2.函数f(x)=x3-3x+1的单调增区间是()A.(-1,1)B.(-∞,1)C.(-1,+∞)D.(-∞,-1),(1,+∞)3.已知函数f(x)=x sin x,x∈R,则f(1),f()A.f(1)>B.f(1)>C.f(1)>D.f(1)4.(选修11P93练习T1(2)改编)函数f (x )=e x -x 的单调递增区间是________.5.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________.考点一利用导数判断或证明函数的单调性(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性.导数法证明函数f (x )在(a ,b )内的单调性的步骤(1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.考点二求函数的单调区间已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.导数法求函数单调区间的一般步骤(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;(4)根据(3)的结果确定函数f (x )的单调区间.2.(2015·高考四川卷节选)已知函数f (x )=-2x ln x +x 2-2ax +a 2,其中a >0.设g (x )是f (x )的导函数,讨论g (x )的单调性.考点三已知函数的单调性求参数的范围(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下四个命题角度:(1)根据f (x )在区间A 上单调递增(减),求参数的取值范围;(2)根据f (x )在区间A 上存在单调递增(减)区间,求参数的取值范围;(3)根据f (x )在区间A 上为单调函数,求参数的取值范围;(4)根据f (x )在区间A 上不单调,求参数的取值范围.(1)(2014·高考课标全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是()A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)(2)已知函数g (x )=13x 3-12ax 2+2x .①若g (x )在(-2,-1)内为减函数,求实数a 的取值范围;②若g (x )在区间(-2,-1)内不单调,求实数a 的取值范围根据函数单调性确定参数范围的方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.3.(1)(2016·九江第一次统考)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间13,2上是增函数,则实数a 的取值范围为________.(2)设f (x )=-13x 3+12x 2+2ax .若f (x )则a 的取值范围为________.方法思想——分类讨论思想研究函数的单调性(2015·高考江苏卷节选)已知函数f(x)=x3+ax2+b(a,b∈R).试讨论f(x)的单调性.已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.(1)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程1.(2016·九江模拟)函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)2.已知函数f(x)=2x3-6ax+1,a≠0,则函数f(x)的单调递减区间为()A.(-∞,+∞)B.(-a,+∞)C.(-∞,-a)和(a,+∞)D.(-a,a)x3+ax+4,则“a>0”是“f(x)在R上单调递增”的3.(2016·长春调研)已知函数f(x)=12()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有()A.f(x)≥f(a)B.f(x)≤f(a)C.f(x)>f(a)D.f(x)<f(a)5.(2016·郑州第一次质量预测)已知定义在R上的函数f(x)满足f(-3)=f(5)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示,则不等式f(x)<1的解集是()A.(-3,0)B.(-3,5)C.(0,5)D.(-∞,-3)∪(5,+∞)6.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则a的取值范围是()A.0<a<34B.12<a<34C.a≥34D.0<a<127.函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.8.(2016·石家庄二中开学考试)已知函数f(x)=ln x+2x,若f(x2+2)<f(3x),则实数x的取值范围是________.9.已知函数f(x)=e|x-a|(a为常数),若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.10.若函数f(x)=ax3+3x2-x恰好有三个单调区间,则实数a的取值范围是________.11.(2016·云南省第一次统一检测)已知函数f(x)=ln x-x1+2x.(1)求证:f(x)在区间(0,+∞)上单调递增;(2)若f[x(3x-2)]<-13,求实数x的取值范围.1.(2016·河北省衡水中学模拟)已知函数f(x)x,a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a=-1时,求证:f(x)在(0,+∞)上为增函数.2.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值范围;若不是,请说明理由.三年高考两年模拟1.(2016·全国Ⅰ)若函数f(x)=x-13sin2x+a sin x在(-∞,+∞)单调递增,则a的取值范围是()A.[-1,1]B.-1,13C.-13,13 D.-1,-132.(2016·江西赣中南五校模拟)已知函数y=f(x)对任意的x -π2,f′(x)·cos x+f(x)sin x>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是()A.2B.2C.f(0)>2D.f(0)>23.(2015·福建)若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.<1k B.>1k-1C.<1k-1D.>kk-14.(2015·新课标全国Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)5.(2014·新课标全国Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)6,(2014·新课标全国Ⅰ)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)7.(2015·陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.-1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上8.(2014·新课标全国Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件9.(2016·河南八市模拟)已知函数f(x)=sin x-cos x,且f′(x)=12f(x),则tan2x的值是()A.-23B.-43C.4 3D.3 410.(2015·江西新余模拟)如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=ln x+f′(x)的零点所在的区间是()B.(1,2)D.(2,3)11.(2015·河北恒台模拟)设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n (x )=f n -1′(x ),n ∈N ,则f 2015(x )=()A.sin xB.-sin xC.cos xD.-cos x12.(2016·河南郑州一模)函数f (x )=e x cos x 的图象在点(0,f (0))处的切线方程是()A.x +y +1=0B.x +y -1=0C.x -y +1=0D.x -y -1=013.(2016·福建漳州八校模拟)设函数f ′(x )是函数f (x )(x ∈R )的导函数,f (0)=1,且3f (x )=f ′(x )-3,则4f (x )>f ′(x )的解集为()14.(2015·黑龙江绥化模拟)已知函数y =f (x -1)的图象关于直线x =1对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,若a =20.2f (20.2),b =(ln 2)f (ln 2),c a ,b ,c的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.a >c >b15.(2015·辽宁沈阳模拟)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f b =-2f (-2),c a ,b ,c 的大小关系正确的是()A.a <c <bB.b <c <aC.a <b <cD.c <a <b16.(2015·河北唐山模拟)已知函数f (x )=a e x +x 2,g (x )=sin πx2+bx ,直线l 与曲线y =f (x )切于点(0,f (0))且与曲线y =g (x )切于点(1,g (1)).(1)求a ,b 的值和直线l 的方程.(2)证明:f(x)>g(x).17.(2015·山东潍坊模拟)已知函数f(x)=x4+ax-ln x-32,其中a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,求a的值.(2)讨论函数f(x)的单调区间.三年高考两年模拟1C2A3C4A5D6C7A8C9D10C11D12C13B14B15A3.(2016·山东,20)设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.。
导数与函数的单调性
2.函数 f(x)=x·ex-ex+1 的递增区间是( )
A.(-∞,e)
B.(1,e)
C.(e,+∞)
D.(e-1,+∞)
解析:由 f(x)=x·ex-ex+1, 得 f′(x)=(x+1-e)·ex, 令 f′(x)>0,解得 x>e-1, 所以函数 f(x)的递增区间是(e-1,+∞).
题型三 函数单调性的应用 命题点 1 比较大小或解不等式 例 2 (1)已知定义在 R 上的函数 f(x),g(x)满足:对任意 x∈R,都有 f(x)>0,g(x)
>0,且 f′(x)g(x)-f(x)g′(x)<0.若 a,b∈R+且 a≠b,则有( ) A.fa+2 bga+2 b>f( ab)g( ab) B.fa+2 bga+2 b<f( ab)g( ab)
③若 a<0,则由 f′(x)=0 得 x=ln-a2. 当 x∈-∞,ln-a2时,f′(x)<0; 当 x∈ln-a2,+∞时,f′(x)>0. 故 f(x)在-∞,ln-a2上单调递减, 在ln-a2,+∞上单调递增.
综上所述,当 a=0 时,f(x)在(-∞,+∞)上单调递增; 当 a>0 时,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增; 当 a<0 时,f(x)在-∞,ln-a2上单调递减,在ln-a2,+∞上单调递增.
题组三 易错排查 6.函数 f(x)=x3+ax2-ax 在 R 上单调递增,则实数 a 的取值范围是________. 解析:f′(x)=3x2+2ax-a≥0 在 R 上恒成立,即 4a2+12a≤0,解得-3≤a≤0, 即实数 a 的取值范围是[-3,0]. 答案:[-3,0]
7.若函数
导数与函数的单调性
第2节导数在研究函数中的应用知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.3.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.第1课时导数与函数的单调性考点一 求函数的单调区间【例1】 (经典母题)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间.解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x , 故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x =⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x . 令g ′(x )<0,得x (x +1)(x +4)<0,解之得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4).【迁移探究1】 若本例中函数f (x )变为“f (x )=ln x -12x 2+x ”,试求f (x )的单调区间.解 因为f (x )=ln x -12x 2+x ,且x ∈(0,+∞),所以f ′(x )=1x -x +1=-⎝ ⎛⎭⎪⎫x -1-52⎝ ⎛⎭⎪⎫x -1+52x. 令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).由f ′(x )>0,得0<x <1+52;由f ′(x )<0,得x >1+52.所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1+52,单调递减区间为⎝ ⎛⎭⎪⎫1+52,+∞.【迁移探究2】若本例的函数变为“f(x)=x22-a ln x,a∈R”,求f(x)的单调区间.解因为f(x)=x22-a ln x,所以x∈(0,+∞),f′(x)=x-ax=x2-ax.(1)当a≤0时,f′(x)>0,所以f(x)在(0,+∞)上为单调递增函数.(2)当a>0时,f′(x)=(x+a)(x-a)x,则有①当x∈(0,a)时,f′(x)<0,所以f(x)的单调递减区间为(0,a).②当x∈(a,+∞)时,f′(x)>0,所以f(x)的单调递增区间为(a,+∞).综上所述,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间. 当a>0时,函数f(x)的单调递减区间为(0,a),单调递增区间为(a,+∞). 规律方法求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f′(x);(3)在定义域内解不等式f′(x)>0,得单调递增区间;(4)在定义域内解不等式f′(x)<0,得单调递减区间.【训练】已知函数f(x)=x4+ax-ln x-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=1 2x.(1)求a的值;(2)求函数f(x)的单调区间.解(1)对f(x)求导得f′(x)=14-ax2-1x,由f(x)在点(1,f(1))处的切线垂直于直线y=12x知f′(1)=-34-a=-2,解得a=5 4.(2)由(1)知f(x)=x4+54x-ln x-32(x>0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.但-1∉(0,+∞),舍去.当x ∈(0,5)时,f ′(x )<0;当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).考点二 证明(判断)函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0.(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增.②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2. 当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增. (2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练】 (2015·全国Ⅱ卷改编)已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0恒成立,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 考点三 导数在函数单调性中的应用【例3】 (1)(2018·武汉模拟)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( )A.a <b <cB.b <c <aC.a <c <bD.c <a <b解析 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2, ∵当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0.∴g (x )在(0,+∞)上是减函数.由f (x )为奇函数,知g (x )为偶函数,则g (-3)=g (3),又a =g (e),b =g (ln 2),c =g (-3)=g (3),∴g (3)<g (e)<g (ln 2),故c <a <b .答案 D【训练】.已知f (x )=1+x -sin x ,则f (2),f (3),f (π)的大小关系正确的是( )A.f (2)>f (3)>f (π)B.f (3)>f (2)>f (π)C.f (2)>f (π)>f (3)D.f (π)>f (3)>f (2)(2)已知函数f (x )=ln x ,g (x )=12ax 2+2x .①若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;②若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解 ①h (x )=ln x -12ax 2-2x ,x >0. ∴h ′(x )=1x -ax -2.若函数h (x )在(0,+∞)上存在单调减区间,则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x ,所以只要a >G (x )min .(*)又G (x )=⎝ ⎛⎭⎪⎫1x -12-1, 所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞).②由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x ,所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4], 因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x, ∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x≤0, 当且仅当x =4时等号成立.(***)∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞. 规律方法 1.已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围.2.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.3.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.【训练】 (2018·郑州质检)若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.(2018·兰州模拟)已知函数f (x )=12x 2-2a ln x +(a -2)x .(1)当a =-1时,求函数f (x )的单调区间;(2)是否存在实数a ,使函数g (x )=f (x )-ax 在(0,+∞)上单调递增?若存在,求出a 的取值范围;若不存在,说明理由.解 (1)当a =-1时,f (x )=12x 2+2ln x -3x ,则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x. 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减.∴f (x )的单调增区间为(0,1)和(2,+∞),单调减区间为(1,2).(2)假设存在实数a ,使g (x )=f (x )-ax 在(0,+∞)上是增函数,∴g ′(x )=f ′(x )-a =x -2a x -2≥0恒成立.即x 2-2x -2a x≥0在x ∈(0,+∞)上恒成立. ∴x 2-2x -2a ≥0当x >0时恒成立,∴a ≤12(x 2-2x )=12(x -1)2-12恒成立.又φ(x )=12(x -1)2-12,x ∈(0,+∞)的最小值为-12. ∴当a ≤-12时,g ′(x )≥0恒成立.又当a =-12,g ′(x )=(x -1)2x当且仅当x =1时,g ′(x )=0. 故当a ∈⎝ ⎛⎦⎥⎤-∞,-12时,g (x )=f (x )-ax 在(0,+∞)上单调递增.解析 因为f (x )=1+x -sin x ,所以f ′(x )=1-cos x , 当x ∈(0,π]时,f ′(x )>0,所以f (x )在(0,π]上是增函数,所以f (π)>f (3)>f (2).答案 D9.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23. (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),令f ′(x )>0,解得x >1或x <-13;令f ′(x )<0,解得-13<x <1.所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.。
【高中数学】导数与函数的单调性
=ex(x+1),当 x∈(0,+∞)时,f′(x)>0,∴函数 f(x)=xex 在(0,+∞)上为增函数;对于 C,
高中数学学科
f′(x)=3x2-1,令 f′(x)>0,得 x>
3或 x<-
3,∴函数
f(x) = x3 - x
在
-∞,-
3 3
和
3
3
3,+∞ 3
上单调递增;对于
D,f′(x)=-1+1=-x-1,令
-∞,-4
即 f(x)的单调递增区间是
3 ,(0,+∞).
3.下列函数中,在(0,+∞)上为增函数的是( )
A.f(x)=sin 2x
B.f(x)=xex
C.f(x)=x3-x
D.f(x)=-x+ln x
kπ-π,kπ+π
解析:选 B 对于 A,f(x)=sin 2x 的单调递增区间是 4
4 (k∈Z);对于 B,f′(x)
x
x
f′(x)>0,得
0<x<1,
∴
函数 f(x)=-x+ln x 在区间(0,1)上单调递增.综上所述,应选 B.
4.已知函数 f(x)=x2+2cos x,若 f′(x)是 f(x)的导函数,则函数 f′(x)的图象大致是( )
解析:选 A 设 g(x)=f′(x)=2x-2sin x,g′(x)=2-2cos x≥0,所以函数 f′(x)在 R
ax2
a
由 f′(x)=ax-1<0,得 0<x<1,
ax2
a
1,+∞
0,1
∴函数 f(x)在 a
上单调递增,在 a 上单调递减.
高中数学学科
综上所述,当 a<0 时,函数 f(x)在(0,+∞)上单调递增;
导数在函数的单调性,极值中的应用
导数在函数的单调性、极值中的应用一、知识梳理1.函数的单调性与导数在区间(a,b)内,函数的单调性与其导数的正负有如下关系:如果f_′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f_′(x)<0,那么函数y=f(x)在这个区间内单调递减;如果f_′(x)=0,那么f(x)在这个区间内为常数.问题探究1:若函数f(x)在(a,b)内单调递增,那么一定有f ′(x)>0吗?f ′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?提示:函数f(x)在(a,b)内单调递增,则f ′(x)≥0,f ′(x)>0是f(x)在(a,b)内单调递增的充分不必要条件.2.函数的极值与导数(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在x=a附近其他点的函数值都小,f ′(a)=0,而且在点x=a附近的左侧f_′(x)<0,右侧f_′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f ′(b)=0,而且在点x=b附近,左侧f_′(x)>0,右侧f_′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.问题探究2:若f ′(x0)=0,则x0一定是f(x)的极值点吗?提示:不一定.可导函数在一点的导数值为0是函数在这点取得极值的必要条件,而不是充分条件,如函数f(x)=x3,在x=0时,有f ′(x)=0,但x=0不是函数f(x)=x3的极值点.二、自主检测1.函数y=x-lnx的单调减区间是( )A.(-∞,1) B.(0,1)C.(1,+∞) D.(0,2)2.函数f(x)=x3-3x2+3x的极值点的个数是( )A.0 B.1C.2 D.33.函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是( ) A.[3,+∞) B.[-3,+∞)C.(-3,+∞) D.(-∞,-3)4.(2012年山东诸城高三月考)已知函数y=f(x),其导函数y=f ′(x)的图象如图所示,则y=f(x)( )A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值5.若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a=( )A.2 B.3C.4 D.56.(1)函数f(x)在x=x0处可导,则“f ′(x0)=0”是“x0是函数f(x)极值点”的________条件.(2)函数f(x)在(a,b)上可导,则“f ′(x)>0”是“f(x)在(a,b)上单调递增”的________条件.(3)函数f(x)在(a,b)上可导,则“f ′(x)≥0”是“f(x)在(a,b)上单调递增”的________条件.三、考向指导考点1 求函数的单调区间1.求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求 f ′(x),令f ′(x)=0,求出它在定义域内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f ′(x)在各个开区间内的符号,根据f ′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.2.证明可导函数f(x)在(a,b)内的单调性的步骤(1)求 f ′(x).(2)确认 f ′(x)在(a,b)内的符号.(3)作出结论: f ′(x)>0时,f(x)为增函数; f ′(x)<0时,f(x)为减函数.例1 (2010年全国)已知函数f(x)=x3-3ax2+3x+1.(1)设a=2,求f(x)的单调区间;(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.课堂过手练习:设函数f(x)=x3+ax2-9x-1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:(1)a的值;(2)函数y=f(x)的单调区间.考点2 由函数的单调性求参数的取值范围已知函数的单调性,求参数的取值范围,应注意函数f(x)在(a,b)上递增(或递减)的充要条件应是 f ′(x)≥0(或 f ′(x)≤0),x∈(a,b)恒成立,且 f ′(x)在(a,b)的任意子区间内都不恒等于0,这就是说,函数f(x)在区间上的增减性并不排斥在区间内个别点处有 f ′(x0)=0,甚至可以在无穷多个点处 f ′(x0)=0,只要这样的点不能充满所给区间的任何一个子区间.例2 已知函数f(x)=x3-ax-1,在实数集R上y=f(x)单调递增,求实数a的取值范围.课堂过手练习:已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R 内单调递增,求a 的取值范围;(3)是否存在a ,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.考点3 求已知函数的极值运用导数求可导函数 y =f(x)极值的步骤:(1)先求函数的定义域,再求函数 y =f(x)的导数 f ′(x);(2)求方程 f ′(x)=0的根;(3)检查 f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值.如果左负右正,那么 f(x)在这个根处取得极小值.例3 设f(x)=ex1+ax 2,其中a 为正实数.(1)当a =43时,求f(x)的极值点;(2)若f(x)为R 上的单调函数,求a 的取值范围.课堂过手练习:函数f(x)=x3-3x2+1在x =________处取得极小值.考点4 利用极值求参数已知函数解析式,可利用导数及极值的定义求出其极大值与极小值;反过来,如果已知某函数的极值点或极值,也可利用导数及极值的必要条件建立参数方程或方程组,从而解出参数,求出函数解析式.例4 设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点.(1)试确定常数a和b的值;(2)试判断x=1,x=2是函数f(x)的极大值点还是极小值点,并说明理由.课堂过手练习:设函数f(x)=(x-a)2lnx,a∈R.若x=e为y=f(x)的极值点,求实数a.易错点求参数取值时出现典例:已知函数f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.(1)当函数在某个区间内恒有f ′(x)=0,则f(x)为常数,函数不具有单调性.∴f (x)≥0是f(x)为增函数的必要不充分条件.在解题中误将必要条件作充分条件或将既不充分与不必要条件误作充要条件使用而导致的错误还很多,在学习过程中注意思维的严密性.(2)函数极值是一个局部性概念,函数的极值可以有多个,并且极大值与极小值的大小关系不确定.要强化用导数处理单调性、极值、最值、方程的根及不等式的证明等数学问题的意识.(3)如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“∪”连接,只能用“,”或“和”字隔开.纠错课堂练习:已知函数f(x)=x3+ax2+bx+c在x=1处取极值-2.(1)试用c表示a,b;(2)求f(x)的单调递减区间.1.与函数的单调性有关的问题(1)利用导数求函数的单调区间,可通过f ′(x)>0或f ′(x)<0来进行,至于区间的端点是否包含,取决于函数在端点处是否有意义,若有意义,则端点包含与不包含均可;若无意义,则必不能包含端点.(2)若函数f(x)在(a,b)上递增(或递减),则在(a,b)上f ′(x)≥0(或f ′(x)≤0)恒成立,若该不等式中含有参数,我们可利用上述结论求参数的范围,它蕴涵了恒成立思想.利用上述方法求得参数的范围后,要注意检验该参数的端点值能否使f ′(x)=0恒成立.若能,则去掉该端点值;否则,即为所求.2.与函数的极值有关的问题(1)求函数的极值点,可通过f ′(x)=0来求得,但同时还要注意检验在其两侧附近的导函数值是否异号.(2)若函数f(x)在x=x0处有极值,则一定有f ′(x0)=0,我们可利用上述结论求参数的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《§3.3.1函数的单调性与导数》
编制人: 审核人:高二数学组 日期:
2014-2-12
1.探索函数的单调性与导数的关系
教学重点:探索并应用函数的单调性与导数的关系求单调区间。
教学难点:探索含参数的函数的单调性与导数的关系。
请认真阅读课本内容,划出重要知识,规范完成课前预习案内容并记熟基础知识,用红色笔做好疑难标记。
预学案
【预习导学】
复习回顾:基本初等函数的导数公式:
(1) 常函数: ( ); (2) 幂函数: ;
(3) 三角函数: , ; (4) 对数函数的导数: ; (5)
指数函数的导数: 。
【预习自测】
【预习总结】(请你将预习中未能解决的问题和疑惑的问题写下来,待课堂上与老师同学探究解
决)
导学案
探究任务一:函数单调性与其导数的关系: 问题1:观察图(1)~图(4),探讨函数与其导函数是否也存在问题(1)的关系呢?
通过对问题1的观察,你能得到原函数的单调性与其导函数的正负号有何关系?你能得到怎样的结论?
问题2:上述结论主要是通过观察得到的,你能结合导数的几何意义为切线的斜率,你能从这个角度给予说明吗?
探究任务二:()0'=x f 与函数单调性的关系:
问题3:若函数()x f 的导数()0'=x f ,那么()x f 会是一个什么函数呢?
问题4:在区间()b a ,上()0'≥x f ,则函数()x f 区间()b a ,必为增函数,你认为这句话对吗?请说明理由.
问题5:函数()x f 在区间()b a ,上为增函数,则在区间()b a ,上()0'≥x f 成立.你认为这句话对吗?说明理由.
问题6:平时我们遇到很多需要数形结合的题目,那么现在我们知道了导数的正负能帮助我们
判断函数的单调性,那么我们能否利用导数信息画出函数的大致图像呢? 例1:已知某函数的导函数的下列信息:
当;0)('41><<x f x 时,当;0)('1,4<<>x f x x 时,或
当.0)('1,4===x f x x 时,或试画出函数()x f 图像的大致形状.
问题7:根据我们得到的导数与单调性之间关系的结论,你能否利用此结论来求函数的单调区间呢?
例2:判断下列函数的单调性,并求出单调区间:
(1)();,0,sin )(π∈-=x x x x f (2);12432)(23+-+=x x x x f
(3);3)(3x x x f += (4);32)(2--=x x x f
问:你对利用导数去研究函数的单调性有什么看法?你能总结出利用导数求单调区间的步骤吗?(简单易行)
问题8:导数能帮助我们简洁的求出单调区间,画出大致图象,但我们知道就是递增(递减)也有快与慢的区别,在导数上如何体现呢?下面我们就来看一下下面这个问题 例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
【随堂检测】
1.
确定下列函数的单调区间:(1)y =x
e x - (2)y =3x -x 3
(3)
x x y 1ln +
=
2.设)x (f y '=是函数)x (f y =的导数, )x (f y '=的图象如图所示, 则)x (f y =的图象最有可能是( )
固学案
【复习整合】 回扣教材,梳理知识,形成知识提纲 【课后自主检测】。